Italy
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Proposed Approach to Calculate Safety Distances for Hydrogen Fuelling Station in Italy
Sep 2021
Publication
In 2021 only 6 hydrogen fuelling station have been built in Italy of which 3 are not operational and only 1 is open to the public while the rest are built in private or industrial areas. While fuelling station which store more than 5000 kg of hydrogen are subjected to the “Seveso Directive” the permitting procedure for refuelling station which store less than the threshold is supervised by the fire brigade command of the province where the station is built. Recently in the effort to easy the permitting procedure to establish new stations a Ministerial Decree was published in the official gazette of the Italian Republic which lists minimum safety features and safety distances that if respected guarantee the approval by the authority. Nevertheless the imposed distances are such that the land required to build the station constitute a barrier rather than a facilitation. Exploiting the possibility introduced by the Decree to calculate safety distances following a Fire Safety Engineering approach a method is proposed for calculation of safety distances. The present paper presents the Italian regulation and describes an approach to calculate the safety distances including an example applied on the dispenser.
Roadmap to Achieving Sustainable Development via Green Hydrogen
Jan 2023
Publication
The conversion to renewable energy can be achieved when cities and communities start to depend on sustainable resources capable of providing for the basic needs of the community along with a reduction in the daily problems and issues that people face. These issues such as poverty hunger sanitation and economic difficulties are highlighted in the Sustainable Development Goals (SDGs) which aim to limit and eradicate these problems along with other environmental obstacles including climate change and Greenhouse Gases (GHGs). These SDGs containing 17 goals target each sector and provide propositions to solve such devastating problems. Hydrogen contributes to the targets of these sustainable developments since through its implementation in different industries the levels of GHG will drop and thus contribute to the climate change which Earth is facing. Further through the usage of such resources many job opportunities will also be developed thus enhancing the economy and lifting the status of society. This paper classifies the four different types of hydrogen and outlines the differences between them. The paper then emphasizes the importance of green hydrogen use within the shipping industry transportation and infrastructure along with economic and social development through job opportunities. Furthermore this paper provides case studies tackling green hydrogen status in the United Kingdom United States of America and European Union as well as Africa United Arab of Emirates and Asia. Finally challenges and recommendations concerning the green hydrogen industry are addressed. This paper aims to relate the use of green hydrogen to the direct and indirect goals of SDG.
Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support
Jun 2022
Publication
The transition toward high shares of non-programmable renewable energy sources in the power grid requires an increase in the grid flexibility to guarantee grid reliability and stability. This work developed within the EU project Grasshopper identifies hydrogen Fuel Cell (FC) power plants based on low temperature PEM cells as a source of flexibility for the power grid. A dynamic numerical model of the flexible FC system is developed and tested against experimental data from a 100-kW pilot plant built within the Grasshopper project. The model is then applied to assess the flexible performance of a 1 MW system in order to optimize the scale-up of the pilot plant to the MW-size. Simulations of load-following operation show the flexibility of the plant which can ramp up and down with a ramp rate depending only on an externally imposed limit. Warm-up simulations allow proposing solutions to limit the warm-up time. Of main importance are the minimization of the water inventory in the system and the construction of a compact system which minimizes the distance between the components.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
A Model-based Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation
Jun 2021
Publication
