United Kingdom
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
CFD Computations of Liquid Hydrogen Releases
Sep 2011
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid (liquid hydrogen or LH2) as it requires much less volume compared to gaseous hydrogen. In order to exist as a liquid H2 must be cooled to a very low temperature 20.28 K. LH2 is a common liquid fuel for rocket applications. It can also be used as the fuel storage in an internal combustion engine or fuel cell for transport applications. Models for handling liquid releases both two-phase flashing jets and pool spills have been developed in the CFD-model FLACS. The very low normal boiling point of hydrogen (20 K) leads to particular challenges as this is significantly lower than the boiling points of oxygen (90 K) and nitrogen (77 K). Therefore a release of LH2 in the atmosphere may induce partial condensation or even freezing of the oxygen and nitrogen present in the air. A pool model within the CFD software FLACS is used to compute the spreading and vaporization of the liquid hydrogen depositing on the ground where the partial condensation or freezing of the oxygen and nitrogen is also taken into account. In our computations of two-phase jets the dispersed and continuous phases are assumed to be in thermodynamic and kinematic equilibrium. Simulations with the new models are compared against selected experiments performed at the Health and Safety Laboratory (HSL).
Reducing UK Emissions – 2019 Progress Report to Parliament
Jul 2019
Publication
This is the Committee’s annual report to Parliament assessing progress in reducing UK emissions over the past year. It finds that UK action to curb greenhouse gas emissions is lagging behind what is needed to meet legally-binding emissions targets. Since June 2018 Government has delivered only 1 of 25 critical policies needed to get emissions reductions back on track.
HyDeploy: The UK’s First Hydrogen Blending Deployment Project
Mar 2019
Publication
The HyDeploy project is the UK’s first practical project to demonstrate that hydrogen can be safely blended into the natural-gas distribution system without requiring changes to appliances and the associated disruption. The project is funded under Ofgem’s Network Innovation Competition and is a collaboration between Cadent Gas Northern Gas Networks Progressive Energy Ltd Keele University (Keele) Health & Safety Laboratory and ITM Power. Cadent and Northern Gas Networks are the Gas Distribution Network sponsors of the project. Keele University is the host site providing the gas-distribution network which will receive the hydrogen blend. Keele University is the largest campus university in the UK. Health & Safety Laboratory provides the scientific laboratories and experimental expertise. ITM Power provides the electrolyser that produces the hydrogen. Progressive Energy Ltd is the project developer and project manager. HyDeploy is structured into three distinct phases. The first is an extensive technical programme to establish the necessary detailed evidence base in support of an application to the Health & Safety Executive for Exemption to Schedule 3 of the Gas Safety (Management) Regulations (GS(M)R) to permit the injection of hydrogen at 20 mol%. This is required to allow hydrogen to be blended into a natural-gas supply above the current British limit of 0.1 mol%.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
Paths to Low-cost Hydrogen Energy at a Scale for Transportation Applications in the USA and China via Liquid-hydrogen Distribution Networks
Dec 2019
Publication
The cost of delivered H2 using the liquid-distribution pathway will approach $4.3–8.0/kg in the USA and 26–52 RMB/kg in China by around 2030 assuming large-scale adoption. Historically hydrogen as an industrial gas and a chemical feedstock has enjoyed a long and successful history. However it has been slow to take off as an energy carrier for transportation despite its benefits in energy diversity security and environmental stewardship. A key reason for this lack of progress is that the cost is currently too high to displace petroleum-based fuels. This paper reviews the prospects for hydrogen as an energy carrier for transportation clarifies the current drivers for cost in the USA and China and shows the potential for a liquid-hydrogen supply chain to reduce the costs of delivered H2. Technical and economic trade-offs between individual steps in the supply chain (viz. production transportation refuelling) are examined and used to show that liquid-H2 (LH2) distribution approaches offer a path to reducing the delivery cost of H2 to the point at which it could be competitive with gasoline and diesel fuel.
Net Zero The UK's Contribution to Stopping Global Warming
May 2019
Publication
This report responds to a request from the Governments of the UK Wales and Scotland asking the Committee to reassess the UK’s long-term emissions targets. Our new emissions scenarios draw on ten new research projects three expert advisory groups and reviews of the work of the IPCC and others.<br/>The conclusions are supported by detailed analysis published in the Net Zero Technical Report that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals.
Rayleigh-Taylor Instability: Modelling and Effect on Coherent Deflagrations
Sep 2013
Publication
The modelling of Rayleigh–Taylor instability during premixed combustion scenarios is presented. Experimental data obtained from experiments undertaken by FM Global using their large-scale vented deflagration chamber was used to develop the modelling approach. Rayleigh–Taylor instability is introduced as an additional time-dependent combustion enhancing mechanism. It is demonstrated that prior to the addition of this mechanism the LES deflagration model under-predicted the experimental pressure transients. It is confirmed that the instability plays a significant role throughout the coherent deflagration process. The addition of the mechanism led to the model more closely replicating the pressure peak associated with the external deflagration.
