United Kingdom
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
Above-ground Hydrogen Storage: A State-of-the-art Review
Nov 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Net Zero Fuel (Mixed Hydrogen and Biofuels) Cement Clinker: Characterisation, Microstructure, and Performance
Oct 2024
Publication
Over 35% of the CO2 associated with cement production comes from operational energy. The cement industry needs alternative fuels to meet its net zero emissions target. This study investigated the influence of hydrogen mixed with biofuels herein designated net zero fuel as an alternative to coal on the clinker quality and performance of cement produced in an industrial cement plant. Scanning electron microscopy X-ray diffraction and nuclear magnetic resonance were coupled to study the clinker mineralogy and polymorphs. Hydration and microstructure development in plain and slag blended cements based on the clinker were compared to commercial cement equivalent. The results revealed a lower alite/belite ratio but a significant proportion of the belite was of the α’H-C2S polymorph. These reacted faster and compensated for the alite/belite ratio. Gel and micro-capillary pores were densified which reduced total porosity and attained comparable strength to the reference plain and blended cement. This study demonstrates that the investigated net zero fuel-produced clinker meets compositional and strength requirements for plain and blended cement providing a feasible pathway for the cement industry to lower its operational carbon significantly.
Whole System Impacts of Decarbonising Transport with Hydrogen: A Swedish Case Study
Oct 2024
Publication
This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs coupled with the Swedish electricity system to study the inter-dependencies between them. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain designs comprehend centralised production decentralised production a combination of both and with/without seasonal variation in hydrogen demand. The supply chain design is modelled to minimize the overall cost while meeting the hydrogen demands. The outputs of the supply chain model include the hydrogen refuelling stations’ locations the electrolyser’s locations and their respective sizes as well as the operational schedule. The electricity system model shows that the average electricity prices in Sweden for zones SE1 SE2 SE3 and SE4 will be 4.28 1.88 8.21 and 8.19 €/MWh respectively. The electricity is mainly generated from wind and hydropower (around 42% each) followed by nuclear (14%) solar (2%) and then bio-energy (0.3%). In addition the hydrogen supply chain design that leads to a lower overall cost is the decentralised design with a cost of 1.48 and 1.68 €/kgH2 in scenarios without and with seasonal variation respectively. The seasonal variation in hydrogen demand increases the cost of hydrogen regardless of the supply chain design.
Design Considerations and Preliminary Hydrodynamic Analysis of an Offshore Decentralised Floating Wind-hydrogen System
Sep 2024
Publication
Despite the number of works on the techno-economics of offshore green hydrogen production there is a lack of research on the design of floating platforms to concomitantly support hydrogen production facilities and wind power generation equipment. Indeed previous studies on offshore decentralised configuration for hydrogen production implicitly assume that a floating platform designed for wind power generation (FOWT) can be also suitable as a floating wind hydrogen system (FWHS). This work proposes a novel design for an offshore decentralised FWHS and analyses the effects of the integration of the hydrogen facilities on the platform’s dynamics and how this in turn affects the performances of the wind turbine and the hydrogen equipment. Our findings indicate that despite the reduction in platform’s stability the performance of the wind turbine is barely affected. Regarding the hydrogen system our results aim at contributing to further assessment and design of this equipment for offshore conditions.
