Spain
HyUnder – Hydrogen Underground Storage at Large Scale: Case Study Spain
Aug 2015
Publication
Hydrogen as an energy carrier is understood as a system capable of storing energy for a later use in a controlled manner. Surplus electricity from renewable energy serves for green hydrogen generation via electrolysis. Once produced the hydrogen is stored for later consumption. This paper describes the Spanish Case Study of the HyUnder project which aims to evaluate the potential of underground hydrogen storage for large-scale energy storage along Eu Read More
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for us Read More
Analysis of the Hydrogen Induced Cracking by Means of the Small Punch Test: Effect of the Specimen Geometry and the Hydrogen Pre-Charge Mode
Nov 2018
Publication
This paper presents a simplified procedure to analyse the Hydrogen Induced Cracking (HIC) of structural steels by means of the Small Punch Test (SPT). Two types of notched specimens were used: one with through-thickness lateral notch and another with surface longitudinal notch. The results for conventional specimens were compared with those for hydrogen pre-charged specimens. For this purpose two different methods to introduce hydrogen in the s Read More
Hydrogen Embrittlement Susceptibility of R4 and R5 High-Strength Mooring Steels in Cold and Warm Seawater
Sep 2018
Publication
Hydrogen embrittlement susceptibility ratios calculated from slow strain rate tensile tests have been employed to study the response of three high-strength mooring steels in cold and warm synthetic seawater. The selected nominal testing temperatures have been 3 °C and 23 °C in order to resemble sea sites of offshore platform installation interest such as the North Sea and the Gulf of Mexico respectively. Three scenarios have been studied for each temp Read More
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicle Read More
Effect of the Strain Rate on the Fracture Behaviour of High Pressure Pre-Charged Samples
Dec 2018
Publication
The aim of this work is to study the effect of the displacement rate on the hydrogen embrittlement of two different structural steels grades used in energetic applications. With this purpose samples were pre-charged with gaseous hydrogen at 19.5 MPa and 450 °C for 21 h. Then fracture tests of the pre-charged specimens were performed using different displacement rates. It is showed that the lower is the displacement rate and the largest is the steel stre Read More
Analysis of Samples Cleaning Methods Prior to Hydrogen Content Determination in Steel
May 2020
Publication
There are multiple references to sample cleaning methods prior to hydrogen content determination or hydrogen spectroscopy analysis but there is still no unified criteria; different authors use their own “know-how” to perform this task. The aim of this paper is to solve or at least clarify this issue. In this work the most commonly used sample cleaning methods are compared. Then five different methodologies are applied on certified hydrogen content calibr Read More
Evaluation of Strength and Fracture Toughness of Ferritic High Strength Steels Under Hydrogen Environments
Sep 2017
Publication
The susceptibility of high strength ferritic steels to hydrogen-assisted fracture in hydrogen gas is usually evaluated by mechanical testing in high-pressure hydrogen gas or testing in air after pre-charging the specimens with hydrogen. We have used this second methodology conventionally known as internal hydrogen. Samples were pre-charged in an autoclave under 195 bar of pure hydrogen at 450ºC for 21 hours.Different chromium-molybdenum ste Read More
Hydrogen Embrittlement and Notch Tensile Strength of Pearlitic Steel: A Numerical Approach
Dec 2020
Publication
This paper offers a numerical approach to the problem of hydrogen embrittlement and notch tensile strength of sharply notched specimens of high-strength pearlitic steel supplied in the form of hot rolled bars by using the finite element method in order to determine how the notch depth influences the concentration of hydrogen in the steady-state regime for different loading values. Numerical results show that the point of maximum hydrostatic s Read More
Hydrogen-assisted Cracking Paths in Oriented Pearlitic Microstructures: Resembling Donatello Wooden Sculpture Texture (DWST) & Mantegna’s Dead Christ Perspective (MDCP)
Jun 2020
Publication
Progressive cold drawing in eutectoid steel produces a preferential orientation of pearlitic colonies and ferrite/cementite lamellae thus inducing strength anisotropy in the steel and mixed mode propagation. While in the hot rolled steel (not cold drawn) the pearlitic microstructure is randomly oriented and the crack progresses in hydrogen by breaking the ferrite/cementite lamellae in heavily drawn steels the pearlitic microstructure is fully oriented and t Read More