Committee for Climate Change Fifth Carbon Budget: Central Scenario Data
Jul 2016
Publication
This spreadsheet contains data for two future UK scenarios: a "baseline" (i.e. no climate action after 2008 the start of the carbon budget system) and the "central" scenario underpinning the CCC's advice on the fifth carbon budget (the limit to domestic emissions during the period 2028-32).<br/>The central scenario is an assessment of the technologies and behaviours that would prepare for the 2050 target cost-effectively while meeting the other criteria in the Climate Change Act (2008) based on central views of technology costs fuel prices carbon prices and feasibility. It is not prescriptive nor is it the only scenario considered for meeting the carbon budgets. For further details on our scenarios and how they were generated see the CCC report Sectoral scenarios for the Fifth Carbon Budget. The scenario was constructed for the CCC's November 2015 report and has not been further updated for example to reflect outturn data for 2015 or changes to Government policy.
The Sixth Carbon Budget & Welsh Emissions Targets Summary of Responses to Call for Evidence Summary
Jul 2020
Publication
In late 2019 the Committee launched a Call for Evidence to inform its advice to the UK Government on the Sixth Carbon Budget due to be published in December 2020. In addition the Committee sought input on Wales’ third carbon budget and interim emissions targets. These summary documents – one for the Sixth Carbon Budget and a second covering Wales’ carbon budget and emissions targets – provide an overview of the 170+ responses received along with the original submissions which are also published below.<br/>As background in 2019 the UK Government and Parliament adopted the Committee on Climate Change’s (CCC) recommendation to reduce UK emissions of greenhouse gases (GHGs) to Net Zero by 2050 (at least a 100% reduction in emissions compared to 1990 levels). The Climate Change Act 2008 requires the Committee to provide advice to the Government about the appropriate level for each carbon budget (sequential five-year caps on GHGs) on the path to the long-term target. To date in line with advice from the Committee five carbon budgets have been legislated covering the period to 2032. The Sixth Carbon Budget covers the period from 2033-37.
The Fourth Carbon Budget Review – Part 2 The Cost-effective Path to the 2050 Target
Nov 2013
Publication
This is the second document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The first part of the review is available here: The Fourth Carbon Budget Review – part 1: assessment of climate risk and the international response (November 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 2 considers the impacts of meeting the 2023-2027 budget. The review concludes that the impacts are small and manageable and identifies broader benefits associated with meeting the fourth carbon budget including: improved energy security improved air quality and reduced noise pollution.
Reducing Emissions in Scotland – 2017 Progress Report
Sep 2017
Publication
The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Scotland 2019 Progress Report
Dec 2019
Publication
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions.<br/>Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020. Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland. The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.<br/>Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Reducing Emissions in Northern Ireland
Feb 2019
Publication
In this report the Committee sets out how Northern Ireland can reduce its greenhouse gas emissions between now and 2030 in order to meet UK-wide climate change targets.
The report’s key findings are:
The report’s key findings are:
- Existing policies are not enough to deliver this reduction
- There are excellent opportunities to close this gap and go beyond 35%
- Meeting the cost-effective path to decarbonisation in Northern Ireland will require action across all sectors of the economy and a more joined-up approach
Propulsion of a Hydrogen-fuelled LH2 Tanker Ship
Mar 2022
Publication
This study aims to present a philosophical and quantitative perspective of a propulsion system for a large-scale hydrogen-fuelled liquid-hydrogen (LH2) tanker ship. Established methods are used to evaluate the design and performance of an LH2-carrier propulsion system for JAMILA a ship designed with four cylindrical LH2 tanks bearing a total capacity of ~280000 m3 along with cargo and using the boil-off as propulsion and power fuel. Additionally the ship propulsion system is evaluated based on the ship resistance requirements and a hydrogen-fuelled combined-cycle gas turbine is modelled to achieve the dual objectives of high efficiency and zero-carbon footprint. The required inputs primarily involve the off-design and degraded performance of the gas-turbine topping cycle and the proposed power plant operates with a total output power of 50 M.W. The results reveal that the output power allows ship operation at a great speed even with a degraded engine and adverse ambient conditions.
