France
CFD Simulation of a Hybrid Solar/Electric Reactor for Hydrogen and Carbon Production from Methane Cracking
Jan 2023
Publication
Methane pyrolysis is a transitional technology for environmentally benign hydrogen production with zero greenhouse gas emissions especially when concentrated solar energy is the heating source for supplying high-temperature process heat. This study is focused on solar methane pyrolysis as an attractive decarbonization process to produce both hydrogen gas and solid carbon with zero CO2 emissions. Direct normal irradiance (DNI) variations arising from inherent solar resource variability (clouds fog day-night cycle etc.) generally hinder continuity and stability of the solar process. Therefore a novel hybrid solar/electric reactor was designed at PROMES-CNRS laboratory to cope with DNI variations. Such a design features electric heating when the DNI is low and can potentially boost the thermochemical performance of the process when coupled solar/electric heating is applied thanks to an enlarged heated zone. Computational fluid dynamics (CFD) simulations through ANSYS Fluent were performed to investigate the performance of this reactor under different operating conditions. More particularly the influence of various process parameters including temperature gas residence time methane dilution and hybridization on the methane conversion was assessed. The model combined fluid flow hydrodynamics and heat and mass transfer coupled with gas-phase pyrolysis reactions. Increasing the heating temperature was found to boost methane conversion (91% at 1473 K against ~100% at 1573 K for a coupled solar-electric heating). The increase of inlet gas flow rate Q0 lowered methane conversion since it affected the gas space-time (91% at Q0 = 0.42 NL/min vs. 67% at Q0 = 0.84 NL/min). A coupled heating also resulted in significantly better performance than with only electric heating because it broadened the hot zone (91% vs. 75% methane conversion for coupled heating and only electric heating respectively). The model was further validated with experimental results of methane pyrolysis. This study demonstrates the potential of the hybrid reactor for solar-driven methane pyrolysis as a promising route toward clean hydrogen and carbon production and further highlights the role of key parameters to improve the process performance.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Global Warming Potential and Societal-governmental Impacts of the Hydrogen Ecosystem in the Transportation Sector
Apr 2024
Publication
The environmental and societal challenges of our contemporary society are leading us to reconsider our approaches to vehicle design. The aim of this article is to provide the reader with the essential knowledge needed to responsibly design a vehicle equipped with a hydrogen fuel cell system. Two pivotal aspects of hydrogen-electric powertrain eco-design are examined. First the global warming potential is assessed for both PEMFC systems and Type IV hydrogen tanks accounting for material extraction production and end-of-life considerations. The usage phase was omitted from the study in order to facilitate data adaptation for each type of use. PEMFC exhibits a global warming potential of about 29.2 kgCO2eq/kW while the tank records 12.4 kgCO2eq/kWh with transportation factors considered. Secondly the societal and governmental impacts are scrutinized with the carbon-intensive hydrogen tank emerging as having the most significant societal and governmental risks. In fact on a scale of 1–5 with 5 representing the highest level of risk the PEMFC system has a societal impact and governance risk of 2.98. The Type IV tank has a societal impact and governance risk of 3.31. Although uncertainties persist regarding the results presented in this study the values obtained provide an overview of the societal and governmental impacts of the hydrogen ecosystem in the transportation sector. The next step will be to compare for the same usage which solution between hydrogen-electric and 100% battery is more respectful of humans and the environment.
Hydrogen-assisted Fatigue Crack Growth: Pre-charging vs In-situ Testing in Gaseous Environments
Mar 2023
Publication
We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel a primary candidate for the future hydrogen transport infrastructure allowing us to additionally gain insight into the differences in behavior between the base steel and the coarse grain heat affected zone. The results reveal significant differences between the two testing approaches and the two weld regions. The differences are particularly remarkable for the comparison of testing methodologies with fatigue crack growth rates being more than one order of magnitude higher over relevant loading regimes when the samples are tested in a hydrogen-containing environment relative to the pre-charged samples. Aided by finite element modelling and microscopy analysis these differences are discussed and rationalized. Independent of the testing approach the heat affected zone showed a higher susceptibility to hydrogen embrittlement. Similar microstructural behavior is observed for both testing approaches with the base metal exhibiting martensite lath decohesion while the heat affected zone experienced both martensite lath decohesion and intergranular fracture.
