India
Pt Catalytic Effects on the Corrosion and Hydrogen Chemisorption Properties of Zircaloy-2
Dec 2020
Publication
Noble metals are added to boiling water reactors (BWRs) to mitigate stress corrosion cracking of structural components made from steels and Ni-based alloys and this technology is referred to as Noble Metal Chemical Addition (NMCA) or NobleChemTM. There is a growing concern that NMCA can cause unwanted harmful effects on the corrosion and hydrogen uptake properties of Zircaloy-2 fuel cladding. To investigate this we have subjected Zircaloy-2 fuel claddings to out-of-pile BWR conditions in a custom-built autoclave. These claddings are oxidized in pressurized hot water (280 °C 9 MPa) for 25 60 and 150 days wherein Pt nanoparticles (~10 nm) were simultaneously injected. Cross-sectional focused ion beam cuts made at the oxide-metal interface reveal that the oxide growth is not significantly influenced by the local Pt loadings (≤ 1 µg·cm-2). Surprisingly an inverse correlation was observed between oxide thicknesses and metal's hydrogen contents. Interestingly Pt catalysts have led to diminished hydrogen absorption in specimens with liner exposed to the hot water. Overall Pt catalysts exhibited no detrimental effects on the corrosion rate and hydrogen absorption in Zircaloy-2.
Hydrogen Production Using Advanced Reactors by Steam Methane Reforming: A Review
Apr 2023
Publication
The present review focuses on the current progress on harnessing the potential of hydrogen production by Methane Steam Reforming (MSR). First based on the prominent literature in last few years the overall research efforts of hydrogen production using different feed stocks like ethanol ammonia glycerol methanol and methane is presented. The presented data is based on reactor type reactor operating conditions catalyst used and yield of hydrogen to provide a general overview. Then the most widely used process [steam methane reforming (SMR)/ methane steam reforming (MSR)] are discussed. Major advanced reactors the membrane reactors Sorption Enhanced methane steam reforming reactors and micro-reactors are evaluated. The evaluation has been done based on parameters like residence time surface area scale-up coke formation conversion space velocity and yield of hydrogen. The kinetic models available in recently published literature for each of these reactors have been presented with the rate constants and other parameters. The mechanism of coke formation and the rate expressions for the same have also been presented. While membrane reactors and sorption enhanced reactors have lot of advantages in terms of process intensification scale-up to industrial scale is still a challenge due to factors like membrane stability and fouling (in membrane reactors) decrease in yield with increasing WHSV (in case of Sorption Enhanced Reactors). Micro-reactors pose a higher potential in terms of higher yield and very low residence time in seconds though the volumes might be substantially lower than present industrial scale conventional reactors.
Performance Assessment of a Solar Powered Hydrogen Production System and its ANFIS Model
Oct 2020
Publication
Apart from many limitations the usage of hydrogen in different day-to-day applications have been increasing drastically in recent years. However numerous techniques available to produce hydrogen electrolysis of water is one of the simplest and cost-effective hydrogen production techniques. In this method water is split into hydrogen and oxygen by using external electric current. In this research a novel hydrogen production system incorporated with Photovoltaic – Thermal (PVT) solar collector is developed. The influence of different parameters like solar collector tilt angle thermal collector design and type of heat transfer fluid on the performance of PVT system and hydrogen production system are also discussed. Finally thermal efficiency electrical efficiency and hydrogen production rate have been predicted by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique. Based on this study results it can be inferred that the solar collector tilt angle plays a significant role to improve the performance of the electrical and thermal performance of PVT solar system and Hydrogen yield rate. On the other side the spiral-shaped thermal collector with water exhibited better end result than the other hydrogen production systems. The predicted results ANFIS techniques represent an excellent agreement with the experimental results. In consequence it is suggested that the developed ANFIS model can be adopted for further studies to predict the performance of the hydrogen production system.
Premier, Progress and Prospects in Renewable Hydrogen Generation: A Review
May 2023
Publication
Renewable hydrogen production has an opportunity to reduce carbon emissions in the transportation and industrial sectors. This method generates hydrogen utilizing renewable energy sources such as the sun wind and hydropower lowering the number of greenhouse gases released into the environment. In recent years considerable progress has been made in the production of sustainable hydrogen particularly in the disciplines of electrolysis biomass gasification and photoelectrochemical water splitting. This review article figures out the capacity efficiency and cost-effectiveness of hydrogen production from renewable sources effectively comparing the conventionally used technologies with the latest techniques which are getting better day by day with the implementation of the technological advancements. Governments investors and industry players are increasingly interested in manufacturing renewable hydrogen and the global need for clean energy is expanding. It is projected that facilities for manufacturing renewable hydrogen as well as infrastructure to support this development would expand hastening the transition to an environment-friendly and low-carbon economy
Recent Progress in Conducting Polymers for Hydrogen Storage and Fuel Cell Applications
Oct 2020
Publication
Hydrogen is a clean fuel and an abundant renewable energy resource. In recent years huge scientific attention has been invested to invent suitable materials for its safe storage. Conducting polymers has been extensively investigated as a potential hydrogen storage and fuel cell membrane due to the low cost ease of synthesis and processability to achieve the desired morphological and microstructural architecture ease of doping and composite formation chemical stability and functional properties. The review presents the recent progress in the direction of material selection modification to achieve appropriate morphology and adsorbent properties chemical and thermal stabilities. Polyaniline is the most explored material for hydrogen storage. Polypyrrole and polythiophene has also been explored to some extent. Activated carbons derived from conducting polymers have shown the highest specific surface area and significant storage. This review also covers recent advances in the field of proton conducting solid polymer electrolyte membranes in fuel cells application. This review focuses on the basic structure synthesis and working mechanisms of the polymer materials and critically discusses their relative merits.
A Comprehensive Study on Production of Methanol from Wind Energy
Apr 2022
Publication
Methanol is a promising new alternative fuel that emits significantly less carbon dioxide than gasoline. Traditionally methanol was produced by gasifying natural gas and coal. Syn-Gas is created by converting coal and natural gas. After that the Syn-Gas is converted to methanol. Alternative renewable energy-to-methanol conversion processes have been extensively researched in recent years due to the traditional methanol production process’s high carbon footprint. Using an electrolysis cell wind energy can electrolyze water to produce hydrogen. Carbon dioxide is a gas that can be captured from the atmosphere and industrial processes. Carbon dioxide and hydrogen are combusted in a reactor to produce methanol and water; the products are then separated using a distillation column. Although this route is promising it has significant cost and efficiency issues due to the low efficiency of the electrolysis cells and high manufacturing costs. Additionally carbon dioxide capture is an expensive process. Despite these constraints it is still preferable to store excess wind energy in the form of methanol rather than sending it directly to the grid. This process is significantly more carbon-efficient and resource-efficient than conventional processes. Researchers have proposed and/or simulated a variety of wind power methods for methanol processes. This paper discusses these processes. The feasibility of wind energy for methanol production and its future potential is also discussed in this paper.
