United Kingdom
Hydrogen and Fuel Cell Technologies for Heating: A Review
Jan 2015
Publication
The debate on low-carbon heat in Europe has become focused on a narrow range of technological options and has largely neglected hydrogen and fuel cell technologies despite these receiving strong support towards commercialisation in Asia. This review examines the potential benefits of these technologies across different markets particularly the current state of development and performance of fuel cell micro-CHP. Fuel cells offer some important benefits over other low-carbon heating technologies and steady cost reductions through innovation are bringing fuel cells close to commercialisation in several countries. Moreover fuel cells offer wider energy system benefits for high-latitude countries with peak electricity demands in winter. Hydrogen is a zero-carbon alternative to natural gas which could be particularly valuable for those countries with extensive natural gas distribution networks but many national energy system models examine neither hydrogen nor fuel cells for heating. There is a need to include hydrogen and fuel cell heating technologies in future scenario analyses and for policymakers to take into account the full value of the potential contribution of hydrogen and fuel cells to low-carbon energy systems.
Modelling Heat Transfer in an Intumescent Paint and its Effect on Fire Resistance of On-board Hydrogen Storage
Oct 2015
Publication
This paper describes a 1-D numerical model for the prediction of heat and mass transfer through an intumescent paint that is applied to an on-board high-pressure GH2 storage tank. The intumescent paint is treated as a composite system consisting of three general components decomposing in accordance with independent finite reaction rates. A moving mesh that is employed for a better prediction of the expansion process of the intumescent paint is based on the local changes of heat and mass. The numerical model is validated against experiments by Cagliostro et al. (1975). The overall model results are used to estimate effect of intumescent paint on fire resistance of carbon-fibre reinforced GH2 storage.
HyDeploy Project - Second Project Progress Report
Dec 2018
Publication
The HyDeploy project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions can be reduced by lowering the carbon content of gas through blending with hydrogen. This delivers carbon savings without customers requiring disruptive and expensive changes in their homes. It also provides the platform for deeper carbon savings by enabling wider adoption of hydrogen across the energy system.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
HyDeploy Project - First Project Progress Report
Dec 2017
Publication
The HyDeploy Project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions could be reduced by lowering the carbon content of gas through blending with hydrogen. Compared with solutions such as heat pumps this means that customers would not need disruptive and expensive changes in their homes. This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network.
Under its Smart Energy Network Demonstration innovation programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with potentially up to 20% volume of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Any approval will be given as an exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. The evidence presented to the HSE comprises critically appraised literature combined with the results from a specifically commissioned experimental and testing programme. Based on engagement with all local customers this includes detailed safety checks on the network appliances and installations at Keele. Subject to approval by the HSE the hydrogen production and grid injection units will be installed and an extensive trial programme of blending will be undertaken. If hydrogen were blended at 20% volume with natural gas across the UK it would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of taking 2.5 million cars off the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Under its Smart Energy Network Demonstration innovation programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with potentially up to 20% volume of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Any approval will be given as an exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. The evidence presented to the HSE comprises critically appraised literature combined with the results from a specifically commissioned experimental and testing programme. Based on engagement with all local customers this includes detailed safety checks on the network appliances and installations at Keele. Subject to approval by the HSE the hydrogen production and grid injection units will be installed and an extensive trial programme of blending will be undertaken. If hydrogen were blended at 20% volume with natural gas across the UK it would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of taking 2.5 million cars off the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen Transport and Trapping: From Quantum Effects to Alloy Design
Jun 2017
Publication
This discussion session concerned experimental and theoretical investigations of the atomistic properties underlying the energetics and kinetics of hydrogen trapping and diffusion in metallic systems.
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Changing the Fate of Fuel Cell Vehicles: Can lessons be Learnt from Tesla Motors?
Dec 2014
Publication
Fuel Cell Vehicles (FCVs) are a disruptive innovation and are currently looking towards niche market entry. However commercialisation has been unsuccessful thus far and there is a limited amount of literature that can guide their market entry. In this paper a historical case study is undertaken which looks at Tesla Motors high-end encroachment market entry strategy. FCVs have been compared to Tesla vehicles due to their similarities; both are disruptive innovations both are high cost and both are zero emission vehicles. Therefore this paper looks at what can be learned form Tesla Motors successful market entry strategy and proposes a market entry strategy for FCVs. It was found that FCVs need to enact a paradigm shift from their current market entry strategy to one of high-end encroachment. When this has been achieved FCVs will have greater potential for market penetration.
