United Kingdom
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
HyDeploy Report: Summary of Gas Appliance and Installation Testing
Jun 2018
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Index and hydrogen concentrations up to 28.4 % mol/mol. These tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen. Testing of the gas fires that are present at Keele University that use oxygen depletion sensors have been shown to operate satisfactorily.<br/>A comprehensive onsite survey programme at Keele University has assessed 95% of the installations (126 of 133) that will receive the hydrogen blended gas during the HyDeploy trial. Where access to properties was not possible then the information obtained revealed that the appliances were annually checked either through British Gas service contracts or as a result of being rental properties. The onsite testing programme assessed installations for gas tightness and appliance combustion safety and operation with normal line gas G20 reference gas and two hydrogen blended gases. The checks identified a small number instances were remedial work was required to correct poor condition or operation. Only one case was found to be immediately dangerous which was capped off until repair work was undertaken. CO and smoke alarms were fitted in approximately half of properties and alarms were provided as required to the occupants. Gas tightness tests identified leaks in three installations. Where installations are gas tight then analysis has shown that no additional leaks would occur with hydrogen blended gas. There were no issues identified with the combustion performance of those appliances that were operating correctly and results were in line with those obtained in the laboratory testing programme.<br/>The findings of the Appliance and Installation testing program have been used to define the input values into the HyDeploy quantified risk assessment (QRA) where Keele University specific operation is different to GB as a whole or where the findings show the addition of hydrogen will change the risk profile.<br/>Click on supplements to see the other documents from this report
A Novel Integration of a Green Power-to-ammonia to Power System: Reversible Solid Oxide Fuel Cell for Hydrogen and Power Production Coupled with an Ammonia Synthesis Unit
Mar 2021
Publication
Renewable energy is a key solution in maintaining global warming below 2 °C. However its intermittency necessitates the need for energy conversion technologies to meet demand when there are insufficient renewable energy resources. This study aims to tackle these challenges by thermo-electrochemical modelling and simulation of a reversible solid oxide fuel cell (RSOFC) and integration with the Haber Bosch process. The novelty of the proposed system is usage of nitrogen-rich fuel electrode exhaust gas for ammonia synthesis during fuel cell mode which is usually combusted to prevent release of highly flammable hydrogen into the environment. RSOFC round-trip efficiencies of 41–53% have been attained when producing excess ammonia (144 kg NH3/hr) for the market and in-house consumption respectively. The designed system has the lowest reported ammonia electricity consumption of 6.4–8.21 kWh/kg NH3 power-to-hydrogen power-to-ammonia and power-generation efficiencies of 80% 55–71% and 64–66%.
Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy
Apr 2021
Publication
In its new report Making the Hydrogen Economy Possible: Accelerating clean hydrogen in an electrified economy the ETC outlines the role of clean hydrogen in achieving a highly electrified net-zero economy. The report sets out how a combination of private-sector collaboration and policy support can drive the initial ramp up of clean hydrogen production and use to reach 50 million tonnes by 2030.<br/>Clean hydrogen will play a complementary role to decarbonise sectors where direct electrification is likely to be technologically very challenging or prohibitively expensive such as in steel production and long-distance shipping. The report highlights how critical rapid ramp-up of production and use in the 2020s is to unlock cost reductions and to make mid-century growth targets achievable.<br/>This report is part of the ETC’s wider Making Mission Possible Series – a series of reports outlining how to scale up clean energy provision within the next 30 years to meet the needs of a net-zero greenhouse gas emissions (GHG) economy by mid-century. The reports in the series analyse and set out specific actions required in the next decade to put this net-zero by 2050 target within reach.
Mapping Geological Hydrogen Storage Capacity and Regional Heating Demands: An Applied UK Case Study
Feb 2021
Publication
Hydrogen is considered as a low-carbon substitute for natural gas in the otherwise difficult to decarbonise domestic heating sector. This study presents for the first time a globally applicable source to sink methodology and analysis that matches geological storage capacity with energy demand. As a case study it is applied to the domestic heating system in the UK with a focus on maintaining the existing gas distribution network. To balance the significant annual cyclicity in energy demand for heating hydrogen could be stored in gas fields offshore and transported via offshore pipelines to the existing gas terminals into the gas network. The hydrogen energy storage demand in the UK is estimated to be ~77.9 terawatt-hour (TWh) which is approximately 25 % of the total energy from natural gas used for domestic heating. The total estimated storage capacity of the gas fields included in this study is 2661.9 TWh. The study reveals that only a few offshore gas fields are required to store enough energy as hydrogen to balance the entire seasonal demand for UK domestic heating. It also demonstrates that as so few fields are required hydrogen storage will not compete for the subsurface space required for other low-carbon subsurface applications such as carbon storage or compressed air energy storage.
Modelling of Ventilated Hydrogen Dispersion in Presence of Co-flow and Counter-flow
Sep 2021
Publication
In the framework of the EU-funded project HyTunnel-CS an inter-comparison among partners CFD simulations has been carried out. The simulations are based on experiments conducted within the project by Pro-Science and involve hydrogen release inside a safety vessel testing different ventilation configurations. The different ventilation configurations that were tested are co-flow counter-flow and cross-flow. In the current study co-flow and counter-flow tests along with the no ventilation test (m' = S g/s d = 4 mm ) are simulated with the aim to validate available and well-known CFD codes against such applications and to provide recommendations on modeling strategies. Special focus is given on modeling the velocity field produced by the fan during the experiments. The computational results are compared with the experimental results and a discussion follows regarding the efficiency of each ventilation configuration.