Hydrogen Embrittlement of a Boiler Water Wall Tube in a District Heating System
Jul 2022
Publication
A district heating system is an eco-friendly power generation facility with high energy efficiency. The boiler water wall tube used in the district heating system is exposed to extremely harsh conditions and unexpected fractures often occur during operation. In this study a corrosion failure analysis of the boiler water wall tube was performed to elucidate the failure mechanisms. The study revealed that overheating by flames was the cause of the failure of the boiler water wall tube. With an increase in temperature in a localized region the microstructure not only changed from ferrite/pearlite to martensite/bainite which made it more susceptible to brittleness but it also developed tensile residual stresses in the water-facing side by generating cavities or microcracks along the grain boundaries inside the tube. High-temperature hydrogen embrittlement combined with stress corrosion cracking initiated many microcracks inside the tube and created an intergranular fracture.
Hydrogen Energy as Future of Sustainable Mobility
May 2022
Publication
Conventional fuels for vehicular applications generate hazardous pollutants which have an adverse effect on the environment. Therefore there is a high demand to shift towards environment-friendly vehicles for the present mobility sector. This paper highlights sustainable mobility and specifically sustainable transportation as a solution to reduce GHG emissions. Thus hydrogen fuel-based vehicular technologies have started blooming and have gained significance following the zero-emission policy focusing on various types of sustainable motilities and their limitations. Serving an incredible deliverance of energy by hydrogen fuel combustion engines hydrogen can revolution various transportation sectors. In this study the aspects of hydrogen as a fuel for sustainable mobility sectors have been investigated. In order to reduce the GHG (Green House Gas) emission from fossil fuel vehicles researchers have paid their focus for research and development on hydrogen fuel vehicles and proton exchange fuel cells. Also its development and progress in all mobility sectors in various countries have been scrutinized to measure the feasibility of sustainable mobility as a future. This paper is an inclusive review of hydrogen-based mobility in various sectors of transportation in particular fuel cell cars that provides information on various technologies adapted with time to add more towards perfection. When compared to electric vehicles with a 200-mile range fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To stimulate the use of hydrogen as a passenger automobile fuel the cost of a hydrogen fuel cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle. Compared to gasoline cars fuel cell vehicles use 43% less energy and generate 40% less CO2.
Green-hydrogen Research: What Have We Achieved, and Where Are We Going? Bibliometrics Analysis
Jul 2022
Publication
In response to the global challenge of climate change 136 countries accounting for 90% of global GDP and 85% of the population have now set net-zero targets. A transition to net-zero will require the decarbonization of all sectors of the economy. Green-hydrogen produced from renewable energy sources poses little to no threat to the environment and increasing its production will support net-zero targets Our study examined the evolution of green-hydrogen research themes since the UN Sustainable Development Goals were adopted in 2015 by utilizing bibliographic couplings keyword co-occurrence and keyphrase analysis of 642 articles from 2016 to 2021 in the Scopus database. We studied bibliometrics indicators and temporal evolution of publications and citations patterns of open access the effect of author collaboration influential publications and top contributing countries. We also consider new indicators like publication views keyphrases topics with prominence and field weighted citation impact and Altmetrics to understand the research direction further. We find four major thematic distributions of green-hydrogen research based on keyword co-occurrence networks: hydrogen storage hydrogen production electrolysis and the hydrogen economy. We also find networks of four research clusters that provide new information on the journal’s contributions to green-hydrogen research. These are materials chemistry hydrogen energy and cleaner production applied energy and fuel cells. Most green-hydrogen research aligns with Affordable and Clean Energy (SDG 7) and Climate Action (SDG 13). The outcomes of policy decisions in the United States Europe India and China will profoundly impact green-hydrogen production and storage over the next five years. If these policies are implemented these countries will account for two-thirds of this growth. Asia will account for the most significant part and become the second-largest producer globally.
Optimization and Sustainability of Gasohol/hydrogen Blends for Operative Spark Ignition Engine Utilization and Green Environment
Aug 2022
Publication
One of the many technical benefits of green diesel (GD) is its ability to be oxygenated lubricated and adopted in diesel engines without requiring hardware modifications. The inability of GD to reduce exhaust tail emissions and its poor performance in endurance tests have spurred researchers to look for new clean fuels. Improving gasohol/hydrogen blend (GHB) spark ignition is critical to its long-term viability and accurate demand forecasting. This study employed the Response Surface Methodology (RSM) to identify the appropriate GHB and engine speed (ES) for efficient performance and lower emissions in a GHB engine. The RSM model output variables included brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) hydrocarbon (HC) carbon dioxide (CO2) and carbon monoxide (CO) while the input variables included ES and GHB. The Analysis of Variance-assisted RSM revealed that the most affected responses are BSFC and BTE. Based on the desirability criteria the best values for the GHB and the ES were determined to be 20% and 1500 rpm respectively while the validation between experimental and numerical results was calculated to be 4.82. As a result the RSM is a useful tool for predicting the optimal GHB and ES for optimizing spark-ignition engine characteristics and ensuring benign environment.
Numerical Simulation of Hydrogen Deflagration Using CFD
Sep 2021
Publication
Hydrogen is seen as an important future energy carrier as part of the move away from traditional hydrocarbon sources. Delayed ignition of a hydrogen-air mixture formed from an accidental release of hydrogen in either a confined or congested environment can lead to the generation of overpressure impacting both people and assets. An understanding of the possible overpressures generated is critical in designing facilities and effective mitigation systems against hydrogen explosion hazards. This paper describes the numerical modelling of hydrogen deflagrations using a new application PDRFOAM-R that is part of the wider OpenFOAM open-source CFD package of routines for the solution of systems of partial differential equations. The PDRFOAM-R code solves momentum and continuity equations the combustion model is based on flame area transport and the turbulent burning velocity correlation is based on Markstein and Karlovitz numbers. PDRFOAM-R is derived from publicly available PDRFOAM tool and it resolves small and large obstacles unlike PDRFOAM which is based on the Porosity Distributed Resistance approach. The PDRFOAM-R code is validated against various unconfined-uncongested and semi-confined congested explosion experiments. The flame dynamics and pressure history predicted from the simulation show a reasonable comparison with the experiments.
Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
Oct 2021
Publication
Consumption of fossil fuels especially in transport and energy-dependent sectors has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming partial oxidation of methane auto thermal reforming direct biomass gasification thermal water splitting methane pyrolysis aqueous reforming and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available the reasons behind their deactivation and their possible regeneration methods were discussed. Finally we presented the challenges and future perspectives for hydrogen production via TMD. This review concluded that among all catalysts nickel ruthenium and platinum-based catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen products during the TMD process. However their rapid deactivation at high temperatures still needs the attention of the scientific community.
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia
Oct 2023
Publication
About 95% of current hydrogen production uses technologies involving primary fossil resources. A minor part is synthesized by low-carbon and close-to-zero-carbon-footprint methods using RESs. The significant expansion of low-carbon hydrogen energy is considered to be a part of the “green transition” policies taking over in technologically leading countries. Projects of hydrogen synthesis from natural gas with carbon capture for subsequent export to European and Asian regions poor in natural resources are considered promising by fossil-rich countries. Quality changes in natural resource use and gas grids will include (1) previously developed scientific groundwork and production facilities for hydrogen energy to stimulate the use of existing natural gas grids for hydrogen energy transport projects; (2) existing infrastructure for gas filling stations in China and Russia to allow the expansion of hydrogen-fuel-cell vehicles (HFCVs) using typical “mini-plant” projects of hydrogen synthesis using methane conversion technology; (3) feasibility testing for different hydrogen synthesis plants at medium and large scales using fossil resources (primarily natural gas) water and atomic energy. The results of this study will help focus on the primary tasks for quality changes in natural resource and gas grid use. Investments made and planned in hydrogen energy are assessed.
Green Hydrogen as a Clean Energy Resource and Its Applications as an Engine Fuel
Jan 2024
Publication
The world’s economy heavily depends on the energy resources used by various countries. India is one of the promising developing nations with very low crude reserves actively looking for new renewable energy resources to power its economy. Higher energy consumption and environmental pollution are two big global challenges for our sustainable development. The world is currently facing a dual problem of an energy crisis as well as environmental degradation. So there is a strong need to reduce our dependency on fossil fuels and greenhouse gas emissions. This can be achieved to a great extent by universally adopting clean fuels for all daily life uses like ethanol or liquified natural gas (LNG) as these burn very clean and do not emit many pollutants. Nowadays green hydrogen has emerged as a new clean energy source which is abundantly available and does not pollute much. This article explores the various benefits of green hydrogen with respect to fossil fuels various techniques of producing it and its possible use in different sectors such as industry transport and aviation as well as in day-to-day life. Finally it explores the use of green hydrogen as fuel in automobile engines its blending with CNG gas and its benefits in reducing emissions compared to fossil fuels. On combustion green hydrogen produces only water vapours and is thus a highly clean fuel. Thus it can potentially help humanity preserve the environment due to its ultra-low emissions and can be a consistent and reliable source of energy for generations to come thereby ending the clean energy security debate forever.
A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell
Aug 2023
Publication
More than 80% of the energy from fossil fuels is utilized in homes and industries. Increased use of fossil fuels not only depletes them but also contributes to global warming. By 2050 the usage of fossil fuels will be approximately lower than 80% than it is today. There is no yearly variation in the amount of CO2 in the atmosphere due to soil and land plants. Therefore an alternative source of energy is required to overcome these problems. Biohydrogen is considered to be a renewable source of energy which is useful for electricity generation rather than relying on harmful fossil fuels. Hydrogen can be produced from a variety of sources and technologies and has numerous applications including electricity generation being a clean energy carrier and as an alternative fuel. In this review a detailed elaboration about different kinds of sources involved in biohydrogen production various biohydrogen production routes and their applications in electricity generation is provided.
A Brief Review of Hydrogen Production Methods and Their Challenges
Jan 2023
Publication
Hydrogen is emerging as a new energy vector outside of its traditional role and gaining more recognition internationally as a viable fuel route. This review paper offers a crisp analysis of the most recent developments in hydrogen production techniques using conventional and renewable energy sources in addition to key challenges in the production of Hydrogen. Among the most potential renewable energy sources for hydrogen production are solar and wind. The production of H2 from renewable sources derived from agricultural or other waste streams increases the flexibility and improves the economics of distributed and semi-centralized reforming with little or no net greenhouse gas emissions. Water electrolysis equipment driven by off-grid solar or wind energy can also be employed in remote areas that are away from the grid. Each H2 manufacturing technique has technological challenges. These challenges include feedstock type conversion efficiency and the need for the safe integration of H2 production systems with H2 purification and storage technologies.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Hydrogen Fuel for Future Mobility: Challenges and Future Aspects
Jul 2022
Publication
Nowadays the combustion of fossil fuels for transportation has a major negative impact on the environment. All nations are concerned with environmental safety and the regulation of pollution motivating researchers across the world to find an alternate transportation fuel. The transition of the transportation sector towards sustainability for environmental safety can be achieved by the manifestation and commercialization of clean hydrogen fuel. Hydrogen fuel for sustainable mobility has its own effectiveness in terms of its generation and refueling processes. As the fuel requirement of vehicles cannot be anticipated because it depends on its utilization choosing hydrogen refueling and onboard generation can be a point of major concern. This review article describes the present status of hydrogen fuel utilization with a particular focus on the transportation industry. The advantages of onboard hydrogen generation and refueling hydrogen for internal combustion are discussed. In terms of performance affordability and lifetime onboard hydrogen-generating subsystems must compete with what automobile manufacturers and consumers have seen in modern vehicles to date. In internal combustion engines hydrogen has various benefits in terms of combustive properties but it needs a careful engine design to avoid anomalous combustion which is a major difficulty with hydrogen engines. Automobile makers and buyers will not invest in fuel cell technology until the technologies that make up the various components of a fuel cell automobile have advanced to acceptable levels of cost performance reliability durability and safety. Above all a substantial advancement in the fuel cell stack is required.