Venting Deflagrations of Local Hydrogen-air Mixture
Oct 2015
Publication
The paper describes a lumped-parameter model for vented deflagrations of localised and layered fuel air mixtures. Theoretical model background is described to allow insight into the model development with focus on lean mixtures and overpressures significantly below 0.1 MPa for protection of low strength equipment and buildings. Phenomena leading to combustion augmentation was accounted based on conclusions of recent CFD studies. Technique to treat layered mixtures with concentration gradient is demonstrated. The model is validated against 25 vented deflagration experiments with lean non-uniform and layered hydrogen-air mixtures performed in Health and Safety Laboratory (UK) and Karlsruhe Institute of Technology (Germany).
The Journey to Smarter Heat
Mar 2019
Publication
As the UK’s largest emitter of greenhouse gases the supply of domestic industrial and commercial heat must be decarbonised if the UK is to meet its climate change targets.<br/><br/>This report publishes the outcomes from Phase 1 of the Energy Technologies Institute’s Smart Systems and Heat programme highlighting that for the UK to transition to a low carbon heating system it must understand consumer needs and behaviours while connecting this with the development and integration of technologies and new business models.<br/><br/>Written by the ETI with support from the Energy Systems Catapult this report tackles three interconnected areas: heating needs and controls within the home; heating infrastructure and building retrofit at a local level; and the operation and governance of the whole system.<br/><br/>The research also shows that as part of a low carbon heating system upgrade advanced controls are critical to performance sizing and operating costs enabling smaller appliances and lower peak electricity demands and maximising the efficiency of existing infrastructure. With significant fabric retrofits potentially required in around 10 million of the existing 28 million dwellings in the UK housing stock the report recommends that building new homes to be both very efficient and “low carbon ready” is a low regret decision which should be progressed with some urgency.
Modeling Thermal Response of Polymer Composite Hydrogen Cylinders
Oct 2015
Publication
With the anticipated introduction of hydrogen fuel cell vehicles to the market there is an increasing need to address the fire resistance of hydrogen cylinders for onboard storage. Sufficient fire resistance is essential to ensure safe evacuation in the event of car fire accidents. The authors have developed a Finite Element (FE) model for predicting the thermal response of composite hydrogen cylinders within the frame of the open source FE code Elmer. The model accounts for the decomposition of the polymer matrix and effects of volatile gas transport in the composite. Model comparison with experimental data has been conducted using a classical one-dimensional test case of polymer composite subjected to fire. The validated model was then used to analyze a type-4 hydrogen cylinder subjected to an engulfing external propane fire mimicking a published cylinder fire experiment. The external flame is modelled and simulated using the open source code FireFOAM. A simplified failure criteria based on internal pressure increase is subsequently used to determine the cylinder fire resistance.
Clean Energy and the Hydrogen Economy
Jan 2017
Publication
In recent years new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier hydrogen offers a range of benefits for simultaneously decarbonizing the transport residential commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems including fuel cell electric vehicles and micro-combined heat and power devices the use of hydrogen at grid scale requires the challenges of clean hydrogen production bulk storage and distribution to be resolved. Ultimately greater government support in partnership with industry and academia is still needed to realize hydrogen's potential across all economic sectors.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Burning Velocity and Markstein Length Blending Laws for Methane/Air and Hydrogen/Air Blends
Sep 2016
Publication
"Because of the contrasting chemical kinetics of methane and hydrogen combustion the development of blending laws for laminar burning velocity ul and Markstein length for constituent mixtures of CH4/air and H2/air presents a formidable challenge. Guidance is sought through a study of analytical expressions for laminar burning velocity. For the prediction of burning velocities of blends six blending laws were scrutinised. The predictions were compared with the measured burning velocities made by Hu et al. under atmospheric conditions. These covered equivalence ratios ranging from 0.6 to 1.3 and the full fuel range for H2 addition to CH4. This enabled assessments to be made of the predictive accuracy of the six laws. The most successful law is one developed in the course of the present study involving the mass fraction weighting of the product of ul density heat of reaction and specific heat divided by the thermal conductivity of the mixture. There was less success from attempts to obtain a comparably successful blending law for the flame speed Markstein length Lb despite scrutiny of several possibilities. Details are given of two possible approaches one based on the fractional mole concentration of the deficient reactant. A satisfactory empirical law employs mass fraction weighting of the product ulLb.