In this study the optimal sizing of a hybrid battery/hydrogen Energy Storage System “ESS” is assessed via a model-based parametric analysis in the context of a real hybrid renewable microgrid located in Huelva Spain supplying a real-time monitored residential load (3.5 kW; 5.6 MWh/year) in island mode. Four storage configurations (battery-only H2-only hybrid battery priority and hybrid H2 priority) are assessed under different Energy Management Strategies analysing system performance parameters such as Loss of Load “LL” (kWh;%) Over Production “OP” (kWh;%) round-trip storage efficiency ESS (%) and total storage cost (€) depending on the ESS sizing characteristics. A parallel approach to the storage optimal sizing via both multi-dimensional sensitivity analysis and PSO is carried out in order to address both sub-optimal and optimal regions respectively. Results show that a hybridised ESS capacity is beneficial from an energy security and efficiency point of view but can represent a substantial additional total cost (between 100 and 300 k€) to the hybrid energy system especially for the H2 ESS which presents higher costs. Reaching 100% supply from renewables is challenging and introducing a LL threshold induces a substantial relaxation of the sizing and cost requirements. Increase in battery capacity is more beneficial for the LL abatement while increasing H2 capacity is more useful to absorb large quantities of excess energy. The optimal design via PSO technique is complemented to the parametric study.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
Numerical Redesign of 100kw MGT Combustor for 100% H2 Fueling
Jan 2014
Publication
The use of hydrogen as energy carrier in a low emission microturbine could be an interesting option for renewable energy storage distributed generation and combined heat & power. However the hydrogen using in gas turbine is limited by the NOx emissions and the difficulty to operate safely. CFD simulations represent a powerful and mature tool to perform detailed 3-D investigation for the development of a prototype before carrying out an experimental analysis. This paper describes the CFD supported redesign of the Turbec T100 microturbine combustion chamber natural gas-fired to allow the operation on 100% hydrogen.
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li Na K Ca Mg Y Eu and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
Hazard Footprint of Alternative Fuel Storage Concepts for Hydrogen-powered Urban Buses
Nov 2023
Publication
Hydrogen mobility is a powerful strategy to fight climate change promoting the decarbonization of the transportation sector. However the higher flammability of hydrogen in comparison with traditional fuels raises issues concerning the safety of hydrogen-powered vehicles in particular when urban mobility in crowded areas is concerned. In the present study a comparative analysis of alternative hydrogen storage concepts for buses is carried out. A specific inherent safety assessment methodology providing a hazard footprint of alternative hydrogen storage technologies was developed. The approach provides a set of ex-ante safety performance indicators and integrates a sensitivity analysis performed by a Monte Carlo method. Integral models for consequence analysis and a set of baseline frequencies are used to provide a preliminary identification of the worstcase credible fire and explosion scenarios and to rank the inherent safety of alternative concepts. Cryocompressed storage in the supercritical phase resulted as the more hazardous storage concept while cryogenic storage in the liquid phase at ambient pressure scored the highest safety performance. The results obtained support risk-informed decision-making in the shift towards the promotion of sustainable mobility in urban areas.
Flashback Propensity due to Hydrogen Blending in Natural Gas: Sensitivity to Operating and Geometrical Parameters
Jan 2024
Publication
Hydrogen has emerged as a promising option for promoting decarbonization in various sectors by serving as a replacement for natural gas while retaining the combustion-based conversion system. However its higher reactivity compared to natural gas introduces a significant risk of flashback. This study investigates the impact of operating and geometry parameters on flashback phenomena in multi-slit burners fed with hydrogenmethane-air mixtures. For this purpose transient numerical simulations which take into account conjugate heat transfer between the fluid and the solid walls are coupled with stochastic sensitivity analysis based on Generalized Polynomial Chaos. This allows deriving comprehensive maps of flashback velocities and burner temperatures within the parameter space of hydrogen content equivalence ratio and slit width using a limited number of numerical simulations. Moreover we assess the influence of different parameters and their interactions on flashback propensity. The ranges we investigate encompass highly H2 -enriched lean mixtures ranging from 80% to 100% H2 by volume with equivalence ratios ranging from 0.5 to 1.0. We also consider slit widths that are typically encountered in burners for end-user devices ranging from 0.5 mm to 1.2 mm. The study highlights the dominant role of preferential diffusion in affecting flashback physics and propensity as parameters vary including significant enrichment close to the burner plate due to the Soret effect. These findings hold promise for driving the design and optimization of perforated burners enabling their safe and efficient operation in practical end-user applications.
Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future
Dec 2023
Publication
Energy and environmental issues are of great importance in the present era. The transition to renewable energy sources necessitates technological political and behavioral transformations. Hydrogen is a promising solution and many countries are investing in the hydrogen economy. Global demand for hydrogen is expected to reach 120 million tonnes by 2024. The incorporation of hydrogen for efficient energy transport and storage and its integration into the transport sector are crucial measures. However to fully develop a hydrogen-based economy the sustainability and safety of hydrogen in all its applications must be ensured. This work describes and compares different technologies for hydrogen production storage and utilization (especially in fuel cell applications) with focus on the research activities under study at SaRAH group of the University of Naples Federico II. More precisely the focus is on the production of hydrogen from bio-alcohols and its storage in formate solutions produced from renewable sources such as biomass or carbon dioxide. In addition the use of materials inspired by nature including biowaste as feedstock to produce porous electrodes for fuel cell applications is presented. We hope that this review can be useful to stimulate more focused and fruitful research in this area and that it can open new avenues for the development of sustainable hydrogen technologies.
Analysis of a Distributed Green Hydrogen Infrastructure Designed to Support the Sustainable Mobility of a Heavy-duty Fleet
Aug 2023
Publication
Clean hydrogen is a key pillar for the net zero economy which can be deployed by consistent utilization on heavy-duty transport. This study investigates a distributed green hydrogen infrastructure (DHI) for heavy-duty transportation consisting of on-site hydrogen production storage compression and refueling systems in Italy. Two options for energy supply are analyzed: grid connection using green energy via Power Purchasing Agreements (PPAs) and direct connection to the photovoltaic field respectively. Radiation data are representative of the three main Italian areas namely South (Catania) Center (Roma) and North (Milano). The sensitivity analysis varies the PPA value between 50 V/MWh and 200 V/MWh and the water electrolysis capacity factor between 20% and 100%. The study finds that the LCOH ranges from 7.4 V/kgH2 to 67.8 V/kgH2 for the first option and 5.5 V/kgH2 to 27.5 V/kgH2 for the second option with Southern Italy having the lowest LCOH due to higher solar irradiation. The research shows that a DHI can offer economic and technical benefits for heavy-duty mobility. However the performance is highly influenced by external conditions such as hydrogen demand and electricity prices. This study provides valuable insights into designing and operating a DHI for heavy-duty mobility promoting a carbon-free society.
Hydrogen Consumption and Durability Assessment of Fuel Cell Vehicles in Realistic Driving
Jan 2024
Publication
This study proposes a predictive equivalent consumption minimization strategy (P-ECMS) that utilizes velocity prediction and considers various dynamic constraints to mitigate fuel cell degradation assessed using a dedicated sub-model. The objective is to reduce fuel consumption in real-world conditions without prior knowledge of the driving mission. The P-ECMS incorporates a velocity prediction layer into the Energy Management System. Comparative evaluations with a conventional adaptive-ECMS (A-ECMS) a standard ECMS with a well-tuned constant equivalence factor and a rule-based strategy (RBS) are conducted across two driving cycles and three fuel cell dynamic restrictions (|∕| ≤ 0.1 0.01 and 0.001 A∕cm2 ). The proposed strategy achieves H2 consumption reductions ranging from 1.4% to 3.0% compared to A-ECMS and fuel consumption reductions of up to 6.1% when compared to RBS. Increasing dynamic limitations lead to increased H2 consumption and durability by up to 200% for all tested strategies.