Numerical 1-D Simulations on Single-Cylinder Stationary Spark Ignition Engine using Micro-Emulsions, Gasoline, and Hydrogen in Dual Fuel Mode
Mar 2022
Publication
This work is contributing towards reducing the emissions from stationary spark ignition engine single cylinder by adopting the state of the Art Technology Hydrogen fuel and H2O based Emulsion fuel in dual fuel mode. In addition comparing its combustion emissions and performance with conventional 100% Gasoline fuel. This research work has been done on 1-D AVL Boost Simulation Software by using the single cylinder engine model setup. The main objectives of this research work is to comply with the strict emission rules Euro VII. This work predicted the overall combustion parameters NOx CO and HC emissions as well as several performance measures like power torque BSFC and BMEP of stationary spark ignition engine test rig. Since Hydrogen is zero carbon emission based fuel so it is not creating any carbon-based emissions and has shown to be the most efficient source of energy. Although Hydrogen fuel showed no carbon emissions but NOx emissions were slightly higher than micro-emulsion fuel. Since Hydrogen fuel burns at very high temperature so it produced slightly more NOx emissions. The NOx emissions were 20% higher than emulsion fuel and 10% higher than Gasoline 100% fuel. The H2O based emulsion fuel is also investigated which helped in reducing the emissions and improved the performance of single-cylinder stationary spark Gasoline+ Micro-Emulsion +Hydrogen fuel Lower CO HC and NOx Emissions Improved Power Torque Bsfc & Pressure Constant Speed & variable Load ignition test rig. The Brake power BSFC BMEP & Torque were also investigated power and showed greater improvement for emulsion fuel. At 60% load the Hydrogen fuel showed 50% increase in power as compared to emulsion fuel and 38% more power than Gasoline fuel. Exhaust emissions CO HC were compared for gasoline and emulsion fuel. The CO emissions are 18% lower for micro-emulsion as compared to Gasoline 100% and HC emissions are 12.5% lower than gasoline 100% fuel at 20% load.
Alternative Vehicular Fuels for Environmental Decarbonization: A Critical Review of Challenges in Using Electricity, Hydrogen, and Biofuels as a Sustainable Vehicular Fuel
Jan 2023
Publication
Using vehicles powered by alternative fuels such as electricity hydrogen and biofuels have been envisioned as the ideal way to curb noxious vehicular emissions. However the availability of resources for the sustainable use of these alternative fuels the possible risks and their fate at the end of their life are frequently questioned necessitating a detailed assessment of factors influencing the use of all three alternative fuels for vehicular use. Though the vehicles powered by batteries and fuel cells are “locally” zero-emission vehicles (ZEVs) they have resource scarcity infrastructure limitations and are relatively expensive thus restricting their market penetration and consumer acceptance. Biofuels though can be used in the existing vehicles procuring the required amounts of feedstock and mitigating food-versus-fuel issues is still a challenge. Overcoming these challenges is a crucial and critical step for the sustained use of these alternative fuels as primary vehicular fuels. To accomplish this all these challenges need to be categorized and a comparative analysis among them is necessary to address them. This work can therefore serve as a ready reference for researchers and policy makers to take appropriate and informed decisions for long-term action to achieve the goals of the Paris agreement to reduce global temperature.
Modelling and Simulation of a Hydrogen-Based Hybrid Energy Storage System with a Switching Algorithm
Oct 2022
Publication
Currently transitioning from fossil fuels to renewable sources of energy is needed considering the impact of climate change on the globe. From this point of view there is a need for development in several stages such as storage transmission and conversion of power. In this paper we demonstrate a simulation of a hybrid energy storage system consisting of a battery and fuel cell in parallel operation. The novelty in the proposed system is the inclusion of an electrolyser along with a switching algorithm. The electrolyser consumes electricity to intrinsically produce hydrogen and store it in a tank. This implies that the system consumes electricity as input energy as opposed to hydrogen being the input fuel. The hydrogen produced by the electrolyser and stored in the tank is later utilised by the fuel cell to produce electricity to power the load when needed. Energy is therefore stored in the form of hydrogen. A battery of lower capacity is coupled with the fuel cell to handle transient loads. A parallel control algorithm is developed to switch on/off the charging and discharging cycle of the fuel cell and battery depending upon the connected load. Electrically equivalent circuits of a polymer electrolyte membrane electrolyser polymer electrolyte membrane fuel cell necessary hydrogen oxygen water tanks and switching controller for the parallel operation were modelled with their respective mathematical equations in MATLAB® Simulink®. In this paper we mainly focus on the modelling and simulation of the proposed system. The results showcase the simulated system’s mentioned advantages and compare its ability to handle loads to a battery-only system.
Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application
Jun 2022
Publication
The power management strategy (PMS) is intimately linked to the fuel economy in the hybrid electric vehicle (HEV). In this paper a hybrid power management scheme is proposed; it consists of an adaptive neuro-fuzzy inference method (ANFIS) and the equivalent consumption minimization technique (ECMS). Artificial intelligence (AI) is a key development for managing power among various energy sources. The hybrid power supply is an eco-acceptable system that includes a proton exchange membrane fuel cell (PEMFC) as a primary source and a battery bank and ultracapacitor as electric storage systems. The Haar wavelet transform method is used to calculate the stress (σ) on each energy source. The proposed model is developed in MATLAB/Simulink software. The simulation results show that the proposed scheme meets the power demand of a typical driving cycle i.e. Highway Fuel Economy Test Cycle (HWFET) and Worldwide Harmonized Light Vehicles Test Procedures (WLTP—Class 3) for testing the vehicle performance and assessment has been carried out for various PMS based on the consumption of hydrogen overall efficiency state of charge of ultracapacitors and batteries stress on hybrid sources and stability of the DC bus. By combining ANFIS and ECMS the consumption of hydrogen is minimized by 8.7% compared to the proportional integral (PI) state machine control (SMC) frequency decoupling fuzzy logic control (FDFLC) equivalent consumption minimization strategy (ECMS) and external energy minimization strategy (EEMS).
Recent Developments in State-of-the-art Hydrogen Energy Technologies – Review of Hydrogen Storage Materials
Jan 2023
Publication
Hydrogen energy has been assessed as a clean and renewable energy source for future energy demand. For harnessing hydrogen energy to its fullest potential storage is a key parameter. It is well known that important hydrogen storage characteristics are operating pressure-temperature of hydrogen hydrogen storage capacity hydrogen absorption-desorption kinetics and heat transfer in the hydride bed. Each application needs specific properties. Every class of hydrogen storage materials has a different set of hydrogenation characteristics. Hence it is required to understand the properties of all hydrogen storage materials. The present review is focused on the state-of– the–art hydrogen storage materials including metal hydrides magnesium-based materials complex hydride systems carbonaceous materials metal organic frameworks perovskites and materials and processes based on artificial intelligence. In each category of materials‘ discovery hydrogen storage mechanism and reaction crystal structure and recent progress have been discussed in detail. Together with the fundamental synthesis process latest techniques of material tailoring like nanostructuring nanoconfinement catalyzing alloying and functionalization have also been discussed. Hydrogen energy research has a promising potential to replace fossil fuels from energy uses especially from automobile sector. In this context efforts initiated worldwide for clean hydrogen production and its use via fuel cell in vehicles is much awaiting steps towards sustainable energy demand.