Safety Assessment of Unignited Hydrogen Discharge from Onboard Storage in Garages with Low Levels of Natural Ventilation
Sep 2011
Publication
This study is driven by the need to understand requirements to safe blow-down of hydrogen onboard storage tanks through a pressure relief device (PRD) inside a garage-like enclosure with low natural ventilation. Current composite tanks for high pressure hydrogen storage have been shown to rupture in 3.5–6.5 min in fire conditions. As a result a large PRD venting area is currently used to release hydrogen from the tank before its catastrophic failure. However even if unignited the release of hydrogen from such PRDs has been shown in our previous studies to result in unacceptable overpressures within the garage capable of causing major damage and possible collapse of the structure. Thus to prevent collapse of the garage in the case of a malfunction of the PRD and an unignited hydrogen release there is a clear need to increase blow-down time by reducing PRD venting area. Calculations of PRD diameter to safely blow-down storage tanks with inventories of 1 5 and 13 kg hydrogen are considered here for a range of garage volumes and natural ventilation expressed in air changes per hour (ACH). The phenomenological model is used to examine the pressure dynamics within a garage with low natural ventilation down to the known minimum of 0.03 ACH. Thus with moderate hydrogen flow rate from the PRD and small vents providing ventilation of the enclosure there will be only outflow from the garage without any air intake from outside. The PRD diameter which ensures that the pressure in the garage does not exceed a value of 20 kPa (accepted in this study as a safe overpressure for civil structures) was calculated for varying garage volumes and natural ventilation (ACH). The results are presented in the form of simple to use engineering nomograms. The conclusion is drawn that PRDs currently available for hydrogen-powered vehicles should be redesigned along with either a change of requirements for the fire resistance rating or innovative design of the onboard storage system as hydrogen-powered vehicles are intended for garage parking. Further research is needed to develop safety strategies and engineering solutions to tackle the problem of fire resistance of onboard storage tanks and requirements to PRD performance. Regulation codes and standards in the field should address this issue.
Numerical Study of Spontaneous Ignition of Pressurized Hydrogen Release into Air
Sep 2007
Publication
Numerical simulations have been carried out for spontaneous ignition of pressurized hydrogen release directly into air. Results showed a possible mechanism for spontaneous ignition due to molecular diffusion. To accurately calculate the molecular transport of species momentum and energy in a multi-component gaseous mixture a mixture-averaged multi-component approach was employed in which thermal diffusion is accounted for. To reduce false numerical diffusion extremely fine meshes were used along with the ALE (Arbitrary Lagrangian-Eulerian) method. The ALE method was employed to track the moving contact surface with moving clustered grids. A detailed kinetic scheme with 21 elementary steps and 8 reactive chemical species was implemented for combustion chemistry. The scheme gives due consideration to third body reactions and reaction-rate pressure-dependant “fall-off” behavior. The autoignition of pressurized hydrogen release was previously observed in laboratory tests [2-3] and suspected as possible cause of some accidents. The present numerical study successfully captured this scenario. Autoignition was predicted to first take place at the tip region of the hydrogen-air contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air at the contact surface through molecular diffusion. The initial flame thickness is extremely thin due to the limiting molecular diffusion. The combustion region extends downward along the contact surface as it moves downstream. As the hydrogen jet developed downstream the front contact surface tends to be distorted by the developed flow of the air. Turbulence plays an important role in mixing at the region of the distorted contact surface. This is thought to be a major factor for the initial laminar flame to turn into a final stable turbulent flame.
Ignition of Flammable Hydrogen & Air Mixtures by Controlled Glancing Impacts in Nuclear Waste Decommissioning
Sep 2013
Publication
Conditions are examined under which mechanical stimuli produced by striking controlled blows can result in sparking and ignition of hydrogen in air mixtures. The investigation principally concerns magnesium thermite reaction as the ignition source and focuses on the conditions and thermomechanical parameters that are involved in determining the probability of ignition. It is concluded that the notion of using the kinetic energy of impact as the main criterion in determining whether an ignition event is likely or not is much less useful than considering the parameters which determine the maximum temperature produced in a mechanical stimuli event. The most influential parameter in determining ignition frequency or probability is the velocity of sliding movement during mechanical stimuli. It is also clear that the kinetic energy of a moving hammer head is of lesser importance than the normal force which is applied during contact. This explains the apparent discrepancy in previous studies between the minimum kinetic energy thought to be necessary to allow thermite sparking and gas ignition to occur with drop weight impacts and glancing blow impacts. In any analysis of the likelihood of mechanical stimuli to cause ignition the maximum surface temperature generated should be determined and considered in relation to the temperatures that would be required to initiate hot surface reactions sufficient to cause sparking and ignition.
Prediction of the Lift-off, Blow-out and Blow-off Stability Limits of Pure Hydrogen and Hydrogen and Hydrocarbon Mixture Jet Flames
Sep 2007
Publication
The paper presented experimental studies of the liftoff and blowout stability of pure hydrogen hydrogen/propane and hydrogen/methane jet flam es using a 2 mm burner. Carbon dioxide and Argon gas were also used in the study for the comparison with hydrocarbon fuel. Comparisons of the stability of H 2/C3H8 H 2/CH4 H 2/Ar and H 2/CO2 flames showed that H 2/C3H8 produced the highest liftoff height and H 2/CH4 required highest liftoff and blowoff velocities. The non-dimensional analysis of liftoff height approach was used to correlate liftoff data of H 2 H2-C3H8 H 2-CO2 C 3H8 and H2-Ar jet flames tested in the 2 mm burner. The suitability of extending the empirical correlations based on hydrocarbon flames to both hydrogen and hydrogen/ hydrocarbon flames was examined.