The Use of Hydrogen as Alternative Fuel for Ship Propulsion: A Case Study of Full and Partial Retrofitting of Roll-on/Roll-off Vessels for Short Distance Routes
Oct 2023
Publication
Roll-on/Roll-Off (Ro-Ro) vessels including those without and with passenger accommodation Roll-on/roll-off passenger (Ro-Pax) can be totally or partially retrofitted to reduce the greenhouse gas (GHG) emissions in maritime transport not only during hoteling operation at the dock but also during service. This study is based on data of the vessel routes connecting the Port of Piombino to the Elba Island in Italy. Three retrofitting scenarios have been considered: replacement of the main and auxiliary engines with fuel cells (FC) (full retrofitting) replacement of the auxiliary engines with FCs (partial retrofitting) and replacement of the auxiliary engines with FCs and hoteling only with auxiliary engines for one specific vessel. The amount of hydrogen the filling time and the energy needed for production compression and pre-cooling of hydrogen have been calculated for the different scenarios.
The Potential of Hydrogen-battery Storage Systems for a Sustainable Renewable-based Electrification of Remote Islands in Norway
Oct 2023
Publication
Remote locations and off-grid regions still rely mainly on diesel generators despite the high operating costs and greenhouse gas emissions. The exploitation of local renewable energy sources (RES) in combination with energy storage technologies can be a promising solution for the sustainable electrification of these areas. The aim of this work is to investigate the potential for decarbonizing remote islands in Norway by installing RES-based energy systems with hydrogen-battery storage. A national scale assessment is presented: first Norwegian islands are characterized and classified according to geographical location number of inhabitants key services and current electrification system. Then 138 suitable installation sites are pinpointed through a multiple-step sorting procedure and finally 10 reference islands are identified as representative case studies. A site-specific methodology is applied to estimate the electrical load profiles of all the selected reference islands. An optimization framework is then developed to determine the optimal system configuration that minimizes the levelized cost of electricity (LCOE) while ensuring a reliable 100% renewable power supply. The LCOE of the RES-based energy systems range from 0.21 to 0.63 €/kWh and a clear linear correlation with the wind farm capacity factor is observed (R2 equal to 0.87). Hydrogen is found to be crucial to prevent the oversizing of the RES generators and batteries and ensure long-term storage capacity. The techno-economic feasibility of alternative electrification strategies is also investigated: the use of diesel generators is not economically viable (0.87–1.04 €/kWh) while the profitability of submarine cable connections is highly dependent on the cable length and the annual electricity consumption (0.14–1.47 €/kWh). Overall the cost-effectiveness of RES-based energy systems for off-grid locations in Northern Europe can be easily assessed using the correlations derived in this analysis.
A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future
Dec 2023
Publication
The H2-ICE project aims at developing through numerical simulation a new generation of hybrid powertrains featuring a hydrogen-fueled Internal Combustion Engine (ICE) suitable for 12 m urban buses in order to provide a reliable and cost-effective solution for the abatement of both CO2 and criteria pollutant emissions. The full exploitation of the potential of such a traction system requires a substantial enhancement of the state of the art since several issues have to be addressed. In particular the choice of a more suitable fuel injection system and the control of the combustion process are extremely challenging. Firstly a high-fidelity 3D-CFD model will be exploited to analyze the in-cylinder H2 fuel injection through supersonic flows. Then after the optimization of the injection and combustion process a 1D model of the whole engine system will be built and calibrated allowing the identification of a “sweet spot” in the ultra-lean combustion region characterized by extremely low NOx emissions and at the same time high combustion efficiencies. Moreover to further enhance the engine efficiency well above 40% different Waste Heat Recovery (WHR) systems will be carefully scrutinized including both Organic Rankine Cycle (ORC)-based recovery units as well as electric turbo-compounding. A Selective Catalytic Reduction (SCR) aftertreatment system will be developed to further reduce NOx emissions to near-zero levels. Finally a dedicated torque-based control strategy for the ICE coupled with the Energy Management Systems (EMSs) of the hybrid powertrain both optimized by exploiting Vehicle-To-Everything (V2X) connection allows targeting H2 consumption of 0.1 kg/km. Technologies developed in the H2-ICE project will enhance the know-how necessary to design and build engines and aftertreatment systems for the efficient exploitation of H2 as a fuel as well as for their integration into hybrid powertrains.
No more items...