A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy
Oct 2022
Publication
Hydrogen is acknowledged as a potential and appealing energy carrier for decarbonizing the sectors that contribute to global warming such as power generation industries and transportation. Many people are interested in employing low-carbon sources of energy to produce hydrogen by using water electrolysis. Additionally the intermittency of renewable energy supplies such as wind and solar makes electricity generation less predictable potentially leading to power network incompatibilities. Hence hydrogen generation and storage can offer a solution by enhancing system flexibility. Hydrogen saved as compressed gas could be turned back into energy or utilized as a feedstock for manufacturing building heating and automobile fuel. This work identified many hydrogen production strategies storage methods and energy management strategies in the hybrid microgrid (HMG). This paper discusses a case study of a HMG system that uses hydrogen as one of the main energy sources together with a solar panel and wind turbine (WT). The bidirectional AC-DC converter (BAC) is designed for HMGs to maintain power and voltage balance between the DC and AC grids. This study offers a control approach based on an analysis of the BAC’s main circuit that not only accomplishes the function of bidirectional power conversion but also facilitates smooth renewable energy integration. While implementing the hydrogen-based HMG the developed control technique reduces the reactive power in linear and non-linear (NL) loads by 90.3% and 89.4%.
Performance of Common Rail Direct Injection (CRDi) Engine Using Ceiba Pentandra Biodiesel and Hydrogen Fuel Combination
Nov 2021
Publication
An existing diesel engine was fitted with a common rail direct injection (CRDi) facility to inject fuel at higher pressure in CRDi mode. In the current work rotating blades were incorporated in the piston cavity to enhance turbulence. Pilot fuels used are diesel and biodiesel of Ceiba pentandra oil (BCPO) with hydrogen supply during the suction stroke. Performance evaluation and emission tests for CRDi mode were carried out under different loading conditions. In the first part of the work maximum possible hydrogen substitution without knocking was reported at an injection timing of 15◦ before top dead center (bTDC). In the second part of the work fuel injection pressure (IP) was varied with maximum hydrogen fuel substitution. Then in the third part of the work exhaust gas recirculation (EGR) was varied to study the nitrogen oxides (NOx) generated. At 900 bar HC emissions in the CRDi engine were reduced by 18.5% and CO emissions were reduced by 17% relative to the CI mode. NOx emissions from the CRDi engine were decreased by 28% relative to the CI engine mode. At 20% EGR lowered the BTE by 14.2% and reduced hydrocarbons nitrogen oxide and carbon monoxide by 6.3% 30.5% and 9% respectively compared to the CI mode of operation.
Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective
Mar 2023
Publication
The present day energy supply scenario is unsustainable and the transition towards a more environmentally friendly energy supply system of the future is inevitable. Hydrogen is a potential fuel that is capable of assisting with this transition. Certain technological advancements and design challenges associated with hydrogen generation and fuel cell technologies are discussed in this review. The commercialization of hydrogen-based technologies is closely associated with the development of the fuel cell industry. The evolution of fuel cell electric vehicles and fuel cell-based stationary power generation products in the market are discussed. Furthermore the opportunities and threats associated with the market diffusion of these products certain policy implications and roadmaps of major economies associated with this hydrogen transition are discussed in this review.
Energy Storage Systems: A Review
Jul 2022
Publication
The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO2 emissions. Renewable Energy Systems (RES) offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions. However the RES relies on natural resources for energy generation such as sunlight wind water geothermal which are generally unpredictable and reliant on weather season and year. To account for these intermittencies renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed. Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs. This review attempts to provide a critical review of the advancements in the Energy Storage System (ESS) from 1850–2022 including its evolution classification operating principles and comparison
Climate Action for the Shipping Industry: Some Perspectives on the Role of Nuclear Power in Maritime Decarbonization
Feb 2023
Publication
The shipping industry is a major enabler of globalization trade commerce and human welfare. But it is still heavily served by fossil fuels which make it one of the foremost greenhouse gas emitting sectors operational today. It is also one of the hardest to abate segments of the transport industry. As part of the economy-wide climate change mitigation and adaptation efforts it is necessary to consider a low carbon energy transition for this segment as well. This study examines the potential role of nuclear power and cogeneration towards greening this sector and identifies the associated techno-commercial and policy challenges associated with the transition. Quantitative estimates of the economics and investments associated with some of the possible routes are also presented. Alternatives such as nuclear-powered ships along commercial maritime trading routes ships working on nuclear derived green hydrogen ammonia or other sustainable power fuels will enable not only decarbonization of the shipping industry but also allow further diversification of the nuclear industry through non-electric applications of nuclear power and new sector coupling opportunities. In the run-up to the UNFCCC-COP28 meeting in 2023 in UAE nuclear equipped nations heavily engaged in and dependent on maritime trade and commerce should definitely consider nuclear driven decarbonization of shipping and some of the options presented here as part of their climate action strategies.
A Review of Renewable Hydrogen Generation and Proton Exchange Membrane Fuel Cell Technology for Sustainable Energy Development
Mar 2023
Publication
Beyond its typical usage as an economical fuel for creating ammonia methanol and petroleum refineries hydrogen has become a modern form of energy. Energy-scarce advanced countries like Japan and Korea are concerned about energy privacy and environmental responsibility. Many wealthy countries have been fervently building hydrogen networks and renewable energy sources to fulfil their main goals or the growing requirement for energy. In this study we concentrate on proton-exchange membrane fuel cells (PEMFCs) generally viewed as financially viable for vehicle industries especially for automobiles demanding less hydrogen infrastructure facilities like fleets of cabs buses and logistical automobiles. This overview includes all of the significant PEMFC components focusing on the reaction gas diffusion and polymer. Without question the equipment necessary for a consistent supply of ultra-pure hydrogen is essential for the effectiveness of PEMFC in extensive requests.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
One-dimensional Numerical Investigation on Multi-cylinder Gasoline Engine Fueled by Micro-emulsions, CNG, and Hydrogen in Dual Fuel Mode
Aug 2022
Publication
This research work is the novel state-of-the-art technology performed on multi-cylinder SI engine fueled compressed natural gas emulsified fuel and hydrogen as dual fuel. This work predicts the overall features of performance combustion and exhaust emissions of individual fuels based on AVL Boost simulation technology. Three types of alternative fuels have been compared and analyzed. The results show that hydrogen produces 20% more brake power than CNG and 25% more power than micro-emulsion fuel at 1500 r/min which further increases the brake power of hydrogen CNG and micro-emulsions in the range of 25% 20% and 15% at higher engine speeds of 2500–4000 r/min respectively. In addition the brake-specific fuel consumption is the lowest for 100% hydrogen followed by CNG 100% and then micro-emulsions at 1500 r/min. At 2500– 5000 r/min there is a significant drop in brake-specific fuel consumption due to a lean mixture at higher engine speeds. The CO HC and NOx emissions significantly improve for hydrogen CNG and micro-emulsion fuel. Hydrogen fuel shows zero CO and HC emissions and is the main objective of this research to produce 0% carbon-based emissions with a slight increase in NOx emissions and CNG shows 30% lower CO emissions than micro-emulsions and 21.5% less hydrocarbon emissions than micro-emulsion fuel at stoichiometric air/fuel ratio.