H21- Public Perceptions of Converting the Gas Network to Hydrogen - Social Sciences Sudy
Jun 2020
Publication
The next decade will see fundamental changes in how people heat their homes. The global energy system is changing in response to the need to transition away from fossil-based generation towards more environmentally sustainable alternatives.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
- Beliefs about the environment
- Beliefs about inconvenience and cost
- Beliefs about safety
- Beliefs about the economic impact
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
H21- Strategic Modelling Major Urban Centres
Aug 2019
Publication
This report summarises the results of an independent audit carried out by DNV GL on the model conversions from natural gas to hydrogen for the models being used as a benchmark for the wider UK proposed hydrogen conversion of the natural gas network. The detailed model conversion process was derived from the H21 modelling meetings and the detailed notes were put together by NGN as a basic guide which has been included in Appendix A and is summarised as follows:
- Current 5 year planning model is updated and then used to generate a Replacement Expenditure (REPEX) natural gas model which would remove metallic pipes from the networks by insertion where possible
- Merging models together to form larger networks where required
- Preparation for conversion to hydrogen which would include the District Governor (DG) capacity increases to run the additional model flows
- Conversion of the models to hydrogen by changing demands to thermal and the gas characteristics to those of hydrogen
- Applying reinforcement to remove pressure failures.
H2FC SUPERGEN- Delivering Negative Emissions from Biomass derived Hydrogen
Apr 2020
Publication
Bioenergy with carbon capture and storage (BECCS) removes carbon dioxide (CO2) from the atmosphere i.e. negative CO2 emissions. It will likely have an important role in the transition to a net-zero economy by offsetting hard-to-abate greenhouse gas emissions. However there are concerns about the sustainability of large scale BECCS deployment using bioenergy from predominantly primary biomass sources (i.e. dedicated energy crops). Secondary sources of biomass (e.g. waste biomass municipal solid wastes forest/agricultural residues) are potentially an economical and sustainable alternative resource. Furthermore supplementing primary biomass demand with secondary sources could enable the supply of biomass from solely indigenous sources (i.e. from the UK) which could provide economic advantages in a growing global bio-economy.<br/><br/>There is also a growing interest in biomass-derived hydrogen production with CCS (BHCCS) which generates hydrogen and removes CO2 from the atmosphere. Hydrogen could help decarbonise fuel-dependent sectors such as heat industry or transportation. The aim of this study was to determine whether BHCCS could possibly deliver net negative CO2 emissions making comparisons against the other BECCS technologies.
Numerical Studies of Dispersion and Flammable Volume of Hydrogen in Enclosures
Sep 2007
Publication
Hydrogen dispersion in an enclosure is numerically studied using simple analytical solutions and a large-eddy-simulation based CFD code. In simple calculations the interface height and temperature rise of the upper layer are obtained based on mass and energy conservation and the centreline hydrogen volume fraction is derived from similarity solutions of buoyant jets. The calculated centreline hydrogen volume fraction using the two methods agree with each other; however discrepancies are found for the calculated total flammable volume as a result of the inability of simple calculations in taking into account local mixing and diffusion. The CFD model in contrast is found to be capable of correctly reproducing the diffusion and stratification phenomena during the mixing stage.
CFD Study of the Unignited and Ignited Hydrogen Releases from TRPD Under a Fuel Cell Car
Oct 2015
Publication
This paper describes a CFD study of a scenario involving the vertical downward release of hydrogen from a thermally-activated pressure relief device (TPRD) under a fuel cell car. The volumetric source model is applied to simulate hydrogen release dynamics during the tank blowdown process. Simulations are conducted for both unignited and ignited releases from onboard storage at 35 MPa and 70 MPa with TPRD orifice 4.2 mm. Results show that after TPRD opening the hazards associated with the release of hydrogen lasts less than two minutes and the most hazardous timeframe occurs within ten seconds of the initiation of the release. The deterministic separation distances for unignited releases are longer than those for ignited releases indicating that the separation distances are dominated by delayed ignition events rather than immediate ignition events. The deterministic separation distances for both unignited and ignited hydrogen downward releases under the car are significantly shorter than those of free jets. To ensure the safety of people a deterministic separation distance of at least 10 m for 35 MPa releases is required. This distance should be increased to 12 m for the 70 MPa release case. To ensure that the concentration of hydrogen is always less than 4% at the location of the air intake of buildings the deterministic separation distance should be at least 11 m for 35 MPa releases and 13 m for 70 MPa releases.
No more items...