The Compatibility of Onshore Petroleum with Meeting the UK’s Carbon Budgets
Jul 2016
Publication
The Committee’s report ‘The compatibility of UK onshore petroleum with meeting the UK’s carbon budgets’ is the result of a new duty under the Infrastructure Act 2015. This duty requires the CCC to advise the Secretary of State for Energy and Climate Change about the implications of exploitation of onshore petroleum including shale gas for meeting UK carbon budgets.<br/>The CCC’s report finds that the implications of UK shale gas exploitation for greenhouse gas emissions are subject to considerable uncertainty – from the size of any future industry to the potential emissions footprint of shale gas production. It also finds that exploitation of shale gas on a significant scale is not compatible with UK carbon budgets or the 2050 commitment to reduce emissions by at least 80% unless three tests are satisfied.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A Modelling Study for the Integration of a PEMFC Micro-CHP in Domestic Building Services Design
May 2018
Publication
Fuel cell based micro-combined heat and power (CHP) units used for domestic applications can provide significant cost and environmental benefits for end users and contribute to the UK’s 2050 emissions target by reducing primary energy consumption in dwellings. Lately there has been increased interest in the development of systematic methods for the design of such systems and their smoother integration with domestic building services. Several models in the literature whether they use a simulation or an optimisation approach ignore the dwelling side of the system and optimise the efficiency or delivered power of the unit. However the design of the building services is linked to the choice of heating plant and its characteristics. Adding the dwelling’s energy demand and temperature constraints in a model can produce more general results that can optimise the whole system not only the micro-CHP unit. The fuel cell has various heat streams that can be harvested to satisfy heat demand in a dwelling and the design can vary depending on the proportion of heat needed from each heat stream to serve the energy demand. A mixed integer non-linear programming model (MINLP) that can handle multiple heat sources and demands is presented in this paper. The methodology utilises a process systems engineering approach. The model can provide a design that integrates the temperature and water flow constraints of a dwelling’s heating system with the heat streams within the fuel cell processes while optimising total CO2 emissions. The model is demonstrated through different case studies that attempt to capture the variability of the housing stock. The predicted CO2 emissions reduction compared to a conventionally designed building vary from 27% to 30% and the optimum capacity of the fuel cell ranges between 1.9 kW and 3.6 kW. This research represents a significant step towards an integrated fuel cell micro-CHP and dwelling design.
Living Carbon Free – Exploring What a Net-zero Target Means for Households
Jun 2019
Publication
The Energy Systems Catapult (ESC) explored the role of households in a net-zero emissions society to accompany the CCC’s Net Zero report looking at opportunities and challenges for households to reduce emissions from today’s levels and to support the stretch from an 80% emissions reduction to a net-zero greenhouse gas target. As well as describing a net-zero emissions world for households of different types the ESC looked at average household emissions under different decarbonisation scenarios and the options households can take to contribute to the decarbonisation effort.
This supported the Net Zero Technical report.
This supported the Net Zero Technical report.
Power Sector Scenarios for the Fifth Carbon Budget
Oct 2015
Publication
This report sets out scenarios for the UK power sector in 2030 as an input to the Committee’s advice on the fifth carbon budget.<br/>These scenarios are not intended to set out a prescriptive path. Instead they provide a tool for the Committee to verify that its advice can be achieved with manageable impacts in order to meet the criteria set out in the Climate Change Act including competitiveness affordability and energy security.
Future Regulation of the Gas Grid
Jun 2016
Publication
The CCC has established a variety of viable scenarios in which UK decarbonisation targets can be met. Each has consequences for the way in which the UK’s gas network infrastructure is utilised. This report considers the implications of decarbonisation for the future regulation of the gas grid.<br/>The CCC’s 5th Carbon Budget envisaged different scenarios that would enable the UK to meet its emissions targets for 2050. These scenarios represent holistic analyses based on internally consistent combinations of different technologies which could deliver carbon reductions across different sectors of the economy.<br/>The CCC’s scenarios incorporate projections of the demand for natural gas to 2050. The scenarios imply that the volume of throughput on the gas networks1 and the nature and location of network usage is likely to change significantly to meet emissions targets. They are also characterised by significant uncertainty.<br/>Under some decarbonisation scenarios gas networks could be re-purposed to supply hydrogen instead of natural gas meaning there would be ongoing need for network infrastructure.<br/>In other scenarios gas demand in buildings is largely replaced by electric alternatives meaning portions of the low pressure gas distribution networks could be decommissioned.<br/>Patchwork scenarios are also possible in which there is a mixture of these outcomes across the country.<br/>In this project the CCC wished to assess the potential implications for gas networks under these different demand scenarios; and evaluate the associated challenges for Government and regulatory policy. The challenge for BEIS and Ofgem is how to regulate in a way that keeps options open while uncertainty persists about the best solution for the UK; and at the same time how best to make policy and regulatory decisions which would serve to reduce this uncertainty. Both Government and Ofgem have policy and regulatory levers that they can use – and we identify and evaluate such levers in this report.
The Fourth Carbon Budget Review – Part 1 Assessment of Climate Risk and the International Response
Nov 2013
Publication
This is the first document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The second part of the review is available here: The Fourth Carbon Budget Review – part 2: the cost effective path to the 2050 target (December 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 1 focuses on developments in three categories of circumstance on which the budget was set: climate science international circumstances and European Union pathways. The report also looks at findings by the Intergovernmental Panel on Climate Change and assesses the implications for carbon budgets.