Proton Exchange Membrane Electrolyzer Emulator for Power Electronics Testing Applications
Mar 2021
Publication
This article aims to develop a proton exchange membrane (PEM) electrolyzer emulator. This emulator is realized through an equivalent electrical scheme. It allows taking into consideration the dynamic operation of PEM electrolyzers which is generally neglected in the literature. PEM electrolyzer dynamics are reproduced by the use of supercapacitors due to the high value of the equivalent double-layer capacitance value. Steady-state and dynamics operations are investigated in this work. The design criteria are addressed. The PEM electrolyzer emulator is validated by using a 400-W commercial PEM electrolyzer. This emulator is conceived to test new DC-DC converters to supply the PEM ELs and their control as well avoiding the risk to damage a real electrolyzer for experiment purposes. The proposed approach is valid both for a single cell and for the whole stack emulation.
Combustion Regimes of Hydrogen-air-steam Mixtures
Sep 2021
Publication
In the case of a severe nuclear power plant accident hydrogen gas formation may occur from the core degradation and cooling water evaporation and subsequent oxidation of zircaloy. These phenomena increase the risk of hazardous combustion events in the reactor especially when combined with an ignition source. If not handled carefully these types of accidents can cause severe damage to the reactor building with potential radioactive effects on the environment. Although hydrogen-air combustion has been investigated before hydrogen-air-steam mixtures remain unstudied under reactor-like conditions. Thus this study investigated such mixtures’ combustion regimes. A closed tube of 318 liters (7.65m tall and 0.23m inner diameter) measures the flame speed flame propagation and shock wave behaviors for 11-15 %vol hydrogen mixtures combined with 0 20 or 30 %vol steam and air. Thus both the effect of steam and hydrogen content was investigated and compared. The experimental setup combined photomultiplier tubes pressure sensors and shock detectors to give a full view of the different combustion regimes. A number of obstacles changed the in-chamber turbulence during flame propagation to provide further reactor-like environments. This changed turbulence affected the combustion regimes and enhanced the flame speed for some cases. The results showed varying combustion behaviors depending on the water vapor concentration where a higher concentration meant a lower flame speed reduced pressure load and sometimes combustion extinction. At 0 %vol steam dilution the flame speed remained supersonic for all H2 concentrations while at 30 %vol steam dilution the flame speed remained subsonic for all H2 concentrations. Thus with high levels of steam dilution the risk for shock waves leading to potential reactor building destruction decreases."
Numerical Modeling of a Moderate Hydrogen Leakage in a Typical Two-vented Fuel Cell Configuration
Sep 2021
Publication
Numerical results are presented from two direct numerical simulations (DNS) where a moderate hydrogen leakage is modeled in a typical two-vented fuel cell configuration. The study mimics one of the experimental investigations carried out on the 1 m3 enclosure with a leak flow rate of 10.4 Nl.min−1 [1]. The injection dimensionless Richardson number is at the order of unity and thus characterizes a plume flow which becomes turbulent due to gravitational accelerations. Two large exterior regions are added to the computational domain to model correctly the exchange between the in/out flows at both vents and the outer environment. Two meshes are used in this study; a first consisting of 250 million cells while the second has 2 billion cells to ensure the fine DNS resolution at the level of Kolmogorov and Batchelor length scales. The high performance computation (HPC) platform TRUST is employed where the computational domain is distributed up to 5.104 central processing unit (CPU) cores. A detailed description of the flow structure and the hydrogen dispersion is provided where the sharp effect of the cross-flow on the plume is analyzed. Comparisons versus the experimental measurements show a very good agreement where both the bi-layer Linden regime and the maximal concentration in the top homogeneous layer are correctly reproduced by the DNS. This result is extremely important and breaks the limitations shown previously with statistical RANS approaches and LES models. This study can be considered as a good candidate for any further improvements of the theoretical industrial plume models in general and for the estimation of the non-constant entrainment coefficient in particular.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Full-scale Tunnel Experiments for Fuel Cell Hydrogen Vehicles: Jat Fire and Explosions
Sep 2021
Publication
In the framework of the HYTUNNEL-CS European project sponsored by FCH-JU a set of preliminary tests were conducted in a real tunnel in France. These tests are devoted to safety of hydrogen-fueled vehicles having a compressed gas storage and Temperature Pressure Release Device (TPRD). The goal of the study is to develop recommendations for Regulations Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. Two scenarios were investigated (a) jet fire evolution following the activation of TPRD due to conventional fuel car fire and (b) explosion of compressed hydrogen tank. The obtained experimental data are systematically compared to existing engineering correlations. The results will be used for benchmarking studies using CFD codes. The hydrogen pressure range in these preliminary tests has been lowered down to 20MPa in order to verify the capability of various large-scale measurement techniques before scaling up to 70 MPa the subject of the second experimental campaign.