A Numerical and Graphical Review of Energy Storage Technologies
Dec 2014
Publication
More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage namely: mechanical chemical electromagnetic and thermal storage are compared on the basis of energy/power density specific energy/power efficiency lifespan cycle life self-discharge rates capital energy/power costs scale application technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
Facile Synthesis of Palladium Phosphide Electrocatalysts and their Activity for the Hydrogen Oxidation, Hydrogen Evolutions, Oxygen Reduction and Formic Acid Oxidation Reactions
Nov 2015
Publication
We demonstrate a new approach for producing highly dispersed supported metal phosphide powders with small particle size improved stability and increased electrocatalytic activity towards some useful reactions. The approach involves a one-step conversion of metal supported on high surface area carbon to the metal phosphide utilising a very simple and scalable synthetic process. We use this approach to produce PdP2 and Pd5P2 particles dispersed on carbon with a particle size of 4.5–5.5 nm by converting a commercially available Pd/C powder. The metal phosphide catalysts were tested for the oxygen reduction hydrogen oxidation and evolution and formic acid oxidation reactions. Compared to the unconverted Pd/C material we find that alloying the P at different levels shifts oxide formation on the Pd to higher potentials leading to greater stability during cycling studies (20% more ECSA retained 5k cycles) and in thermal treatment under air. Hydrogen absorption within the PdP2 and Pd5P2 particles is enhanced. The phosphides compare favourably to the most active catalysts reported to date for formic acid oxidation especially PdP2 and there is a significant decrease in poisoning of the surface compared to Pd alone. The mechanistic changes in the reactions studied are rationalised in terms of increased water activation on the surface phosphorus atoms of the catalyst. One of the catalysts PdP2/C is tested in a fuel cell as anode and cathode catalyst and shows good performance.
The Pressure Peaking Phenomenon for Ignited Under-Expanded Hydrogen Jets in the Storage Enclosure: Experiments and Simulations for Release Rates of up to 11.5 g/s
Dec 2021
Publication
This work focuses on the experimental and numerical investigation of maximum overpressure and pressure dynamics during ignited hydrogen releases in a storage enclosure e.g. in marine vessel or rail carriage with limited vent size area i.e. the pressure peaking phenomenon (PPP) revealed theoretically at Ulster University in 2010. The CFD model previously validated against small scale experiments in a 1 m3 enclosure is employed here to simulate real-scale tests performed by the University of South-Eastern Norway (USN) in a chamber with a volume of 15 m3 . The numerical study compares two approaches on how to model the ignited hydrogen release conditions for under-expanded jets: (1) notional nozzle concept model with inflow boundary condition and (2) volumetric source model in the governing conservation equations. For the test with storage pressure of 11.78 MPa both approaches reproduce the experimental pressure dynamics and the pressure peak with a maximum 3% deviation. However the volumetric source approach reduces significantly the computational time by approximately 3 times (CFL = 0.75). The sensitivity analysis is performed to study the effect of CFL number the size of the volumetric source and number of iterations per time step. An approach based on the use of a larger size volumetric source and uniform coarser grid with a mesh size of a vent of square size is demonstrated to reduce the duration of simulations by a factor of 7.5 compared to the approach with inflow boundary at the notional nozzle exit. The volumetric source model demonstrates good engineering accuracy in predicting experimental pressure peaks with deviation from −14% to +11% for various release and ventilation scenarios as well as different volumetric source sizes. After validation against experiments the CFD model is employed to investigate the effect of cryogenic temperature in the storage on the overpressure dynamics in the enclosure. For a storage pressure equal to 11.78 MPa it is found that a decrease of storage temperature from 277 K to 100 K causes a twice larger pressure peak in the enclosure due to the pressure peaking phenomenon.
Hy4Heat Domestic Hydrogen Purge Procedures - Work Package 4
Jun 2021
Publication
The aim of this project was to review the current purge standards for UK domestic installations in particular IGEM/UP/1B and carry out experiments to assess the validity of those standards for use in hydrogen in order to understand and recommend safe purge practices for hydrogen in a domestic environment.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
- changeover to hydrogen will result in an increased risk of flammability inside the installation pipework
- changeover to hydrogen will result in a reduced risk of a build-up of flammable gas in any room where purging occurs.
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
Towards Net-zero Smart System: An Power Synergy Management Approach of Hydrogen and Battery Hybrid System with Hydrogen Safety Consideration
May 2022
Publication
The building system is one of key energy consumption sector in the market and low-carbon building will make a significant contribution for the worldwide carbon emission reduction. The multiple energy systems including renewable generations hydrogen energy and energy storage is the perspective answer to the net-zero building system. However the research gap lies in the synergy power management among the renewable flexible loads batteries and hydrogen energy systems and at the same time taking the unique characteristic of different energy sectors into account by power managing. This paper proposed the power management approach based on the game theory by which the different characteristics of the energy players are described via creating the competing relationship against net-zero emission objective so that to achieve the power synergy. Under the proposed power management method the hydrogen and battery hybrid system including the fuel cell electrolyzer and battery is designed and investigated as to unlock the power management regions and control constraints within the building system. Particularly for the hydrogen system within the hybrid system the safe and long-lifetime operation is considered respectively by high-efficiency and pressure constraints within the power management. Simulation results show that providing the same energy storage services for the building system the fuel cell with the proposed power management method sustains for 9.9 years much longer than that of equivalent consumption minimization (4.98) model predictive control (4.61) and rule-based method (7.69). Moreover the maximum tank temperature of the hydrogen tank is reduced by 3.4 K and 2.9 K compared with consumption minimization strategy and model predictive control. Also the real-time of the proposed power management is verified by a scaled-down experiment platform.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Consumer Attitudes to Fuel Cell Vehicles Post Trial in the United Kingdom
Mar 2016
Publication
Fuel cell vehicles (FCVs) have clear societal and environmental benefits and can help mitigate the issues of climate change urban air pollution and oil dependence. In order for FCVs to have the biggest impact on these issues they need to be employed in large numbers. First though they need to be adopted by consumers. Their acceptance depends on positive consumer attitudes towards the vehicles. Currently there is a limited understanding within the literature on how consumers perceive FCVs and what the likelihood of adoption by consumers would be despite significant governmental and organisational investments into the technology. Therefore this study assesses consumer attitudes towards FCVs in the United Kingdom. 81 persons drove a Hyundai FCV at the Low Carbon Vehicle Event in September 2015 of which 30 took part in this study. The results show that at present FCVs are perceived mostly as being similar to incumbent internal combustion engine vehicles. This is an admirable technical achievement however in order for consumers to adopt FCVs they will need to be perceived as having distinctive benefits. Two significant barriers to the adoption of FCVs are observed in this sample: high costs and lack of refuelling infrastructure. This paper goes on to make suggestions on how and which beneficial attributes of the vehicles can be promoted to consumers and also makes suggestions on how the barriers can be overcame so that FCVs will be adopted by consumers.