Quantifying Greenhouse Gas Emissions
Apr 2017
Publication
In this report Quantifying Greenhouse Gas Emissions the Committee on Climate Change assesses how the UK’s greenhouse gas emissions are quantified where uncertainties lie and the implications for setting carbon budgets and measuring progress against climate change targets. The report finds that:
- The methodology for constructing the UK’s greenhouse gas inventory is rigorous but the process for identifying improvements could be strengthened.
- There is high confidence over large parts of the inventory. A small number of sectors contribute most to uncertainty and research efforts should be directed at improving these estimates.
- UK greenhouse gas emissions for 2014 were within ±3% of the estimated level with 95% confidence which is a low level of uncertainty by international standards.
- Methodology revisions in recent years have tended to increase estimated emissions but these changes have been within uncertainty margins.
- Statistical uncertainty in the current greenhouse gas inventory is low but could rise in future.
- Uncertainty also arises from sources of emissions not currently included in the inventory and from potential changes to IPCC guidelines.
- Independent external validation of greenhouse gas emissions is important and new monitoring techniques should be encouraged.
- Government should continue to monitor consumption-based greenhouse gas estimates and support continued research to improve methodology and reduce uncertainty in these estimates.
UK Business Opportunities of Moving to a Low-carbon Economy
Mar 2017
Publication
The following report accompanies the Committee on Climate Change’s 2017 report on energy prices and bills. It was written by Ricardo Energy and Environment.
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
Meeting Carbon Budgets – 2014 Progress Report to Parliament
Jul 2014
Publication
This is our sixth statutory report to Parliament on progress towards meeting carbon budgets. In it we consider the latest data on emissions and their drivers. This year the report also includes a full assessment of how the first carbon budget (2008-2012) was met drawing out policy lessons and setting out what is required for the future to stay on track for the legislated carbon budgets and the 2050 target. The report includes assessment at the level of the economy the non-traded and traded sectors the key emitting sectors and the devolved administrations. Whilst the first carbon budget has been met and progress made on development and implementation of some policies the main conclusion is that strengthening of policies will be needed to meet future budgets.
Progressing the Gas Goes Green Roadmap to Net Zero Webinar
Dec 2021
Publication
The Gas Goes Green Programme developed by the gas networks and the Energy Networks Association (ENA) describes a viable pathway to the injection of hydrogen and biomethane as a practical step towards the decarbonisation of the UK gas sector and will play a key role in the UK’s Net Zero energy strategy. It therefore follows that technical and management teams in the supply chain and related industries will need a sound understanding of the issues surrounding this deployment. This video shares the industry’s progress towards implementing the Gas Goes Green programme. Presenters including Oliver Lancaster CEO IGEM Dr Thomas Koller Programme Lead Gas Goes Green at the Energy Network Association (ENA) and Ian McCluskey CEng FIMechE FIGEM Head of Technical and Policy IGEM share their views on what has already been achieved and explain what they feel still needs to be done to develop the decarbonised gas network of tomorrow.
Reducing UK Emissions Progress Report to Parliament
Jun 2020
Publication
This is the Committee’s 2020 report to Parliament assessing progress in reducing UK emissions over the past year. This year the report includes new advice to the UK Government on securing a green and resilient recovery following the COVID-19 pandemic. The Committee’s new analysis expands on its May 2020 advice to the UK Prime Minister in which it set out the principles for building a resilient recovery. In its new report the Committee has assessed a wide set of measures and gathered the latest evidence on the role of climate policies in the economic recovery. Its report highlights five clear investment priorities in the months ahead:
- Low-carbon retrofits and buildings that are fit for the future
- Tree planting peatland restoration and green infrastructure
- Energy networks must be strengthened
- Infrastructure to make it easy for people to walk cycle and work remotely
- Moving towards a circular economy.
- Reskilling and retraining programmes
- Leading a move towards positive behaviours
- Targeted science and innovation funding
Sectoral Scenarios for the Fifth Carbon Budget
Nov 2015
Publication
This report forms part of the Committee’s advice on the level of the fifth carbon budget.<br/>The report describes the scenarios used by the Committee to inform its judgements over the cost-effective path to meeting the UK’s greenhouse reduction targets in the period 2028-2032.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
Reducing Emissions in Scotland – 2016 Progress Report
Sep 2016
Publication
This is the Committee’s fifth report on Scotland’s progress towards meeting emission reduction targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.<br/>The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Hydrogen in Aluminium-Coated Steels Exposed to Synthetic Seawater
Jul 2020
Publication
Thermally sprayed aluminium (TSA) coatings provide protection to offshore steel structures without the use of external cathodic protection (CP) systems. These coatings provide sacrificial protection in the same way as a galvanic anode and thus hydrogen embrittlement (HE) becomes a major concern with the use of high strength steels. The effect of TSA on the HE of steel seems to remain largely unknown. Further the location of hydrogen in TSA-coated steel has not been explored. To address the above knowledge gap API 5L X80 and AISI 4137 steel coupons with and without TSA were prepared and the amount of hydrogen present in these steels when cathodically polarised to −1.1 V (Ag/AgCl) for 30 days in synthetic seawater was determined. One set of TSA-coated specimens was left at open circuit potential (OCP). The study indicates that the amount of hydrogen present in TSA-coated steel is ~100 times more than the amount found in uncoated steel and that the hydrogen seems to be largely localised in the TSA layer.