Fuel-scale Tunnel Experiments for Fuel Cell Hydrogen Vehicles: Gas Dispersion
Sep 2021
Publication
In the framework of the HYTUNNEL-CS European project sponsored by FCH-JU a set of preliminary tests were conducted in a real tunnel in France. These tests are devoted to safety of hydrogen-fueled vehicles having a compressed gas storage and Temperature Pressure Release Device (TPRD). The goal of the study is to develop recommendations for Regulations Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. In these preliminary tests the helium gas has been employed instead of hydrogen. Upward and downward gas releases following by TPRD activation has been considered. The experimental data describing local behavior (close to jet or below the chassis) as well as global behavior at the tunnel scale are obtained. These experimental data are systematically compared to existing engineering correlations. The results will be used for benchmarking studies using CFD codes. The hydrogen pressure range in these preliminary tests has been lowered down to 20MPa in order to verify the capability of various large-scale measurement techniques before scaling up to 70MPa the subject of the second campaign.
Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand
Jan 2023
Publication
Non-energy use of natural gas is gaining importance. Gas used for 183 million tons annual ammonia production represents 4% of total global gas supply. 1.5-degree pathways estimate an ammonia demand growth of 3–4-fold until 2050 as new markets in hydrogen transport shipping and power generation emerge. Ammonia production from hydrogen produced via water electrolysis with renewable power (green ammonia) and from natural gas with CO2 storage (blue ammonia) is gaining attention due to the potential role of ammonia in decarbonizing energy value chains and aiding nations in achieving their net-zero targets. This study assesses the technical and economic viability of different routes of ammonia production with an emphasis on a systems level perspective and related process integration. Additional cost reductions may be driven by optimum sizing of renewable power capacity reducing losses in the value chain technology learning and scale-up reducing risk and a lower cost of capital. Developing certification and standards will be necessary to ascertain the extent of greenhouse gas emissions throughout the supply chain as well as improving the enabling conditions including innovative finance and de-risking for facilitating international trade market creation and large-scale project development.
CFD Simulations of the Refueling of Long Horizontal H2 Tanks
Sep 2021
Publication
The understanding of physical phenomena occurring during the refueling of H2 tanks used for hydrogen mobility applications is the key point towards the most optimal refueling protocol. A lot of experimental investigations on tank refueling were performed in the previous years for different types and sizes of tank. Several operating conditions were tested through these experiments. For instance the HyTransfer project gave one of the major outputs on the understanding of the physical phenomena occurring during a tank refueling. From a numerical perspective the availability of accurate numerical tools is another key point. Such tools could be used instead of the experimental set-ups to test various operating conditions or new designs of tanks and injectors. The use of these tools can reduce the cost of the refueling protocol development in the future. However they first need to be validated versus experimental data. This work is dedicated to CFD (Computational Fluid Dynamics) modeling of the hydrogen refueling of a long horizontal 530L type IV tank. As of now the number of available CFD simulations for such a large tank is low as the computational cost is significant which is often considered as a bottleneck for this approach. The simulated operating conditions correspond to one of the experimental campaigns performed in the framework of the HyTransfer project. The 3D CFD model is presented. In a first validation step the CFD results are compared with experimental data. Then a deeper insight into the physics predicted by the CFD is provided. Finally two other methodologies with the aim to reduce the computational cost have been tested.