Hydrogen UK Manifesto
Jul 2024
Publication
Hydrogen presents the UK with a substantial opportunity to drive economic growth and secure skilled jobs by leveraging our natural geological and geographical advantages robust supply chain and existing energy expertise. Hydrogen UK’s most recent Economic Impact Assessment estimates that the hydrogen sector in the UK could support approximately 30000 direct jobs and contribute more than £7 billion gross value added annually by 2030. On a global scale the hydrogen market is projected to be worth $2.5 trillion by 2050.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
Hydrogen UK Supply Chains Report Executive Summary 2023
Dec 2023
Publication
The strategic importance of hydrogen has gained significant recognition as nations across the world have committed to achieving net zero. Here in the UK there’s a widespread consensus that hydrogen is critical to achieving our net zero target. This commitment culminated in the launch of the UK’s first Hydrogen Strategy and has been reaffirmed by Chris Skidmore’s Independent Review of Net Zero. Both these documents highlight hydrogen’s importance not only to net zero but growing the UK industrial base1 . Analysis by Hydrogen UK estimates up to 20000 jobs could be created by 2030 contributing £26bn in cumulative GVA2. These economic benefits flow from all areas of the value chain ranging from production storage network development and off-taker markets. However with large scale projects still to take final investment decisions current volumes of low-carbon hydrogen produced and consumed fall well below the government’s 2030 ambitions. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside our vibrant RD&I and engineering environment has enabled rapid deployment of technologies like offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment. This report delivers on a recommendation from the Hydrogen Champion Report which encouraged industry to create an industry led supply chain strategy3 . With Hydrogen UK steering the work on behalf of the UK hydrogen industry this study focusses on identifying the actions needed to mature a local supply chain that can support the initial deployment of hydrogen technologies across the value chain. The report is segmented into two sections. The first section outlines a voluntary ambition for local content from industry alongside the potential intervention mechanisms needed to achieve the ambition. The second section exploresthe challenges companies across the hydrogen value chain face in maximising UK supply chain opportunities.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Computational Predictions of Hydrogen-assisted Fatigue Crack Growth
May 2024
Publication
A new model is presented to predict hydrogen-assisted fatigue. The model combines a phase field description of fracture and fatigue stress-assisted hydrogen diffusion and a toughness degradation formulation with cyclic and hydrogen contributions. Hydrogen-assisted fatigue crack growth predictions exhibit an excellent agreement with experiments over all the scenarios considered spanning multiple load ratios H2 pressures and loading frequencies. These are obtained without any calibration with hydrogen-assisted fatigue data taking as input only mechanical and hydrogen transport material properties the material’s fatigue characteristics (from a single test in air) and the sensitivity of fracture toughness to hydrogen content. Furthermore the model is used to determine: (i) what are suitable test loading frequencies to obtain conservative data and (ii) the underestimation made when not pre-charging samples. The model can handle both laboratory specimens and large-scale engineering components enabling the Virtual Testing paradigm in infrastructure exposed to hydrogen environments and cyclic loading.
Exploiting the Ocean Thermal Energy Conversion (OTEC) Technology for Green Hydrogen Production and Storage: Exergo-economic Analysis
Nov 2024
Publication
This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout a Kalina cycle is considered. In each configuration the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 ◦C by a solar collector. Energy exergy and exergo-economic studies were conducted to evaluate the cost of producing compressing and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser the mass flow ratio of hot and cold resource flows and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.
The Latest Voyage of Discovery - Quantifying the Consequences of LH2 Releases for the Marine Industry
Sep 2023
Publication
Following a desktop study undertaken in 2021 to identify hazard scenarios associated with the use of liquid and compressed hydrogen on commercial shipping Shell has started a programme of large-scale experiments on the consequences of a release of liquid hydrogen. This work will compliment on-going research Shell has sponsored within several joint industry projects but will also address immediate concerns that the maritime industry has for the transportation of liquid hydrogen (LH2). This paper will describe the first phase of experiments involving the release of LH2 onto various substrates as well as dispersion across an instrumented test pad. These results will be used to address the following uncertainties in risk assessments within the hydrogen economy such as (1) Quantify the impact of low wind speed and high humidity on the buoyancy of both a passive and momentum jet dispersion cloud (2) Gather additional data on liquid hydrogen jet fires (3) Understand the likelihood for the formation of a sustained pool of hydrogen (4) Characterise materials especially passive fire protective coatings that are exposed to LH2. Not only will these experiments generate validation data to provide confidence in the Shell consequence tool FRED but they will also be used by Shell to support updates and new regulations developed by the International Maritime Organisation as it seeks to reduce CO2 intensity in the maritime industry.
The Economical Repurposing Pipeliness to Hydrogen - Why Performance Testing of Representative Line Pipes is Key?
Sep 2023
Publication
The introduction of hydrogen in natural gas pipeline systems introduces integrity challenges due to the nature of interactions between hydrogen and line pipe steel materials. However not every natural gas pipeline is equal in regards to the challenges potentially posed by the repurposing to hydrogen. Existing codes and practices penalise high-grade materials on the basis of a perceived higher susceptibility to hydrogen embrittlement in regards to their increased strength. This philosophy challenges the realisation of a hydrogen economy because it puts at economical and technical risk the conversion of almost half of the natural gas transmission systems in western countries.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Dec 2023
Publication
This review article provides a comprehensive analysis of the hydrogen landscape outlining the imperative for enhanced hydrogen production implementation and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning constructing infrastructure and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape marking a significant step forward toward a cleaner greener future.