Characterization of the Hazards from Jet Releases of Hydrogen
Sep 2005
Publication
Hydrogen is a convenient energy storage medium; it can be produced from fossil fuels and biomass via chemical conversion processes or from intermittent renewable sources like wind and solar via electrolysis. It is the fuel of choice for the clean fuel-cell vehicles of the future. If the general public are to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. For the safe design of retail facilities through the development of appropriate codes and standards it is essential to understand all the hazards that could arise following an accidental release of hydrogen. If it is to be stored and used as a high-pressure gas the hazards associated with jet releases from accidental leaks must be considered. This paper describes work by Shell and the Health and Safety Laboratory to characterise the hazards from jet releases of hydrogen. Jet release experiments have been carried out using small leaks (circular holes ranging from 1 mm to 12 mm diameter) at system pressures up to 150 barg. Concentration measurements were made in the unignited free jets to determine the extent of the flammable cloud generated. Ignited jets were observed both in the visible and infrared to determine the flame size and shape. The experimental results for the extent of the flammable cloud and jet flame length were found to be in good agreement with model predictions.
HyDeploy Report: Summary of Procedural Changes During Trial
Aug 2018
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into the Keele University G3 gas distribution network was a requirement as part of the HyDeploy project. To perform this assessment a group of gas industry experts (from Cadent Northern Gas Networks and Keele University Estates Team) along with scientists and engineers from the Health & Safety Laboratory came together to form an Operational Procedures Forum. This forum came together periodically in various workshops to explore and assess the impact of hydrogen blended gas on all the relevant and current operational procedures that govern the safe transportation and utilisation of natural gas within the Keele University G3 gas distribution network.
The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. The report essentially summarises the key points of the basis of concern for different operational procedures by highlighting the key points of the existing procedure and whether this procedure requires modification for the hydrogen blended gas injection trial. Any requirements to modify an existing procedure have been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.
The forum took into account the associated experimental and research carried out as part of the HyDeploy project such as the assessment of gas characteristics materials impact asset survey of assets on the Keele G3 GDN and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.
The conclusion of the assessment is that there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a fundamental modification. Therefore it is necessary that an appropriate training package is built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Keele G3 GDN during the hydrogen blend injection period.
Click on Supplements to see the other documents from this report
The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. The report essentially summarises the key points of the basis of concern for different operational procedures by highlighting the key points of the existing procedure and whether this procedure requires modification for the hydrogen blended gas injection trial. Any requirements to modify an existing procedure have been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.
The forum took into account the associated experimental and research carried out as part of the HyDeploy project such as the assessment of gas characteristics materials impact asset survey of assets on the Keele G3 GDN and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.
The conclusion of the assessment is that there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a fundamental modification. Therefore it is necessary that an appropriate training package is built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Keele G3 GDN during the hydrogen blend injection period.
Click on Supplements to see the other documents from this report
Hydrogen Wide Area Monitoring of LH2 Releases at HSE for the PRESLHY Project
Sep 2021
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to facilitate the safe use of hydrogen as an energy carrier. Empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring can elucidate the behavior of LH2 releases which can then be used to support and validate dispersion models. Hydrogen Wide Area Monitoring can be defined as the quantitative three-dimensional spatial and temporal profiling of planned or unintentional hydrogen releases. The NREL Sensor Laboratory developed a Hydrogen Wide Area Monitor (HyWAM) based upon a distributed array of hydrogen sensors. The NREL Sensor Laboratory and the Health and Safety Executive (HSE) formally committed to collaborate on profiling GH2 and LH2 releases which allowed for the integration of the NREL HyWAM into the HSE LH2 release behavior investigation supported by the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program. A HyWAM system was deployed consisting of 32 hydrogen measurement points and co-located temperature sensors distributed downstream of the LH2 release apparatus developed by HSE. In addition the HyWAM deployment was supported by proximal wind and weather monitors. In a separate presentation at this conference “HSE Experimental Summary for the Characterisation Dispersion and Electrostatic Hazards of LH2 for the PRESLHY Project” HSE researchers summarize the experimental apparatus and protocols utilized in the HSE LH2 releases that were performed under the auspices of PRESLHY. As a supplement to the HSE presentation this presentation will focus on the spatial and temporal behavior LH2 releases as measured by the NREL HyWAM. Correlations to ambient conditions such as wind speed and direction plume temperature and hydrogen concentrations will be discussed in addition to the design and performance of the NREL HyWAM and its potential for improving hydrogen facility safety.
Sulfide Stress Cracking of C-110 Steel in a Sour Environment
Jul 2021
Publication
The scope of this study includes modeling and experimental investigation of sulfide stress cracking (SSC) of high-strength carbon steel. A model has been developed to predict hydrogen permeation in steel for a given pressure and temperature condition. The model is validated with existing and new laboratory measurements. The experiments were performed using C-110 grade steel specimens. The specimens were aged in 2% (wt.) brine saturated with mixed gas containing CH4 CO2 and H2S. The concentration H2S was maintained constant (280 ppm) while varying the partial pressure ratio of CO2 (i.e. the ratio of partial pressure of CO2 to the total pressure) from 0 to 15%. The changes occurring in the mechanical properties of the specimens were evaluated after exposure to assess material embrittlement and SSC corrosion. Besides this the cracks developed on the surface of the specimens were examined using an optical microscope. Results show that the hydrogen permeation and subsequently SSC resistance of C-110 grade steel were strongly influenced by the Partial Pressure Ratio (PPR) of CO2 when the PPR was between 0 and 5%. The PPR of CO2 had a limited impact on the SSC process when it was between 10 and 15 percent.