On the Possibility to Simulate the Operation of a SI Engine using Alternative Gaseous Fuels
Nov 2019
Publication
A thermodynamic combustion model developed in AVL BOOST software was used in order to evaluate the pollutant emissions performance and efficiency parameters of a spark ignition engine Renault K7M-710 fueled with compressed natural gas hydrogen and blends of compressed natural gas and hydrogen (hythane). Multiple research studies have concluded that for the near future hythane could be the most promising alternative fuel because it has the advantages of both its components. In our previous work the model was validated for the performance and efficiency parameters by comparison of simulation results with experimental data acquired when the engine was fueled with gasoline. In this work the model was improved and can predict the values of pollutant emissions when the engine is running with the studied alternative fuels. As the percentage of hydrogen in hythane is increased the power of the engine rises the brake specific fuel consumption carbon dioxide carbon monoxide and total unburned hydrocarbon emissions decrease while nitrogen oxides increase. The values of peak fire pressure maximum pressure derivative and peak fire temperature in cycle are higher leading to an increased probability of knock occurrence. To avoid this phenomenon an optimum correlation between the natural gas-hydrogen blend the air-fuel ratio the spark advance and the engine operating condition needs to be found.
On Board 70 MPA Hydrogen Composite Pressure Vessel Safety Factor
Sep 2021
Publication
The safety factor of a composite structure in relation to its mechanical rupture is an important criterion for the safety of a 70 MPa composite pressure vessel for hydrogen storage particularly for on-board applications (car bus truck train…). After an introduction of Type IV technology the contribution of carbon fibre composite material structure manufacturing process of pressure vessels and environmental effects on the safety factor are commented. Thanks to an experimental-based evaluation on composite material and H2 composite pressure vessel the safety margins are addressed.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
Results of the Pre-normative Research Project PRESLHY for the Safe Use of Liquid Hydrogen
Sep 2021
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large-scale transport and storage of hydrogen with higher densities. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducted pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The central research consisted of a broad experimental program combined with analytical work modelling and simulations belonging to the three key phenomena of the accident chain: release and mixing ignition and combustion. The presented results improve the general understanding of the behavior of LH2 in accidents and provide some design guidelines and engineering tools for safer use of LH2. Recommendations for improvement of current international standards are derived.
Adaptation of Hydrogen Transport Models at the Polycrystal Scale and Application to the U-bend Test
Dec 2018
Publication
Hydrogen transport and trapping equations are implemented in a FE software using User Subroutines and the obtained tool is applied to get the diffusion fields in a metallic sheet submitted to a U-Bend test. Based on a submodelling process mechanical and diffusion fields have been computed at the polycrystal scale from which statistical evaluation of the risk of failure of the sample has been estimated.
Hydrogen Projects Database – Analysis
Jun 2020
Publication
The IEA produced this dataset as part of efforts to track advances in low-carbon hydrogen technology. It covers all projects commissioned worldwide since 2000 to produce hydrogen for energy or climate-change-mitigation purposes. It includes projects which their objective is either to reduce emissions associated with producing hydrogen for existing applications or to use hydrogen as an energy carrier or industrial feedstock in new applications that have the potential to be a low-carbon technology. Projects in planning or construction are also covered.
Link to Download Database from IEA Website
Link to Download Database from IEA Website
The Challenges of Hydrogen Storage on a Large Scale
Sep 2021
Publication
With the growing success of green hydrogen the general trend is for increased hydrogen production and large quantities of storage. Engie’s projects have grown from a few kilos of hydrogen to the quest for large scale production and associated storage – e.g. several tons or tens of tons. Although a positive sign for Engie’s projects it does inevitably result in challenges in new storage methods and in risks management related to such facilities; particularly with hydrogen facilities being increasingly placed in the vicinity of general public sites. For example a leak on hydrogen storage can generate significant thermal and overpressure effects on surrounding people/facilities in the event of ignition. Firewalls can be installed to protect individuals / infrastructure from thermal effects but the adverse result is that this solution can increase the violence of an explosion in case of delayed ignition or confinement. The manner of emergency intervention on a pool fire of hydrogen is also totally different from intervention on compressed gaseous hydrogen. The first part of this presentation will explain different means to store hydrogen in large quantities. The second part will present for each storage the specific risks generated. The third and final part will explain how these risks can be addressed on a technical point of view by safety devices or by other solutions (separation distance passive/active means …).
No more items...