Stoichiometric Equilibrium Model based Assessment of Hydrogen Generation through Biomass Gasification
Sep 2016
Publication
Hydrogen produced from renewable energy sources is clean and sustainable. Biomass gasification has a significant role in the context of hydrogen generation from biomass. Assessment of the performance of biomass gasification process regarding the product gas yield and composition can be performed using mathematical models. Among the different mathematical models thermodynamic equilibrium models are simple and useful tools for the first estimate and preliminary comparison and assessment of gasification process. A stoichiometric thermodynamic equilibrium model is developed here and its performance is validated for steam gasification and air-steam gasification. The model is then used to assess the feasibility of different biomass feedstock for gasification based on hydrogen yield and lower heating value.
Hydrogen Towards Sustainable Transition: A Review of Production, Economic, Environmental Impact and Scaling Factors
Sep 2023
Publication
Currently meeting the global energy demand is largely dependent on fossil fuels such as natural gas coal and oil. Fossil fuels represent a danger to the Earth’s environment and its biological systems. The utilisation of these fuels results in a rise in atmospheric CO2 levels which in turn triggers global warming and adverse changes in the climate. Furthermore these represent finite energy resources that will eventually deplete. There is a pressing need to identify and harness renewable energy sources as a replacement for fossil fuels in the near future. This shift is expected to have a minimal environmental impact and would contribute to ensuring energy security. Hydrogen is considered a highly desirable fuel option with the potential to substitute depleting hydrocarbon resources. This concise review explores diverse methods of renewable hydrogen production with a primary focus on solar wind geothermal and mainly water-splitting techniques such as electrolysis thermolysis photolysis and biomass-related processes. It addresses their limitations and key challenges hampering the global hydrogen economy’s growth including clean value chain creation storage transportation production costs standards and investment risks. The study concludes with research recommendations to enhance production efficiencies and policy suggestions for governments to mitigate investment risks while scaling up the hydrogen economy.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
Recent Developments on Carbon Neutrality through Carbon Dioxide Capture and Utilization with Clean Hydrogen for Production of Alternative Fuels for Smart Cities
Jul 2024
Publication
This review comprehensively evaluates the integration of solar-powered electrolytic hydrogen (H2) production and captured carbon dioxide (CO2) management for clean fuel production considering all potential steps from H2 production methods to CO2 capture and separation processes. It is expected that the near future will cover CO2-capturing technologies integrated with solar-based H2 production at a commercially viable level and over 5 billion tons of CO2 are expected to be utilized potentially for clean fuel production worldwide in 2050 to achieve carbon-neutral levels. The H2 production out of hydrocarbon-based processes using fossil fuels emits greenhouse gas emissions of 17-38 kg CO2/kg H2. On the other hand . renewable energy based green hydrogen production emits less than 2 kg CO2/kg H2 which makes it really clean and appealing for implementation. In addition capturing CO2 and using for synthesizing alternative fuels with green hydrogen will help generate clean fuels for smart cities. In this regard the most sustainable and promising CO2 capturing method is post-combustion with an adsorption-separation-desorption processes using monoethanolamine adsorbent with high CO2 removal efficiencies from flue gases. Consequently this review article provides perspectives on the potential of integrating CO2-capturing technologies and renewable energy-based H2 production systems for clean production to create sustainable cities and communities.
Fuel Cell-based Hybrid Electric Vehicles: An Integrated Review of Current Status, Key Challenges, Recommended Policies, and Future Prospects
Aug 2023
Publication
Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) whose exhaust pipes emit nothing are examples of zero-emission automobiles. FCEVs should be considered an additional technology that will help battery-powered vehicles to reach the aspirational goal of zero-emissions electric mobility particularly in situations where the customers demand for longer driving ranges and where using batteries would be insufficient due to bulky battery trays and time-consuming recharging. This study stipulates a current evaluation of the status of development and challenges related to (i) research gap to promote fuel-cell based HEVs (ii) key barriers of fuel-cell based HEVs (iii) advancement of electric mobility and their power drive (iv) electrochemistry of fuel cell technology for FCEVs (v) power transformation topologies communication protocols and advanced charging methods (vi) recommendations and future prospects of fuel-cell HEVs and (vii) current research trends of EVs and FCEVs. This article discusses key challenges with fuel cell electric mobility such as low fuel cell performance cold starts problems with hydrogen storage cost-reduction safety concerns and traction systems. The operating characteristics and applications of several fuel-cell technologies are investigated for FCEVs and FCHEVs. An overview of the fuel cell is provided which serves as the primary source of energy for FCHEVs along with comparisons and its electrochemistry. The study of power transformation topologies communication protocols and enhanced charging techniques for FCHEVs has been studied analytically. Recent technology advancements and the prospects for FCHEVs are discussed in order to influence the future vehicle market and to attain the aim of zero emissions.
Sustainable E-Fuels: Green Hydrogen, Methanol and Ammonia for Carbon-Neutral Transportation
Dec 2023
Publication
Increasingly stringent sustainability and decarbonization objectives drive investments in adopting environmentally friendly low and zero-carbon fuels. This study presents a comparative framework of green hydrogen green ammonia and green methanol production and application in a clear context. By harnessing publicly available data sources including from the literature this research delves into the evaluation of green fuels. Building on these insights this study outlines the production process application and strategic pathways to transition into a greener economy by 2050. This envisioned transformation unfolds in three progressive steps: the utilization of green hydrogen green ammonia and green methanol as a sustainable fuel source for transport applications; the integration of these green fuels in industries; and the establishment of mechanisms for achieving the net zero. However this research also reveals the formidable challenges of producing green hydrogen green ammonia and green methanol. These challenges encompass technological intricacies economic barriers societal considerations and far-reaching policy implications necessitating collaborative efforts and innovative solutions to successfully develop and deploy green hydrogen green ammonia and green methanol. The findings unequivocally demonstrate that renewable energy sources play a pivotal role in enabling the production of these green fuels positioning the global transition in the landscape of sustainable energy.