Towards Hydrogen Safety Education and Training
Sep 2005
Publication
The onset and further development of the hydrogen economy are known to be constrained by safety barriers as well as by the level of public acceptance of new applications. Educational and training programmes in hydrogen safety which are currently absent in Europe are considered to be a key instrument in lifting these limitations and to ensure the safe introduction of hydrogen as an energy carrier. Therefore the European Network of Excellence ‘Safety of Hydrogen as an Energy Carrier’ (NoE HySafe) embarked on the establishment of the e-Academy of Hydrogen Safety. This work is led by the University of Ulster and carried out in cooperation with international partners from five other universities (Universidad Politecnica de Madrid Spain; University of Pisa Italy; Warsaw University of Technology Poland; Instituto Superior Technico Portugal; University of Calgary Canada) two research institutions (Forschungszentrum Karlsruhe and Forschungszentrum Juelich Germany) and one enterprise (GexCon Norway). The development of an International Curriculum on Hydrogen Safety Engineering aided by world-class experts from within and outside NoE HySafe is of central importance to the establishment of the e-Academy of Hydrogen Safety. Despite its key role in identifying the knowledge framework of the subject matter and its role in aiding educators with the development of teaching programmes on hydrogen safety no such curriculum appears to have been developed previously. The current structure of the International Curriculum on Hydrogen Safety Engineering and the motivation behind it are described in this paper. Future steps in the development of a system of hydrogen safety education and training in Europe are briefly described.
The Techno-economics Potential of Hydrogen Interconnectors for Electrical Energy Transmission and Storage
Dec 2021
Publication
This research introduces a ‘Hydrogen Interconnector System’ (HIS) as a novel method 7 for transporting electrical energy over long distances. The system takes electricity from 8 stranded renewable energy assets converts it to hydrogen in an electrolyser plant transports 9 hydrogen to the demand centre via pipeline where it is reconverted to electricity in either a 10 gas turbine or fuel cell plant. This paper evaluates the competitiveness of the technology with 11 High Voltage Direct Current (HVDC) systems calculating the following techno-economic 12 indicators; Levelised Cost Of Electricity (LCOE) and Levelised Cost Of Storage (LCOS). The 13 results suggest that the LCOE of the HIS is competitive with HVDC for construction in 2050 14 with distance beyond 350km in case of all scenarios for a 1GW system. The LCOS is lower 15 than an HVDC system using large scale hydrogen storage in 6 out of 12 scenarios analysed 16 including for construction from 2025. The HIS was also applied to three case studies with 17 the results showing that the system outperforms HVDC from LCOS perspectives in all cases 18 and has 15-20% lower investment costs in 2 studies analysed.
Pathways to Net-Zero: Decarbonising the Gas Networks in Great Britain
Oct 2019
Publication
Natural gas plays a central role in the UK energy system today but it is also a significant source of greenhouse gas (GHG) emissions. The UK committed in 2008 to reduce GHG emissions by at least 80% compared to 1990 levels by 2050. In June 2019 a more ambitious target was adopted into law and the UK became the first major economy to commit to “net-zero” emissions by 2050. In this context the Energy Networks Association (ENA) commissioned Navigant to explore the role that the gas sector can play in the decarbonisation of the Great Britain (GB) energy system. In this report we demonstrate that low carbon and renewable gases can make a fundamental contribution to the decarbonisation pathway between now and 2050.
Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N Electrocatalyst
Jun 2021
Publication
Ni-based catalysts are attractive alternatives to noble metal electrocatalysts for the hydrogen evolution reaction (HER). Herein we present a dispersion-corrected density functional theory (DFT-D3) insight into HER activity on the (111) (110) (001) and (100) surfaces of metallic nickel nitride (Ni3N). A combination of water and hydrogen adsorption was used to model the electrode interactions within the water splitting cell. Surface energies were used to characterise the stabilities of the Ni3N surfaces along with adsorption energies to determine preferable sites for adsorbate interactions. The surface stability order was found to be (111) < (100) < (001) < (110) with calculated surface energies of 2.10 2.27 2.37 and 2.38 Jm−2 respectively. Water adsorption was found to be exothermic at all surfaces and most favourable on the (111) surface with Eads = −0.79 eV followed closely by the (100) (110) and (001) surfaces at −0.66 −0.65 and −0.56 eV respectively. The water splitting reaction was investigated at each surface to determine the rate determining Volmer step and the activation energies (Ea) for alkaline HER which has thus far not been studied in detail for Ni3N. The Ea values for water splitting on the Ni3N surfaces were predicted in the order (001) < (111) < (110) < (100) which were 0.17 0.73 1.11 and 1.60 eV respectively overall showing the (001) surface to be most active for the Volmer step of water dissociation. Active hydrogen adsorption sites are also presented for acidic HER evaluated through the ΔGH descriptor. The (110) surface was shown to have an extremely active Ni–N bridging site with ΔGH = −0.05 eV.
PRD Hydrogen Release and Dispersion, a Comparison of CFD Results Obtained from Using Ideal and Real Gas Law Properties.
Sep 2005
Publication
In this paper CFD techniques were applied to the simulations of hydrogen release from a 400-bar tank to ambient through a Pressure Relieve Device (PRD) 6 mm (¼”) opening. The numerical simulations using the TOPAZ software developed by Sandia National Laboratory addressed the changes of pressure density and flow rate variations at the leak orifice during release while the PHOENICS software package predicted extents of various hydrogen concentration envelopes as well as the velocities of gas mixture for the dispersion in the domain. The Abel-Noble equation of state (AN-EOS) was incorporated into the CFD model implemented through the TOPAZ and PHOENICS software to accurately predict the real gas properties for hydrogen release and dispersion under high pressures. The numerical results were compared with those obtained from using the ideal gas law and it was found that the ideal gas law overestimates the hydrogen mass release rates by up to 35% during the first 25 seconds of release. Based on the findings the authors recommend that a real gas equation of state be used for CFD predictions of high-pressure PRD releases.
High-stability, High-capacity Oxygen Carriers: Iron Oxide-perovskite Composite Materials for Hydrogen Production by Chemical Looping
Jun 2015
Publication
Iron oxide has been widely used as an oxygen carrier material (OCM) for hydrogen production by chemical looping due to its favourable thermodynamic properties. In spite of this iron oxide loses much of its activity after redox cycling mainly due to sintering and agglomeration. Perovskites such as La0.7Sr0.3FeO3-d (LSF731) have been suggested as potential candidate OCMs for hydrogen production due to their excellent oxygen transport properties and stability under cycling. However hydrogen production per cycle for a similar carrier weight is lower than with iron oxide. This work proposes the use of composite OCMs made of iron oxide clusters embedded in an LSF731 matrix. The perovskite matrix facilitates oxygen transport to the iron oxide clusters while preventing agglomeration. Two preparation methods mechanical mixing and a modified Pechini method were used to obtain composite materials with different iron oxide weight fractions 11 and 30 wt.%. The reactivity of these OCMs was studied in a thermogravimetric analyser. Hydrogen production and carrier stability were investigated in a microreactor over 25 redox cycles while periodically feeding carbon monoxide and water in order to produce carbon dioxide and hydrogen in separate streams. Hydrogen production was stable over 25 cycles for LSF731 and the composite OCM with 30 wt.% iron oxide produced by the modified Pechini method but iron oxide particles alone underwent a decrease in the hydrogen production with cycling. The hydrogen production during the 25th cycle was eight times higher for the composite material than for iron oxide alone and four times higher than for LSF731. The hydrogen production was therefore also higher than that expected from a simple combination of the iron oxide and LSF731 alone indicating a synergetic effect whereby the LSF731 may have a higher effective oxygen capacity when in the form of the composite material.
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
Effect of Hydrogen-diesel Fuel Co-combustion on Exhaust Emissions with Verification Using an Inecylinder Gas Sampling Technique
Aug 2014
Publication
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition a novel inecylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two inecylinder locations and at various instants during the combustion process. The results showed a decrease in the particulates CO and THC emissions and a slight increase in CO2 emissions with the addition of hydrogen with fixed diesel fuel injection periods. NOx emissions increased steeply with hydrogen addition but only when the combined diesel and hydrogen co-combustion temperatures exceeded the threshold temperature for NOx formation. The inecylinder gas sampling results showed higher NOx levels between adjacent spray cones in comparison to sampling within an individual spray cone.
Net Zero – Technical Report
May 2019
Publication
This technical report accompanies the ‘Net Zero’ advice report which is the Committee’s recommendation to the UK Government and Devolved Administrations on the date for a net-zero emissions target in the UK and revised long-term targets in Scotland and Wales.<br/>The conclusions in our advice report are supported by detailed analysis that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals. The purpose of this technical report is to lay out that analysis.