Lowest Cost Decarbonisation for the UK: The Critical Role of CCS
Sep 2016
Publication
A new report to the Secretary of State for Business Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS) advises that that the UK should kickstart CCS in order to save consumers billions a year from the cost of meeting climate change targets.
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Engineering a Sustainable Gas Future
Nov 2021
Publication
The Institution of Gas Engineers & Managers (IGEM) is the UK’s Professional Engineering Institution supporting individuals and businesses working in the global gas industry. IGEM was founded in 1863 with the purpose of advancing the science and relevant knowledge of gas engineering for the benefit of the public.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
- Helping our members achieve and uphold the highest standards of professional competence to ensure the safety of the public
- Supporting our members in achieving their career goals by providing high quality products services and personal and professional development opportunities
- Acting as the voice of the gas industry when working with stakeholders to develop and improve gas policy.
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
Jan 2014
Publication
Overcoming diesel engine emissions trade-off effects especially NOx and Bosch smoke number (BSN) requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 þ N2 containing gas mixture obtained from diesel fuel reforming system can lead to new generation low polluting diesel engines. This paper investigates the effect of simultaneous H2 þ N2 intake charge enrichment on the emissions and combustion of a compression ignition engine. Bottled H2 þ N2 was simultaneously admitted into the intake pipe of the engine in 4% steps starting from 4% (2% H2 þ 2% N2) up to 16% (v/v). The results showed that under specific operating conditions H2 þ N2 enrichment can offer simultaneous NOx BSN and CO emissions reduction. Apart from regulated emissions nitrogen exhaust components were measured. Marginal N2O and zero NH3 emissions were obtained. NO/NO2 ratio increases when speed or load increases. Under low speed low load operation the oxidation of NO is enhanced by the addition of H2 þ N2 mixture. Finally admission of H2 þ N2 has a detrimental effect on fuel consumption
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
Oct 2014
Publication
Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges whereby energy is stored in a certain state according to the technology used and is converted to electrical energy when needed. However the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles technical and economic performance features and the current research and development of important EES technologies sorted into six main categories based on the types of energy stored. Following this a comprehensive comparison and an application potential analysis of the reviewed technologies are presented.
HyDeploy Report: Trial Management
Aug 2018
Publication
The trial management philosophy of HyDeploy has been developed to enable the overall objectives of the project to be achieved; the safe demonstration of operating a Gas Distribution Network (GDN) on a blend of natural gas and hydrogen. This document provides an overview of the management and governance processes associated with the trial itself. The operational and safety related undertakings before during and after the trial are summarised within this report as well as the intrial experimental programme. The detailed operational procedures are covered in HyD-Rep09.<br/>The programme structure of HyDeploy consists of three phases: Phase 1: Enabling work for preparation of GS(M)R Exemption Phase 2: Construction and installation of process equipment and Phase 3: Safe injection of hydrogen – the trial.<br/>This report focuses on Phase 3 which has two parts; the Proving Trial and; the Trial. As Statutory Duty Holder Keele is accountable for operation of the network it owns over the course of the trial. Operation and maintenance of the network will be undertaken according to the provisions of the Exemption on the basis of agreed revised procedures (HyD-Rep09) by Keele and Cadent. A governance process is in place to manage the blending of hydrogen into the network. This isdescribed in Sections 2 and 3.<br/>Safety related undertakings will be actioned before during and after the trial to mitigate risks identified through the house-to-house testing (HyD-Rep06) procedural review (HyD-Rep09) and quantitative risk assessment (HyD-Rep02). This scope of the undertakings includes actions associated with the end appliances the network itself and the process equipment to be installed.<br/>The detail of these undertakings is given in Section 4.<br/>As part of the trial an experimental programme has been designed to provide further evidence relating to the interactions of a hydrogen blend on network materials and end appliances. The experimental programme is detailed in Section 5.<br/>Click the supplements tab to see the other documents from this report
Enhanced Performance and Durability of Low Catalyst Loading PEM Water Electrolyser Based on a Short-side Chain Perfluorosulfonic Ionomer
Sep 2016
Publication
Water electrolysis supplied by renewable energy is the foremost technology for producing ‘‘green” hydrogen for fuel cell vehicles. In addition the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane Aquivion with various cathode and anode noble metal loadings were investigated in terms of both performance and durability. Utilizing a nanosized Ir0.7Ru0.3O solid solution anode catalyst and a supported Pt/C cathode catalyst in combination with the Aquivion membrane gave excellent electrolysis performances exceeding 3.2 A cm-2 at 1.8 V terminal cell voltage ( 80% efficiency) at 90 ºC in the presence of a total catalyst loading of 1.6 mg cm−2. A very small loss of efficiency corresponding to 30 mV voltage increase was recorded at 3 A cm 2 using a total noble metal catalyst loading of less than 0.5 mg cm−2 (compared to the industry standard of 2 mg cm−2). Steady-state durability tests carried out for 1000 h at 1 A cm -2 showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg cm−2 (cell voltage increase 5 lV/h). Moderate degradation rate (cell voltage increase 15 lV/h) was recorded for the low loading 0.5 mg cm-2 MEA. Similar stability characteristics were observed in durability tests at 3 A cm−2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.
Consumer Perceptions of Blended Hydrogen in the Home: Learning from HyDeploy
Apr 2022
Publication
This report presents the results of research into consumer perceptions and the subsequent degree of acceptance of blended hydrogen in domestic properties. Evidence from two trial sites of the HyDeploy programme: i) a private site trial at Keele University North Staffordshire; ii) and a public site trial at Winlaton Gateshead are discussed.