Investigation on Implementing Hydrogen Technology in Residential Sector
Jul 2024
Publication
Rapid urbanization and globalization are causing a rise in the energy demand within the residential sector. Currently majority of the energy demand for the residential sector being supplied from fossil fuels these sources account for greenhouse gas emissions responsible for anthropogenic-driven climate change. About 85 % of the world’s energy demands are being met by non-renewable sources of energy. An immediate need to shift towards renewable energy sources to generate electricity is the need of the hour. These long-standing renewable energy sources including solar hydropower and wind energy have been crucial pillars of sustainable energy for years. However as their implementation has matured we are increasingly recognizing their limitations. Issues such as the scarcity of suitable locations and the significant carbon footprint associated with constructing renewable energy infrastructure are becoming more apparent. Hydrogen has been found to play a vital role as an energy carrier in framing the energy picture in the 21st century. Currently about 1 % of the global energy demands are being met by hydrogen energy harnessed through renewable methods. Its low carbon emissions when compared to other methods lower comparative production costs and high energy efficiency of 40–60 % make it a suitable choice. Integrating hydrogen production systems with other renewable source of energy such as solar and wind energy have been discussed in this review in detail. With the concepts of green buildings or net zero energy buildings gaining attraction integration of hydrogen-based systems within residential and office sectors through the use of devices such as micro–Combined Heat and Power devices (mCHP) have proven to be effective and efficient. These devices have been found to save the consumed energy by 22 % along with an effective reduction in carbon emissions of 18 % when used in residential sectors. Using the rejected energy from other processes these mCHP devices can prove to be vital in meeting the energy demands of the residential sector. Through the support of government schemes mCHP devices have been widely used in countries such as Japan and Finland and have benefitted from the same. Hydrogen storage is critical for efficient operation of the integrated renewable systems as improper storage of the hydrogen produced could lead to human and environmental disasters. Using boron hydrides or ammonia (121 kg H2/m3 ) or through organic carriers hydrogen can be stored safely and easily regenerated without loss of material. A thorough comparison of all the renewable sources of energy that are used extensively is required to evaluate the merits of using hydrogen as an energy carrier which has been addressed in this review paper. The need to address the research gap in application of mCHP devices in the residential sector and the benefits they provide has been addressed in this review. With about 2500 GW of energy ready to be harnessed through the mCHP devices globally the potential of mCHP systems globally are discussed in detail in this paper. This review discusses challenges and solutions to hydrogen production storage and ways to implement hydrogen technology in the residential sector. This review allows researchers to build a renewable alternative with hydrogen as a clean energy vector for generating electricity in residential systems.
Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review
Aug 2023
Publication
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power which typically include photovoltaic modules a proton exchange membrane (PEM) electrolyzer hydrogen gas storage and PEM fuel cells the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode URFCs function similarly to stand-alone electrolyzers. However in fuel cell mode the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past present and future of URFCs with details on the operating modes of URFCs limitations and technical challenges and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
Design and Analysis of Hydrogen Storage Tank with Different Materials by Ansys
Dec 2019
Publication
Pressure vessels are used for large commercial and industrial applications such as softening filtration and storage. It is expected that high-pressure hydrogen storage vessels will be widely used in hydrogen-fuelled vehicles. Progressive failure properties the burst pressure and fatigue life should be taken into account in the design of composite pressure vessels. In this work the model and analysis of hydrogen storage vessels along with complete structural and thermal analysis. Liquid hydrogen is seen as an outstanding candidate for the fuel of high altitude long-endurance unmanned aircraft. The design of lightweight and super-insulated storage tanks for cryogenic liquid hydrogen is since long identified as crucial to enable the adoption of the liquid hydrogen. The basic structural design of the airborne cryogenic liquid hydrogen tank was completed in this paper. The problem of excessive heat leakage of the traditional support structure was solved by designing and using a new insulating support structure. The thermal performance of the designed tank was evaluated. The structure of the tank was analyzed by the combination of the film container theory and finite element numerical simulation method. The structure of the adiabatic support was analyzed by using the Hertz contact theory and numerical simulation method. A simple and effective structure analysis method for a similar container structure and point-contact support structure was provided. Bases for further structural optimization design of hydrogen tank will be provided also. The analysis will be carried out with different materials like titanium nickel alloy and some coated powders like alumina Titania and zirconium oxide. The results will be compared with that.
Sustainable Vehicles for Decarbonizing the Transport Sector: A Comparison of Biofuel, Electric, Fuel Cell and Solar-powered Vehicles
Mar 2024
Publication
Climate change necessitates urgent action to decarbonize the transport sector. Sustainable vehicles represent crucial alternatives to traditional combustion engines. This study comprehensively compares four prominent sustainable vehicle technologies: biofuel-powered vehicles (BPVs) fuel cell vehicles (FCVs) electric vehicles (EVs) and solar vehicles. We examine each technology’s history development classification key components and operational principles. Furthermore we assess their sustainability through technical factors environmental impacts cost considerations and policy dimensions. Moreover the discussion section addresses the challenges and opportunities associated with each technology and assesses their social impact including public perception and adoption. Each technology offers promise for sustainable transportation but faces unique challenges. Policymakers industry stakeholders and researchers must collaborate to address these challenges and accelerate the transition toward a decarbonized transport future. Potential future research areas are identified to guide advancements in sustainable vehicle technologies.
Recent Updates in Direct Radiation Water-splitting Methods of Hydrogen Production
Dec 2023
Publication
The exploration of green energy is a demanding issue due to climate change and ecology. Green energy hydrogen is gaining importance in the area of alternative energy sources. Many methods are being explored for this but most of them are utilizing other sources of energy to produce hydrogen. Therefore these approaches are not economic and acceptable at the industrial level. Sunlight and nuclear radiation as free or low-cost energy sources to split water for hydrogen. These methods are gaining importance in recent times. Therefore attempts are made to explore the latest updates in direct radiation water-splitting methods of hydrogen production. This article discusses the advances made in green hydrogen production by water splitting using visible and UV radiations as these are freely available in the solar spectrum. Besides water splitting by gamma radiation (a low-cost energy source) is also reviewed. Eforts are also made to describe the water-splitting mechanism in photo- and gamma-mediated water splitting. In addition to these challenges and future perspectives have also been discussed to make this article useful for further advanced research.
