Spain
Improving Hydrogen Production Using Co-cultivation of Bacteria with Chlamydomonas Reinhardtii Microalga
Sep 2018
Publication
Hydrogen production by microalgae is a promising technology to achieve sustainable and clean energy. Among various photosynthetic microalgae able to produce hydrogen Chlamydomonas reinhardtii is a model organism widely used to study hydrogen production. Oxygen produced by photosynthesis activity of microalgae has an inhibitory effect on both expression and activity of hydrogenases which are responsible for hydrogen production. Chlamydomo Read More
Thermodynamic Analysis of a Regenerative Brayton Cycle Using H2, CH4 and H2/CH4 Blends as Fuel
Feb 2022
Publication
Considering a simple regenerative Brayton cycle the impact of using different fuel blends containing a variable volumetric percentage of hydrogen in methane was analysed. Due to the potential of hydrogen combustion in gas turbines to reduce the overall CO2 emissions and the dependency on natural gas further research is needed to understand the impact on the overall thermodynamic cycle. For that purpose a qualitative thermodynamic analysis Read More
Multi-state Techno-economic Model for Optimal Dispatch of Grid Connected Hydrogen Electrolysis Systems Operating Under Dynamic Conditions
Oct 2020
Publication
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and c Read More
On the Concept of Micro-fracture Map (MFM) and its Role in Structural Integrity Evaluations in Materials Science and Engineering: A Tribute to Jorge Manrique
Dec 2020
Publication
This paper deals with the concept of micro-fracture map (MFM) and its role in structural integrity evaluations in materials science and engineering on the basis of previous research by the author on notch-induced fracture and hydrogen embrittlement of progressively cold drawn pearlitic steels and 316L austenitic stainless steel. With regard to this some examples are provided of assembly of MFMs in particular situations.
Notch-induced Anisotropic Fracture of Cold Drawn Pearlitic Steels and the Associated Crack Path Deflection and Mixed-mode Stress State: A Tribute to Masaccio
Jul 2018
Publication
This paper deals with notch-induced anisotropic fracture behavior of progressively cold drawn pearlitic steels on the basis of their microstructural evolution during manufacturing by multi-step cold drawing that produces slenderizing and orientation of the pearlitic colonies together with densification and orientation of the Fe/Fe3C lamellae reviewing previous research by the author. Results of fracture test using notched specimens of cold drawn pea Read More
Application of the Incremental Step Loading Technique to Small Punch Tests on S420 Steel in Acid Environments
Dec 2020
Publication
The Small Punch test has been recently used to estimate mechanical properties of steels in aggressive environments. This technique very interesting when there is shortage of material consists in using a small plane specimen and punch it until it fails. The type of tests normally used are under a constant load in an aggressive environment with the target to determine the threshold stress. However this is an inaccurate technique which takes time as the test Read More
Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe
Jun 2015
Publication
Currently hydrogen is mainly produced through steam reforming of natural gas. However this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective Read More
Multi-vector Energy Management System including Scheduling Electrolyser, Electric Vehicle Charging Station and Other Assets in a Real Scenario
Oct 2022
Publication
Today in the field of energy the main goal is to reduce emissions with 7 the aim of maintaining a clean environment. To reduce energy consumption 8 from fossil fuels new tools for micro-grids have been proposed. In the context 9 of multi-vector energy management systems the present work proposes an 10 optimal scheduler based on genetic algorithms to manage flexible assets in the 11 energy system such as energy storage and manageable dema Read More
Comparative Sustainability Study of Energy Storage Technologies Using Data Envelopment Analysis
Mar 2022
Publication
The transition to energy systems with a high share of renewable energy depends on the availability of technologies that can connect the physical distances or bridge the time differences between the energy supply and demand points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy sto Read More
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasificati Read More
Resilience-oriented Schedule of Microgrids with Hybrid Energy Storage System using Model Predictive Control
Nov 2021
Publication
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects while resilience criteria are ignored. This paper shows the deve Read More
Global Gas Report 2022
May 2022
Publication
This edition of the Global Gas Report covers two very turbulent years in the global gas industry and the wider global energy markets. The Covid-19 pandemic lockdowns with a brief period of excess supply and low prices gave way to tight energy markets extreme price volatility and a compounding geopolitical challenge to energy security. At the time of writing the ongoing Russia-Ukraine conflict has been affecting the flows of gas and has put Europe on Read More
Hydrogen-assisted Fatigue Crack Growth: Pre-charging vs In-situ Testing in Gaseous Environments
Mar 2023
Publication
We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel a primary candidate for the future hydrogen transport infrastructure allowing us to additionally gain insight into the differences in behavior between the base steel and the coarse grain heat af Read More
Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities
Jun 2022
Publication
Whilst various new technologies for power generation are continuously being evaluated the owners of almost-new facilities such as combined-cycle gas turbine (CCGT) plants remain motivated to adapt these to new circumstances and avoid the balance-sheet financial impairments of underutilization. Not only are the owners reluctant to decommission the legacy CCGT assets but system operators value the inertia and flexibilities they contribute to a syste Read More
Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides
Feb 2022
Publication
Recently perovskite-type oxides have attracted researchers as new materials for solid hydrogen storage. This paper presents the performances of perovskite-type oxide LaCrO3 dedicated for hydrogen solid storage using both numerical and experimental methods. Ab initio calculations have been used here with the aim to investigate the electronic mechanical and elastic properties of LaCrO3Hx (x = 0 6) for hydrogen storage applications. Cell par Read More
Challenges and Prospects of Renewable Hydrogen-based Strategies for Full Decarbonization of Stationary Power Applications
Oct 2021
Publication
The exponentially growing contribution of renewable energy sources in the electricity mix requires large systems for energy storage to tackle resources intermittency. In this context the technologies for hydrogen production offer a clean and versatile alternative to boost renewables penetration and energy security. Hydrogen production as a strategy for the decarbonization of the energy sources mix has been investigated since the beginning of the 19 Read More
Three-dimensional Simulations of Lean H2-air Flames Propagating in a Narrow Gap: n the Validity of the Quasi-two-dimensional Appoximation
Sep 2021
Publication
The premixed propagation of lean isobaric H2-air flames (φ = 0.3) in Hele-Shaw cells (i.e. two parallel plates separated by a small distance h on the order of the thickness of the planar adiabatic flame δf ∼ 3 mm) is investigated numerically. Three-dimensional (3D) simulations with detailed chemistry and transport are used to examine the effect of h on the flame dynamics and its overall normalized propagation speed (S T /S L) for a semi-closed system of siz Read More
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purifica Read More
Experimental Study of Biogas-Hydrogen Mixtures Combustion in Conventional Natural Gas Systems
Jul 2021
Publication
Biogas is a renewable gas with low heat energy which makes it extremely difficult to use as fuel in conventional natural gas equipment. Nonetheless the use of hydrogen as a biogas additive has proven to have a beneficial effect on flame stability and combustion behavior. This study evaluates the biogas–hydrogen combustion in a conventional natural gas burner able to work up to 100 kW. Tests were performed for three different compositions of biogas: BG7 Read More
A Hybrid Intelligent Model to Predict the Hydrogen Concentration in the Producer Gas from a Downdraft Gasifier
Apr 2022
Publication
This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign the producer gas volumetric composition was Read More
No more items...