Prediction of Third Party Damage Failure Frequency for Pipelines Transporting Mixtures of Natural Gas and Hydrogen
Sep 2009
Publication
As Europe is gradually moving towards a hydrogen based society it has been acknowledged that adding certain amount of hydrogen as a clean energy carrier to the existing natural gas pipeline will help reduce the CO2 emissions which contribute to the greenhouse effect. On the other hand hydrogen has been demonstrated to be able to change the behaviour of the pipeline steel such as lower toughness and faster crack growth due to hydrogen embrittlement. Therefore it is necessary that the risks associated with the failure of the pipeline carrying mixtures of natural gas and hydrogen be assessed.<br/>The study reported in this paper is part of European NATURALHY project whose aim is to investigate the possibility of using the existing natural gas transmission pipelines to convey natural gas/hydrogen mixtures. According to the EGIG database the most common cause of failure for the existing natural gas pipelines is third party damage which mainly refers to a gouge a dent/gouge combination of known geometry. Among third party damage failures 90% are the result of immediate failure i.e. leakage or rupture of the pipeline and only 10% of them are the result of delayed failure. While its not expected that hydrogen will impact the immediate failure it could increase the vulnerability of the pipe to delayed failure through the initiation or activation of crack like defects.<br/>This paper will present a methodology to predict the probability of increased failures and describe a software tool that has been developed to perform the calculations.
Assessment of the Effects of Inert Gas and Hydrocarbon Fuel Dilution on Hydrogen Flames
Sep 2009
Publication
To advance hydrogen into the energy market it is necessary to consider risk assessment for scenarios that are complicated by accidental hydrogen release mixing with other combustible hydrocarbon fuels. The paper is aimed at examining the effect of mixing the hydrocarbon and inert gas into the hydrogen flame on the kinetic mechanisms the laminar burning velocity and the flame stability. The influences of hydrogen concentration on the flame burning velocity were determined for the hydrogen/propane (H2-C3H8) hydrogen/ethane (H2-C2H6) hydrogen/methane (H2-CH4) and hydrogen/carbon dioxide (H2-CO2) mixtures. Experimental tests were carried out to determine the lift-off blow-out and blowoff stability limits of H2 H2-C3H8 H2-C2H6 H2-CH4 and H2-CO2 jet flames in a 2 mm diameter burner. The kinetic mechanisms of hydrogen interacting with C3 C2 and C1 fuels is analysed using the kinetic mechanisms for hydrocarbon combustion.
Hydrogen Production from Biomass and Organic Waste Using Dark Fermentation: An Analysis of Literature Data on the Effect of Operating Parameters on Process Performance
Jan 2022
Publication
In the context of hydrogen production from biomass or organic waste with dark fermentation this study analysed 55 studies (339 experiments) in the literature looking for the effect of operating parameters on the process performance of dark fermentation. The effect of substrate concentration pH temperature and residence time on hydrogen yield productivity and content in the biogas was analysed. In addition a linear regression model was developed to also account for the effect of nature and pretreatment of the substrate inhibition of methanogenesis and continuous or batch operating mode. The analysis showed that the hydrogen yield was mainly affected by pH and residence time with the highest yields obtained for low pH and short residence time. High hydrogen productivity was favoured by high feed concentration short residence time and low pH. More modest was the effect on the hydrogen content. The mean values of hydrogen yield productivity and content were respectively 6.49% COD COD−1 135 mg L−1 d −1 51% v/v while 10% of the considered experiments obtained yield productivity and content of or higher than 15.55% COD COD−1 305.16 mg L−1 d −1 64% v/v. Overall this study provides insight into how to select the optimum operating conditions to obtain the desired hydrogen production.
Numerical Study of Hydrogen Explosions in a Vehicle Refill Environment
Sep 2009
Publication
Numerical simulations have been carried out for pressurised hydrogen release through a nozzle in a simulated vehicle refilling environment of an experiment carried out in a joint industry project by Shell bp Exxon and the UK HSE Shirvill[1]. The computational domain mimics the experimental set up for a vertical downwards release in a vehicle refuelling environment. Due to lack of detailed data on pressure decay in the storage cylinder following the release a simple analytical model has also been developed to provide the transient pressure conditions at nozzle exit. The modelling is carried out using the traditional Computational fluid dynamics (CFD) approach based on Reynolds averaged Navier Stokes equations. The Pseudo diameter approach is used to bypass the shock-laden flow structure in the immediate vicinity of the nozzle. For combustion the Turbulent Flame Closure (TFC) model is used while the shear stress transport (SST) model is used for turbulence
Numerical Study of Spontaneous Ignition in Pressurized Hydrogen Release Through a Length of Tube with Local Contraction
Sep 2011
Publication
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5th-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. It is found that a local contraction can significantly facilitate the occurrence of spontaneous ignition by producing elevated flammable mixture and enhancing turbulent mixing from shock formation reflection and interaction. The first ignition kernel is observed upstream the contraction. It then quickly propagates along the contact interface and transits to a partially premixed flame due to the enhanced turbulent mixing. The partially premixed flames are highly distorted and overlapped with each other. Flame thickening is observed which is due to the merge of thin flames. The numerical predictions suggested that sustained flames could develop for release pressure as low as 25 bar. For the release pressure of 18 bar spontaneous ignition was predicted but the flame was soon quenched. To some extent this finding is consistent with Dryer et al.'s experimental observation in that the minimum release pressure required to induce a spontaneous ignition for the release through a tube with internal geometries is only 20.4 bar.