Sustainable Hydrogen Generation and Storage - A Review
Aug 2023
Publication
In 21st century the energy demand has grown incredibly due to globalization human population explosion and growing megacities. This energy demand is being mostly fulfilled by fossil-based sources which are non-renewable and a major cause of global warming. Energy from these fossil-based sources is cheaper however challenges exist in terms of climate change. This makes renewable energy sources more promising and viable for the future. Hydrogen is a promising renewable energy carrier for fulfilling the increasing energy demand due to its high energy density non-toxic and environment friendly characteristics. It is a non-toxic energy carrier as combustion of hydrogen produces water as the byproduct whereas other conventional fuels produce harmful gases and carcinogens. Because of its lighter weight hydrogen leaks are also easily dispersed in the atmosphere. Hydrogen is one of the most abundant elements on Earth yet it is not readily available in nature like other fossil fuels. Hence it is a secondary energy source and hydrogen needs to be produced from water or biomass-based feedstock for it to be considered renewable and sustainable. This paper reviews the renewable hydrogen generation pathways such as water splitting thermochemical conversion of biomass and biological conversion technologies. Purification and storage technologies of hydrogen is also discussed. The paper also discusses the hydrogen economy and future prospects from an Indian context. Hydrogen purification is necessary because of high purity requirements in particular applications like space fuel cells etc. Various applications of hydrogen are also addressed and a cost comparison of various hydrogen generation technologies is also analyzed. In conclusion this study can assist researchers in getting a better grasp of various renewable hydrogen generation pathways it's purification and storage technologies along with applications of hydrogen in understanding the hydrogen economy and its future prospect.
Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives
Jul 2024
Publication
Hydrogen (H2 ) is considered a suitable substitute for conventional energy sources because it is abundant and environmentally friendly. However the widespread adoption of H2 as an energy source poses several challenges in H2 production storage safety and transportation. Recent efforts to address these challenges have focused on improving the efficiency and cost-effectiveness of H2 production methods developing advanced storage technologies to ensure safe handling and transportation of H2 and implementing comprehensive safety protocols. Furthermore efforts are being made to integrate H2 into the existing energy infrastructure and explore new opportunities for its application in various sectors such as transportation industry and residential applications. Overall recent developments in H2 production storage safety and transportation have opened new avenues for the widespread adoption of H2 as a clean and sustainable energy source. This review highlights potential solutions to overcome the challenges associated with H2 production storage safety and transportation. Additionally it discusses opportunities to achieve a carbon-neutral society and reduce the dependence on fossil fuels.
Nanomaterials for Hydrogen Storage Applications: A Review
Sep 2008
Publication
Nanomaterials have attracted great interest in recent years because of the unusual mechanical electrical electronic opticalmagnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respectto energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of thisnew class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes nano-magnesiumbased hydrides complex hydride/carbon nanocomposites boron nitride nanotubes TiS2/MoS2 nanotubes alanates polymernanocomposites and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen.Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related tothe nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomicor molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides forimproving the thermodynamics and hydrogen reaction kinetics are discussed. In addition various carbonaceous nanomaterialsand novel sorbent systems (e.g. carbon nanotubes fullerenes nanofibers polyaniline nanospheres and metal organic frameworksetc.) and their hydrogen storage characteristics are outlined.
Critical Challenges in Biohydrogen Production Processes from the Organic Feedstocks
Aug 2020
Publication
The ever-increasing world energy demand drives the need for new and sustainable renewable fuel to mitigate problems associated with greenhouse gas emissions such as climate change. This helps in the development toward decarbonisation. Thus in recent years hydrogen has been seen as a promising candidate in global renewable energy agendas where the production of biohydrogen gains more attention compared with fossil-based hydrogen. In this review biohydrogen production using organic waste materials through fermentation biophotolysis microbial electrolysis cell and gasification are discussed and analysed from a technological perspective. The main focus herein is to summarise and criticise through bibliometric analysis and put forward the guidelines for the potential future routes of biohydrogen production from biomass and especially organic waste materials. This research review claims that substantial efforts currently and in the future should focus on biohydrogen production from integrated technology of processes of (i) dark and photofermentation (ii) microbial electrolysis cell (MEC) and (iii) gasification of combined different biowastes. Furthermore bibliometric mapping shows that hydrogen production from biomethanol and the modelling process are growing areas in the biohydrogen research that lead to zero-carbon energy soon.
Renewable Hydrogen Production Steps Up Wastewater Treatment under Low-carbon Electricity Sources - A Call Forth Approach
Sep 2024
Publication
Switching to renewable resources for hydrogen production is essential. Present hydrogen resources such as coal oil and natural gas are depleted and rapidly moving to a dead state and they possess a high carbon footprint. Wastewater is a promising avenue in searching for a renewable hydrogen production resource. Profuse techniques are preferred for hydrogen production. Among them electrolysis is great with wastewater against biological processes by hydrogen purity. Present obstacles behind the process are conversion efficiency intensive energy and cost. This review starts with hydrogen demand wastewater availability and their H2 potential then illustrates the three main types of electrolysis. The main section highlights renewable energy-assisted electrolysis because of its low carbon footprint and zero emission potential for various water electrolysis. High-temperature steam solid oxide electrolysis is a viable option for future scaling due to the versatile adoption of photo electric and thermal energy. A glance at some effective aspirations to large-scale H2 economics such as co-generation biomass utilization Microbial electrolysis waste to low-cost green electrode Carbon dioxide hydrogenation and minerals recovery. This study gives a broader view of facing challenges via versatile future perspectives to eliminate the obstacles above. renewable green H2 along with a low carbon footprint and cost potential to forward the large-scale wastewater electrolysis H2 production in addition to preserving the environment from wastewater and fossil fuel. Geographical and seasonal availability constraints are unavoidable; therefore energy storage and coupling of power sources is essential to attain consistent supply. The lack of regulations and policies supporting the development and adoption of these technologies did not reduce the gap between research and implementation. Life cycle assessment of this electrolysis process is rarely available so we need to focus on the natural effect of this process on the environment.
Elevating Sustainability with a Multi-Renewable Hydrogen Generation System Empowered by Machine Learning and Multi-objective Optimisation
Apr 2024
Publication
The global energy landscape is rapidly shifting toward cleaner lower-carbon electricity generation necessitating a transition to alternate energy sources. Hydrogen particularly green hydrogen looks to be a significant solution for facilitating this transformation as it is produced by water electrolysis with renewable energy sources such as solar irradiations wind speed and biomass residuals. Traditional energy systems are costly and produce energy slowly due to unpredictability in resource supply. To address this challenge this work provides a novel technique that integrates a multi-renewable energy system using multi objective optimization algorithm to meets the machine learning-based forecasted load model. Several forecasting models including Autoregressive Integrated Moving Average(ARIMA) Random Forest and Long Short-Term Memory Recurrent Neural Network (LSTMRNN) are assessed for develop the statistical metrics values such as RMSE MAE and MAPE. The selected Non-Sorting Moth Flame Optimization (NSMFO) algorithm demonstrates technological prowess in efficiently achieving global optimization particularly when handling multiple objective functions. This integrated method shows enormous promise in technological economic and environmental terms emphasizing its ability to promote energy sustainability targets.
No more items...