Perspectives on Cathodes for Protonic Ceramic Fuel Cells
Jun 2021
Publication
Protonic ceramic fuel cells (PCFCs) are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility unnecessity of expensive noble metals for the electrocatalyst and no dilution of the fuel electrode due to water formation. Nevertheless the lower operating tem Read More
Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking
May 2017
Publication
Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC) hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material t Read More
An Autonomous Device for Solar Hydrogen Production from Sea Water
Feb 2022
Publication
Hydrogen production from water electrolysis is one of the most promising approaches for the production of green H2 a fundamental asset for the decarbonization of the energy cycle and industrial processes. Seawater is the most abundant water source on Earth and it should be the feedstock for these new technologies. However commercial electrolyzers still need ultrapure water. The debate over the advantages and disadvantages of direct sea Read More
Hydrogen Embrittlement Susceptibility of Prestressing Steel Wires: The Role of the Cold-drawing Conditions
Jul 2016
Publication
Prestressing steel wires are highly susceptible to hydrogen embrittlement (HE). Residual stress-strain state produced after wire drawing plays an essential role since hydrogen damage at certain places of the material is directly affected by stress and strain fields. Changes in wire drawing conditions modify the stress and strain fields and consequently the HE susceptibility and life in service of these structural components in the presence of a hydrogenatin Read More
Industrial Robots Fuel Cell Based Hybrid Power-Trains: A Comparison between Different Configurations
Jun 2021
Publication
Electric vehicles are becoming more and more popular. One of the most promising possible solutions is one where a hybrid powertrain made up of a FC (Fuel Cell) and a battery is used. This type of vehicle offers great autonomy and high recharging speed which makes them ideal for many industrial applications. In this work three ways to build a hybrid power-train are presented and compared. To illustrate this the case of an industrial robot designed to move l Read More
Comparison Between Carbon Molecular Sieve and Pd-Ag Membranes in H2-CH4 Separation at High Pressure
Aug 2020
Publication
From a permeability and selectivity perspective supported thin-film Pd–Ag membranes are the best candidates for high-purity hydrogen recovery for methane-hydrogen mixtures from the natural gas grid. However the high hydrogen flux also results in induced bulk-to-membrane mass transfer limitations (concentration polarization) especially when working at low hydrogen concentration and high pressure which further reduces the hydrogen perme Read More
Influence of Microstructural Anisotropy on the Hydrogen-assisted Fracture of Notched Samples of Progressively Drawn Pearlitic Steel
Dec 2020
Publication
In this study fracture surfaces of notched specimens of pearlitic steels subjected to constant extension rate tests (CERTs) are analyzed in an environment causing hydrogen assisted fracture. In order to obtain general results both different notched geometries (to generate quite distinct stress triaxiality distributions in the vicinity of the notch tip) and diverse loading rates were used. The fracture surfaces were classified in relation to four micromec Read More
Micro-grid Design and Life-cycle Assessment of a Mountain Hut's Stand-alone Energy System with Hydrogen Used for Seasonal Storage
Dec 2020
Publication
Mountain huts as special stand-alone micro-grid systems are not connected to a power grid and represent a burden on the environment. The micro-grid has to be flexible to cover daily and seasonal fluctuations. Heat and electricity are usually generated with fossil fuels due to the simple on-off operation. By introducing renewable energy sources (RESs) the generation of energy could be more sustainable but the generation and consumption must be b Read More
Investigation of Praseodymium and Samarium Co-doped Ceria as an Anode Catalyst for DIR-SOFC Fueled by Biogas
Aug 2020
Publication
The Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer.The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of S Read More
Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers
Jan 2022
Publication
To limit the global temperature change to no more than 2 ◦C by reducing global emissions the European Union (EU) set up a goal of a 20% improvement on energy efficiency a 20% cut of greenhouse gas emissions and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE) specifically in the transport sector). By 2030 the goal is a 27% improvement in energy efficiency a 40% cut of greenhouse gas emissions and a 27 Read More
No more items...