Ignition and Flow Stopping Considerations for the Transmission of Hydrogen in the Existing Natural Gas Network
Sep 2023
Publication
This work formed part of the H21 programme whose objective is to reach the point whereby it is feasible to convert the existing natural gas (NG) distribution network to 100% hydrogen (H2) and provide a contribution to decarbonising the UK’s heat and power sectors with the focus on decarbonised fuel at point of use. Hydrogen has an ATEX Gas Group of IIC compared to IIA for natural gas which means further precautions are necessary to prevent the ignition of hydrogen during network operations. Both electrostatic and friction ignition risks were considered. Network operations considered include electrostatic precautions for polyethylene (PE) pipe and cutting and drilling of metallic pipes. As a result of the updated basis of safety from ignition considerations existing flow stopping methods were reviewed to see if they were compatible. Commonly used flow stopping methods were tested under laboratory conditions with hydrogen following the methodologies specified in the Gas Industry Standards (GIS). A new basis of safety for flow stopping has been proposed that looks at the flow past the secondary stop as double isolations are recommended for use with hydrogen.
Explaining Varying Speeds of Low-carbon Reorientation in the United Kingdom's Steel, Petrochemical, and Oil Refining Industries: A Multi-dimensional Comparative Analysis and Outlook
Feb 2024
Publication
Accelerated decarbonisation of steelmaking oil refining and petrochemical industries is essential for climate change mitigation. Drawing on three longitudinal case studies of these industries in the UK this synthesis article makes a comparative analysis of their varying low-carbon reorientation speeds. The paper uses the triple embeddedness framework to analyse five factors (policy support international competition financial health technical feasibility corporate strategy and mindset) that explain why UK oil refineries have in recent years been comparatively the fastest in their low-carbon reorientation and UK steelmakers the slowest. We find that policy support has been more beneficial for refining and petrochemicals than for steel although recent government deals with steelmakers addressed this imbalance. International competition has been high for steel and petrochemicals and comparatively lower for refining (meaning that decarbonisation costs are less detrimental for international competitiveness). Financial performance has comparatively been worst for steel and best for oil refining which shapes the economic feasibility of low-carbon options. Hydrogen and carbon-capture-and-storage are technologically feasible for refining and petrochemicals while Electric Arc Furnaces are technically feasible for steelmakers but face wider feasibility problems (with scrap steel supply electricity grids and electricity prices) which is why we question the recent government deals. Corporate strategy and perceptions changed in oil refining with firms seeing economic opportunities in decarbonisation while steelmakers and petrochemical firms still mostly see decarbonisation as a burden and threat. The paper ends with comparative conclusions a discussion of political considerations and future outlooks for the three UK industries policy and research.
Optimizing Underground Hydrogen Storage in Aquifers: The Impact of Cushion Gas Type
Aug 2023
Publication
This study investigated the impact of cushion gas type and presence on the performance of underground hydrogen storage (UHS) in an offshore North Sea aquifer. Using numerical simulation the relationship between cushion gas type and UHS performance was comprehensively evaluated providing valuable insights for designing an efficient UHS project delivery. Results indicated that cushion gas type can significantly impact the process's recovery efficiency and hydrogen purity. CO2 was found to have the highest storage capacity while lighter gases like N2 and CH4 exhibited better recovery efficiency. Utilising CH4 as a cushion gas can lead to a higher recovery efficiency of 80%. It was also determined that utilising either of these cushion gases was always more beneficial than hydrogen storage alone leading to an incremental hydrogen recovery up to 7%. Additionally hydrogen purity degraded as each cycle progressed but improved over time. This study contributes to a better understanding of factors affecting UHS performance and can inform the selection of cushion gas type and optimal operational strategies.