Numerical Study on Spontaneous Ignition of Pressurized Hydrogen Release Through a Length of Tube
Sep 2009
Publication
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.<br/>The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.<br/>Parametric studies were also conducted to investigate the effect of rupture time release pressure tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value even though ignition could take place inside the tube the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched.
The Fifth Carbon Budget: The Next Step Towards a Low-carbon Economy
Nov 2015
Publication
This report sets out our advice on the fifth carbon budget covering the period 2028-2032 as required under Section 4 of the Climate Change Act; the Government will propose draft legislation for the fifth budget in summer 2016.
An Independent Assessment of the UK’s Clean Growth Strategy: From Ambition to Action
Nov 2018
Publication
This report provides the Committee on Climate Change’s response to the UK Government’s Clean Growth Strategy.
The report finds that:
The report finds that:
- The Government has made a strong commitment to achieving the UK’s climate change targets.
- Policies and proposals set out in the Clean Growth Strategy will need to be firmed up.
- Gaps to meeting the fourth and fifth carbon budgets remain. These gaps must be closed.
- Risks of under-delivery must be addressed and carbon budgets met on time.
Hydrogen in a Low-carbon Economy
Nov 2018
Publication
This report by the Committee on Climate Change (CCC) assesses the potential role of hydrogen in the UK’s low-carbon economy.
It finds that hydrogen:
It finds that hydrogen:
- is a credible option to help decarbonise the UK energy system but its role depends on early Government commitment and improved support to develop the UK’s industrial capability
- can make an important contribution to long-term decarbonisation if combined with greater energy efficiency cheap low-carbon power generation electrified transport and new ‘hybrid’ heat pump systems which have been successfully trialled in the UK
- could replace natural gas in parts of the energy system where electrification is not feasible or is prohibitively expensive for example in providing heat on colder winter days industrial heat processes and back-up power generation
- is not a ‘silver bullet’ solution; the report explores some commonly-held misconceptions highlighting the need for careful planning
- Government must commit to developing a low-carbon heat strategy within the next three years
- Significant volumes of low-carbon hydrogen should be produced in a carbon capture and storage (CCS) ‘cluster’ by 2030 to help the industry grow
- Government must support the early demonstration of the everyday uses of hydrogen in order to establish the practicality of switching from natural gas to hydrogen
- There is low awareness amongst the general public of reasons to move away from natural gas heating to low-carbon alternatives
- A strategy should be developed for low-carbon heavy goods vehicles (HGVs) which encourages a move away from fossil fuels and biofuels to zero-emission solutions by 2050
Public Acceptability of the Use of Hydrogen for Heating and Cooking in the Home: Results from Qualitative and Quantitative Research in UK<br/>Executive Summary
Nov 2018
Publication
This report for the CCC by Madano and Element Energy assesses the public acceptability of two alternative low-carbon technologies for heating the home: hydrogen heating and heat pumps.
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
- carbon emissions reduction is viewed as an important issue but there is limited awareness of the need to decarbonise household heating or the implications of switching over to low-carbon heating technologies
- acceptability of both heating technologies is limited by a lack of perceived tangible consumer benefit which has the potential to drive scepticism towards the switch over more generally
- heating technology preferences are not fixed at this stage although heat pumps appear to be the favoured option in this research studythree overarching factors were identified as influencing preferences for heating technologies.
- perceptions of the negative installation burden
- familiarity with the lived experience of using the technologies for heating
- perceptions of how well the technologies would meet modern heating needs both hydrogen heating and heat pumps face significant challenges to secure public acceptability
Meeting Carbon Budgets – Ensuring a Low-carbon Recovery
Jun 2010
Publication
As part of its statutory role the Committee provides annual reports to Parliament on the progress that Government is making in meeting carbon budgets and in reducing emissions of greenhouse gases.<br/>Meeting Carbon Budgets – ensuring a low-carbon recovery is the Committee’s 2nd progress report. Within this report we assess the latest emissions data and determine whether emissions reductions have occurred as a result of the recession or as a result of other external factors. We assess Government’s progress towards achieving emissions reductions in 4 key areas of: Power Buildings and Industry Transport and Agriculture.
No more items...