Scenarios for Deployment of Hydrogen in Meeting Carbon Budgets (E4tech)
Nov 2015
Publication
This research considers the potential role of hydrogen in meeting the UK’s carbon budgets. It was written by consultancy E4tech.<br/>The CCC develops scenarios for the UK’s future energy system to assess routes to decarbonisation and to advise UK Government on policy options. Uncertainty to 2050 is considerable and so different scenarios are needed to assess different trajectories targets and technology combinations. Some of these scenarios assess specific technologies or fuels which have the potential to make a significant contribution to future decarbonisation.<br/>Hydrogen is one such fuel. It has been included in limited quantities in some CCC scenarios but not extensively examined in part due to perceived or anticipated higher costs than some other options. But as hydrogen technology is developed and deployed the cost projections and other performance indicators have become more favourable.
UK Climate Action Following the Paris Agreement
Oct 2016
Publication
The Paris Agreement marks a significant positive step in global action to tackle climate change. This report considers the domestic actions the UK Government should take as part of a fair contribution to the aims of the Agreement.<br/>The report concludes that the Paris Agreement is a significant step forward in global efforts to tackle climate change. It is more ambitious in its aims to limit climate change than the basis of the UK’s existing climate targets. However it is not yet appropriate to set new UK targets. Existing targets are already stretching and the priority is to take action to meet them.
Next Steps for UK Heat Policy
Oct 2016
Publication
Heating and hot water for UK buildings make up 40% of our energy consumption and 20% of our greenhouse gas emissions. It will be necessary to largely eliminate these emissions by around 2050 to meet the targets in the Climate Change Act and to maintain the UK contribution to international action under the Paris Agreement.<br/>Progress to date has stalled. The Government needs a credible new strategy and a much stronger policy framework for buildings decarbonisation over the next three decades. Many of the changes that will reduce emissions will also contribute toward modern affordable comfortable homes and workplaces and can be delivered alongside a major expansion in the number of homes. This report considers that challenge and sets out possible steps to meet it.
Zero Emission HGV Infrastructure Requirements
May 2019
Publication
The Committee on Climate Change commissioned Ricardo Energy and Environment to carry out research to assess the infrastructure requirements and costs for the deployment of different zero emission heavy goods vehicle (HGV) technology options. The infrastructure considered includes hydrogen refuelling stations ultra-rapid charge points at strategic locations electric overhead recharging infrastructure on the roads and hybrid solutions combining these options.
The research concluded:
It is feasible to build refuelling infrastructure to support the deployment of zero emission HGVs so that they constitute the vast majority of vehicles on the roads by 2050.
Looking at infrastructure alone deploying hydrogen refuelling stations is the cheapest of the options costing a total of £1.7bn in capital expenditure in the time period from now until 2060. The strategic deployment of ultra-rapid charge points is the most expensive at £10.7bn. In all scenarios a significant number of smaller electric HGVs are deployed as these options are available and operating on the streets today. The cost of installing chargers at depots for these vehicles is included.
When the costs of the fuel as well as the infrastructure are included the costs of deploying electricity or hydrogen HGVs are cheaper compared to the continued use of diesel.
Moving to zero-carbon infrastructure for HDVs is a significant challenge and requires planning co-ordination supply chains resource and materials and a skilled workforce as well as strong government policy to enable the market to deliver.
The Report can be found here
The research concluded:
It is feasible to build refuelling infrastructure to support the deployment of zero emission HGVs so that they constitute the vast majority of vehicles on the roads by 2050.
Looking at infrastructure alone deploying hydrogen refuelling stations is the cheapest of the options costing a total of £1.7bn in capital expenditure in the time period from now until 2060. The strategic deployment of ultra-rapid charge points is the most expensive at £10.7bn. In all scenarios a significant number of smaller electric HGVs are deployed as these options are available and operating on the streets today. The cost of installing chargers at depots for these vehicles is included.
When the costs of the fuel as well as the infrastructure are included the costs of deploying electricity or hydrogen HGVs are cheaper compared to the continued use of diesel.
Moving to zero-carbon infrastructure for HDVs is a significant challenge and requires planning co-ordination supply chains resource and materials and a skilled workforce as well as strong government policy to enable the market to deliver.
The Report can be found here
2050 Energy Scenarios: The UK Gas Networks Role in a 2050 Whole Energy System
Jul 2016
Publication
Energy used for heat accounts (in terms of final consumption) for approximately 45% of our total energy needs and is critical for families to heat their homes on winter days. Decarbonising heat while still meeting peak winter heating demands is recognised as a big perhaps the biggest challenge for the industry. The way heat has been delivered in the UK has not fundamentally changed for decades and huge investments have been made in gas infrastructure assets ranging from import terminals to networks through to the appliances in our homes. Changing how heat is delivered whichever way is chosen will be a major economic and practical challenge affecting families and businesses everywhere. Any plan to decarbonise will need to address power and transport alongside heat. Our report has also looked at potential decarbonisation of power and transport as part of a whole energy system approach.
In this report we explore ways that the heat sector can be decarbonised by looking at four possible future scenarios set in 2050. These stylised scenarios present illustrative snapshots of alternative energy solutions. The scenarios do not present a detailed roadmap – indeed the future may include some elements from each. We have analysed the advantages disadvantages and costs of each scenario. All our scenarios meet the 2050 Carbon emissions targets. In this report we have concentrated on reductions to CO2 emissions and we have not considered other greenhouse gases.
In this report we explore ways that the heat sector can be decarbonised by looking at four possible future scenarios set in 2050. These stylised scenarios present illustrative snapshots of alternative energy solutions. The scenarios do not present a detailed roadmap – indeed the future may include some elements from each. We have analysed the advantages disadvantages and costs of each scenario. All our scenarios meet the 2050 Carbon emissions targets. In this report we have concentrated on reductions to CO2 emissions and we have not considered other greenhouse gases.