Numerical Simulations of the Critical Diameter and Flame Stability for the Hydrogen Jet Flames
Sep 2023
Publication
This study focuses on development of a CFD model able to simulate the experimentally observed critical nozzle diameter for hydrogen non-premixed flames. The critical diameter represents the minimum nozzle size through which a free jet flame will remain stable at all driving pressures. Hydrogen non-premixed flames will not blow-out at diameters equal to or greater than the critical diameter. Accurate simulation of this parameter is important for assessment of thermally activated pressure relief device (TPRD) performance during hydrogen blowdown from a storage tank. At TPRD diameters below the critical value there is potential for a hydrogen jet flame to blow-out as the storage tank vents potentially leading to hydrogen accumulation in an indoor release scenario. Previous experimental studies have indicated that the critical diameter for hydrogen is approximately 1 mm. In this study flame stability is considered across a range of diameters and overpressures from 0.1 mm to 2 mm and from 0.2 MPa to 20 MPa respectively. The impact of turbulent Schmidt number Sct which is the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity on the hydrogen concentration profile in the region near the nozzle exit and subsequent influence on critical diameter was investigated and discussed. For lower Sct values the enhanced mass mixing resulted in smaller predicted critical diameters. The use of value Sct=0.61 in the model demonstrated the best agreement with experimental values of the critical diameter. The model reproduced the critical diameter of 1 mm and then was applied to predict flame stability for under-expanded hydrogen jets.
Sudden Releases of Hydrogen into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The sudden failure of a pressurised hydrogen vessel was identified as a scenario of concern due to the severity of the consequences associated with such an event. In order to investigate this scenario experimentally HSE designed a bespoke and reusable ‘sudden release’ vessel. This paper presents an overview of the vessel and the results of a series of 13 tests whereby hydrogen was released from the bespoke vessel into a tunnel at pressures up to 65 MPa. The starting pressure and the volume of hydrogen in the vessel were altered throughout the campaign. Four of the tests also included congestion in the tunnel. The tests reliably autoignited. Overpressure measurements and flame arrival times measured with exposed-tip thermocouples enabled analysis of the severity of the events. A high-pressure fast-acting pressure transducer in the body of the vessel showed the pressure decay in the vessel which shows that 90% of the hydrogen was evacuated in between 1.8 and 3.2 ms (depending on the hydrogen inventory). Schlieren flow imagery was also used at the release point of the hydrogen showing the progression of the shock front following initiation of the tests. An assessment of the footage shows an estimated initial velocity of Mach 3.9 at 0.4 m from the release point. Based on this an ignition mechanism is proposed based upon the temperature behind the initial shock front.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Emission Reduction and Cost-benefit Analysis of the Use of Ammonia and Green Hydrogen as Fuel for Marine Applications
Dec 2023
Publication
Increasingly stringent emission standards have led shippers and port operators to consider alternative energy sources which can reduce emissions while minimizing capital investment. It is essential to understand whether there is a certain economic investment gap for alternative energy. The present work mainly focuses on the simulation study of ships using ammonia and hydrogen fuels arriving at Guangzhou Port to investigate the emission advantages and cost-benefit analysis of ammonia and hydrogen as alternative fuels. By collecting actual data and fuel consumption emissions of ships arriving at Guangzhou Port the present study calculated the pollutant emissions and cost of ammonia and hydrogen fuels substitution. As expected it is shown that with the increase of NH3 in fuel mixed fuels will effectively reduce CO and CO2 emissions. Compared to conventional fuel the injection of NH3 increases the NOx emission. However the cost savings of ammonia fuel for CO2 SOx and PM10 reduction are higher than that for NOx. In terms of pollutants ammonia is less expensive than conventional fuels when applied to the Guangzhou Port. However the cost of fuel supply is still higher than conventional energy as ammonia has not yet formed a complete fuel supply and storage system for ships. On the other hand hydrogen is quite expensive to store and transport resulting in higher overall costs than ammonia and conventional fuels even if no pollutants are produced. At present conventional fuels still have advantage in terms of cost. With the promotion of ammonia fuel technology and application the cost of supply will be reduced. It is predicted that by 2035 ammonia will not only have emission reduction benefits but also will have a lower overall economic cost than conventional fuels. Hydrogen energy will need longer development and technological breakthroughs due to the limitation of storage conditions.
Resilience Assessment of Offshore Wind-to-Hydrogen Systems
Jul 2024
Publication
Low-cost green hydrogen production will be key in reaching net zero carbon emissions by 2050. Green hydrogen can be produced by electrolysis using renewable energy including wind energy. However the configuration of offshore wind-to-hydrogen systems is not yet standardised. For example electrolysis can take place onshore or offshore. This work presents a framework to assess and quantify which configuration is more resilient so that security of hydrogen supply is incorporated in strategic decisions with the following key findings. First resilience should be assessed according to hydrogen supply rather than hydrogen production. This allows the framework to be applicable for all identified system configurations. Second resilience can be quantified according to the quantity ratio and lost revenue of the unsupplied hydrogen.
No more items...