Getting Net Zero Done- The Crucial Role of Decarbonised Gas and How to Support It
May 2020
Publication
The term ‘decarbonised gas’ refers to biogases hydrogen and carbon capture utilisation and storage (CCUS). This strategy paper sets out how decarbonised gas can help to get net zero done by tackling the hard-to-decarbonise sectors – industry heavy transport and domestic heating – which together account for around 40% of UK greenhouse gas emissions. It also illustrates the crucial importance of supportive public opinion and sets out in detail how decarbonised gas can help to ensure that net zero is achieved with public support. The report is based on extensive quantitative and qualitative opinion research on climate change in general net zero emissions in the UK and the specific decarbonised gas solutions in homes transport and industry. The full quantitative data is contained in the Supplements tab.<br/><a href="https://www.dgalliance.org/wp-content/uploads/2020/05/DGA-Getting-Net-Zero-Done-final-May-2020.pdf"/><a href="https://www.dgalliance.org/wp-content/uploads/2020/05/DGA-Getting-Net-Zero-Done-final-May-2020.pdf"/>
Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
Jul 2016
Publication
This document provides guidance on the commercial and strategic elements of a heat network project to support completion of a project business case.
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
- Strategic
- Economic
- Commercial
- Financial
- Management
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
Gas Goes Green: Delivering the Pathway to Net Zero
May 2020
Publication
Gas Goes Green brings together the engineering expertise from the UK’s five gas network operators building on the foundations of our existing grid infrastructure innovation projects and the wider scientific community. This is a blueprint to meet the challenges and opportunities of climate change delivering net zero in the most cost effective and least disruptive way possible.<br/>Delivering our vision is not just an engineering challenge but will involve active participation from policy makers regulators the energy industry and consumers. Gas Goes Green will undertake extensive engagement to deliver our programme and collaborate with existing projects already being delivered across the country.<br/>Britain’s extensive gas network infrastructure provides businesses and the public with the energy they need at the times when they need it the most. The gas we deliver plays a critical role in our everyday lives generating electricity fuelling vehicles heating our homes and providing the significant amounts of energy UK heavy industry needs. The Gas Goes Green programme aims to ensure that consumers continue to realise these benefits by transitioning our infrastructure into a net zero energy system.
Experimental Study on Hydrogen Explosions in a Full-scale Hydrogen Filling Station Model
Sep 2005
Publication
In order for fuel cell vehicles to develop a widespread role in society it is essential that hydrogen refuelling stations become established. For this to happen there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow dispersion and explosion behaviour. In the first phase homogeneous hydrogen-air-mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure the hydrogen concentration varied as the inlet airflow changed depending on the ventilation area of the room the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8-8.0mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition distance from ignition point.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
The Mitigation of Hydrogen Explosions Using Water Fog, Nitrogen Dilution and Chemical Additives
Sep 2013
Publication
This paper describes research work that has been performed at LSBU using both a laminar burning velocity rig and a small scale cylindrical explosion vessel to explore the use of very fine water fog nitrogen dilution and sodium hydroxide additives in the mitigation of hydrogen deflagrations. The results of the work suggest that using a combination of the three measures together produces the optimal mitigation performance and can be extremely effective in: inhibiting the burning velocity reducing the rate of explosion overpressure rise and narrowing the flammability limits of hydrogen-oxygen-nitrogen mixtures.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
HIAD 2.0 – Hydrogen Incident and Accident Database
Sep 2019
Publication
Hydrogen technologies are expected to play a key role in implementing the transition from a fossil fuel- based to a more sustainable lower-carbon energy system. To facilitate their widespread deployment the safe operation and hydrogen systems needs to be ensured together with the evaluation of the associated risk.<br/>HIAD has been designed to be a collaborative and communicative web-based information platform holding high quality information of accidents and incidents related to hydrogen technologies. The main goal of HIAD was to become not only a standard industrial accident database but also an open communication platform suitable for safety lessons learned and risk communication as well as a potential data source for risk assessment; it has been set up to improve the understanding of hydrogen unintended events to identify measures and strategies to avoid incidents/accidents and to reduce the consequence if an accident occurs.<br/>In order to achieve that goal the data collection is characterized by a significant degree of detail and information about recorded events (e.g. causes physical consequences lesson learned). Data are related not only to real incident and accidents but also to hazardous situations.<br/>The concept of a hydrogen accident database was generated in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme. HIAD was built by EC-JRC and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events. The original idea was to provide a tool also for quantitative risk assessment able to conduct simple analyses of the events; unfortunately that goal could not be reached because of a lack of required statistics: it was not possible to establish a link with potential event providers coming from private sector not willing to share information considered confidential. Starting from June 2016 JRC has been developing a new version of the database (i.e. HIAD 2.0); the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learned and other relevant information related to hydrogen technology; the database will be public and the events will be anonymized. The database will contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.
Environmental Sustainability of Alternative Marine Propulsion Technologies Powered by Hydrogen - A Life Cycle Assessment Approach
Jan 2022
Publication
Shipping is a very important source of pollution worldwide. In recent years numerous actions and measures have been developed trying to reduce the levels of greenhouse gases (GHG) from the marine exhaust emissions in the fight against climate change boosting the Sustainable Development Goal 13. Following this target the action of hydrogen as energy vector makes it a suitable alternative to be used as fuel constituting a very promising energy carrier for energy transition and decarbonization in maritime transport. The objective of this study is to develop an ex-ante environmental evaluation of two promising technologies for vessels propulsion a H2 Polymeric Electrolytic Membrane Fuel Cell (PEMFC) and a H2 Internal Combustion Engine (ICE) in order to determine their viability and eligibility compared to the traditional one a diesel ICE. The applied methodology follows the Life Cycle Assessment (LCA) guidelines considering a functional unit of 1 kWh of energy produced. LCA results reveal that both alternatives have great potential to promote the energy transition particularly the H2 ICE. However as technologies readiness level is quite low it was concluded that the assessment has been conducted at a very early stage so their sustainability and environmental performance may change as they become more widely developed and deployed which can be only achieved with political and stakeholder’s involvement and collaboration.
A Portfolio of Powertrains for the UK: An Energy Systems Analysis
Jul 2014
Publication
There has recently been a concerted effort to commence a transition to fuel cell vehicles (FCVs) in Europe. A coalition of companies released an influential McKinsey-coordinated report in 2010 which concluded that FCVs are ready for commercial deployment. Public–private H2Mobility programmes have subsequently been established across Europe to develop business cases for the introduction of FCVs. In this paper we examine the conclusions of these studies from an energy systems perspective using the UK as a case study. Other UK energy system studies have identified only a minor role for FCVs after 2030 but we reconcile these views by showing that the differences are primarily driven by different data assumptions rather than methodological differences. Some energy system models do not start a transition to FCVs until around 2040 as they do not account for the time normally taken for the diffusion of new powertrains. We show that applying dynamic growth constraints to the UK MARKAL energy system model more realistically represents insights from innovation theory. We conclude that the optimum deployment of FCVs from an energy systems perspective is broadly in line with the roadmap developed by UK H2Mobility and that a transition needs to commence soon if FCVs are to become widespread by 2050.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Framing Policy on Low Emissions Vehicles in Terms of Economic Gains: Might the Most Straightforward Gain be Delivered by Supply Chain Activity to Support Refuelling?
May 2018
Publication
A core theme of the UK Government's new Industrial Strategy is exploiting opportunities for domestic supply chain development. This extends to a special ‘Automotive Sector Deal’ that focuses on the shift to low emissions vehicles (LEVs). Here attention is on electric vehicle and battery production and innovation. In this paper we argue that a more straightforward gain in terms of framing policy around potential economic benefits may be made through supply chain activity to support refuelling of battery/hydrogen vehicles. We set this in the context of LEV refuelling supply chains potentially replicating the strength of domestic upstream linkages observed in the UK electricity and/or gas industries. We use input-output multiplier analysis to deconstruct and assess the structure of these supply chains relative to that of more import-intensive petrol and diesel supply. A crucial multiplier result is that for every £1million of spending on electricity (or gas) 8 full-time equivalent jobs are supported throughout the UK. This compares to less than 3 in the case of petrol/diesel supply. Moreover the importance of service industries becomes apparent with 67% of indirect and induced supply chain employment to support electricity generation being located in services industries. The comparable figure for GDP is 42%.
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
The Effect of Tube Internal Geometry on the Propensity to Spontaneous Ignition in Pressurized Hydrogen Release
Sep 2013
Publication
Spontaneous ignition of compressed hydrogen release through a length of tube with different internal geometries is numerically investigated using our previously developed model. Four types of internal geometries are considered: local contraction local enlargement abrupt contraction and abrupt enlargement. The presence of internal geometries was found to significantly increase the propensity to spontaneous ignition. Shock reflections from the surfaces of the internal geometries and the subsequent shock interactions further increase the temperature of the combustible mixture at the contact region. The presence of the internal geometry stimulates turbulence enhanced mixing between the shock-heated air and the escaping hydrogen resulting in the formation of more flammable mixture. It was also found that forward-facing vertical planes are more likely to cause spontaneous ignition by producing the highest heating to the flammable mixture than backward-facing vertical planes.
Accelerating Innovation Towards Net Zero Emissions
Apr 2019
Publication
This report Accelerating innovation towards net zero commissioned by the Aldersgate Group and co-authored with Vivid Economics identifies out how the government can achieve a net zero target cost-effectively in a way that enables the UK to capture competitive advantages.
The unique contribution of this report is to identify the lessons from successful and more rapid historical innovations and apply them to the challenge of meeting net zero emissions in the UK.
Achieving net zero emissions is likely to require accelerated innovation across research demonstration and early deployment of low carbon technologies. Researchers analysed five international case studies of relatively rapid innovations to draw key lessons for government on the conditions needed to move from a typical multi-decadal cycle to one that will deliver net zero emissions by mid-Century.
The case studies include:
Six key actions for government policy to accelerate low carbon innovation in the UK:
The unique contribution of this report is to identify the lessons from successful and more rapid historical innovations and apply them to the challenge of meeting net zero emissions in the UK.
Achieving net zero emissions is likely to require accelerated innovation across research demonstration and early deployment of low carbon technologies. Researchers analysed five international case studies of relatively rapid innovations to draw key lessons for government on the conditions needed to move from a typical multi-decadal cycle to one that will deliver net zero emissions by mid-Century.
The case studies include:
- The deployment of the ATM network and cash cards across the UK
- Roll out of a gas network and central heating in the UK
- The development of wind turbines in Denmark and then the UK
- Moving from late-stage adoption of steel technology in South Korea to being the world leading exporter; and
- The slower than expected development of commercial-scale CCUS to date across the world.
Six key actions for government policy to accelerate low carbon innovation in the UK:
- Increase ambition in demonstrating complex and high capital cost technologies and systems.
- Create new markets to catalyse early deployment and move towards widespread commercialisation.
- Use concurrent innovations such as digital technologies to improve system efficiency and make new products more accessible and attractive to customers.
- Use existing or new organisations (cross-industry associations or public-private collaborations) to accelerate innovation in critical areas and coordinate early stage deployment.
- Harness trusted voices to build consumer acceptance through information sharing and rapid responses to concerns.
- Align innovation policy in such a way that it strengthens the UK’s industrial advantages and increases knowledge spillovers between businesses and sectors.
Ammonia-hydrogen Combustion in a Swirl Burner with Reduction of NOx Emissions
Sep 2019
Publication
Recently ammonia is being considered for fuelling gas turbines as a new sustainable source. It can undergo thermal cracking producing nitrogen hydrogen and unburned ammonia thus enabling the use of these chemicals most efficiently for combustion purposes. Ammonia being carbon-free may allow the transition towards a hydrogen economy. However one of the main constraints of this fuelling technique is that although the combustion of ammonia produces no CO2 there is a large NOx proportion of emissions using this fuel. In this work cracked ammonia obtained from a modified combustion rig designed at Cardiff University was used to simulate a swirl burner under preheating conditions via heat exchangers. The primary objective of this system is to find new ways for the reduction of NOx emissions by injecting various amounts of ammonia/hydrogen at different mixtures downstream of the primary flame zone. The amount of injected ammonia/hydrogen mixture (X) taken from the thermal cracking system was ranged from 0%-4% (vol %) of the total available fuel in the system while the remaining gas (1.00-X) was then employed as primary fuel into the burner. CHEMKIN- PRO calculations were conducted by employing a novel chemical reaction code developed at Cardiff University to achieve the goal of this paper. The predictions were performed under low pressure and rich conditions with an equivalence ratio ϕ =1.2 in a swirl burner previously characterised at output powers of ~10 kW. Ammonia and hydrogen blends were evaluated from 50% NH3 (vol %) with the remaining gas as hydrogen continuing in steps of 10% (vol %) NH3 increments. Results showed that the minimum unburned ammonia and higher flame temperature were achieved at 60%-40% NH3-H2 when compared to other blends but with high NO emissions. These NO levels were reduced by injecting a small amount of NH3/H2 mixture (X=4 %) downstream the primary zone in a generated circulations promoted by the new design of the burner which affecting the residence time hence reducing the NO emission in the exhaust gas.
Modelling a Kinetic Deviation of the Magnesium Hydrogenation Reaction at Conditions Close to Equilibrium
May 2019
Publication
A model has been derived for the magnesium hydrogenation reaction at conditions close to equilibrium. The reaction mechanism involves an adsorption element where the model is an extension of the Langmuir adsorption model. The concept of site availability (σs) is introduced whereby it has the capability to reduce the reaction rate. To improve representation of σs an adaptable semi-empirical equation has been developed. Supplement to the surface reaction a rate equation has been derived considering resistance effects. It was found that close to equilibrium surface resistance dominated the reaction.
A Comparison Study into Low Leak Rate Buoyant Gas Dispersion in a Small Fuel Cell Enclosure Using Plain and Louvre Vent Passive Ventilation Schemes
Sep 2017
Publication
The development of a ‘Hydrogen Economy’ will see hydrogen fuel cells used in transportation and the generation of power for buildings as part of a decentralised grid with low power units used in domestic and commercial environmental situations. Low power fuel cells will be housed in small protective enclosures which must be ventilated to prevent a build-up of hydrogen gas produced during normal fuel cell operation or a supply pipework leak. Hydrogen’s flammable range (4-75%) is a significant safety concern. With poor enclosure ventilation a low-level leak (below 10 lpm) could quickly create a flammable mixture with potential for an explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations but drains fuel cell power and is vulnerable to failure. In many applications (e.g. low power and remote installation) this is undesirable and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow with the size and shape of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. Environmentally installed units use louvre vents to protect the fuel cell but the performance of these vents compared to plain vertical vents is not clear. Comparison small enclosure tests of ‘same opening area’ louvre and plain vents with leak rates from 1 to 10 lpm were conducted. A displacement ventilation arrangement was installed on the test enclosure with upper and lower opposing openings. Helium gas was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak. The tests determined that louvre vents increased average enclosure hydrogen concentrations by approximately 10% across the leak range tested but regulated the flow. The test data was used in a SolidWorks CFD simulation model validation exercise. The model provided a good qualitative representation of the flow behaviour but under predicted average concentrations.
Synthesis of Activated Ferrosilicon-based Microcomposites by Ball Milling and their Hydrogen Generation Properties
Jan 2019
Publication
Ferrosilicon 75 a 50:50 mixture of silicon and iron disilicide has been activated toward hydrogen generation by processing using ball milling allowing a much lower concentration of sodium hydroxide (2 wt %) to be used to generate hydrogen from the silicon in ferrosilicon with a shorter induction time than has been reported previously. An activation energy of 62 kJ/mol was determined for the reaction of ball-milled ferrosilicon powder with sodium hydroxide solution which is around 30 kJ/mol lower than that previously reported for unmilled ferrosilicon. A series of composite powders were also prepared by ball milling ferrosilicon with various additives in order to improve the hydrogen generation properties from ferrosilicon 75 and attempt to activate the silicon in the passivating FeSi2 component. Three different classes of additives were employed: salts polymers and sugars. The effects of these additives on hydrogen generation from the reaction of ferrosilicon with 2 wt% aqueous sodium hydroxide were investigated. It was found that composites formed of ferrosilicon and sodium chloride potassium chloride sodium polyacrylate sodium polystyrene sulfonate-co-maleic acid or fructose showed reduced induction times for hydrogen generation compared to that observed for ferrosilicon alone and all but fructose also led to an increase in the maximum hydrogen generation rate. In light of its low cost and toxicity and beneficial effects sodium chloride is considered to be the most effective of these additives for activating the silicon in ferrosilicon toward hydrogen generation. Materials characterisation showed that neither ball milling on its own nor use of additives was successful in activating the FeSi2 component of ferrosilicon for hydrogen generation and the improvement in rate and shortening of the induction period was attributed to the silicon component of the mixture alone The gravimetric storage capacity for hydrogen in ferrosilicon 75 is therefore maintained at only 3.5% rather than the 10.5% ideally expected for a material containing 75% silicon. In light of these results ferrosilicon 75 does not appear a good candidate for hydrogen production in portable applications.
HyDeploy Overview
May 2020
Publication
An overview of the HyDeploy project at Keele University where hydrogen is being blended with natural gas to demonstrate the feasibility of using hydrogen to heat our homes.
No more items...