Spain
Improving Hydrogen Production Using Co-cultivation of Bacteria with Chlamydomonas Reinhardtii Microalga
Sep 2018
Publication
Hydrogen production by microalgae is a promising technology to achieve sustainable and clean energy. Among various photosynthetic microalgae able to produce hydrogen Chlamydomonas reinhardtii is a model organism widely used to study hydrogen production. Oxygen produced by photosynthesis activity of microalgae has an inhibitory effect on both expression and activity of hydrogenases which are responsible for hydrogen production. Chlamydomonas can reach anoxia and produce hydrogen at low light intensity. Here the effect of bacteria co-cultivation on hydrogen produced by Chlamydomonas at low light intensity was studied. Results indicated that however co-culturing Escherichia coli Pseudomonas stutzeri and Pseudomonas putida reduced the growth of Chlamydomonas it enhanced hydrogen production up to 24% 46% and 32% respectively due to higher respiration rate in the bioreactors at low light intensity. Chlamydomonas could grow properly in presence of an unknown bacterial consortium and hydrogen evolution improved up to 56% in these co-cultures.
Thermodynamic Analysis of a Regenerative Brayton Cycle Using H2, CH4 and H2/CH4 Blends as Fuel
Feb 2022
Publication
Considering a simple regenerative Brayton cycle the impact of using different fuel blends containing a variable volumetric percentage of hydrogen in methane was analysed. Due to the potential of hydrogen combustion in gas turbines to reduce the overall CO2 emissions and the dependency on natural gas further research is needed to understand the impact on the overall thermodynamic cycle. For that purpose a qualitative thermodynamic analysis was carried out to assess the exergetic and energetic efficiencies of the cycle as well as the irreversibilities associated to a subsystem. A single step reaction was considered in the hypothesis of complete combustion of a generic H2/CH4 mixture where the volumetric H2 percentage was represented by fH2 which was varied from 0 to 1 defining the amount of hydrogen in the fuel mixture. Energy and entropy balances were solved through the Engineering Equation Solver (EES) code. Results showed that global exergetic and energetic efficiencies increased by 5% and 2% respectively varying fH2 from 0 to 1. Higher hydrogen percentages resulted in lower exergy destruction in the chamber despite the higher air-excess levels. It was also observed that higher values of fH2 led to lower fuel mass flow rates in the chamber showing that hydrogen can still be competitive even though its cost per unit mass is twice that of natural gas.
Multi-state Techno-economic Model for Optimal Dispatch of Grid Connected Hydrogen Electrolysis Systems Operating Under Dynamic Conditions
Oct 2020
Publication
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses especially while electrolysis plants grow in size to accommodate further increases in demand.
On the Concept of Micro-fracture Map (MFM) and its Role in Structural Integrity Evaluations in Materials Science and Engineering: A Tribute to Jorge Manrique
Dec 2020
Publication
This paper deals with the concept of micro-fracture map (MFM) and its role in structural integrity evaluations in materials science and engineering on the basis of previous research by the author on notch-induced fracture and hydrogen embrittlement of progressively cold drawn pearlitic steels and 316L austenitic stainless steel. With regard to this some examples are provided of assembly of MFMs in particular situations.
Notch-induced Anisotropic Fracture of Cold Drawn Pearlitic Steels and the Associated Crack Path Deflection and Mixed-mode Stress State: A Tribute to Masaccio
Jul 2018
Publication
This paper deals with notch-induced anisotropic fracture behavior of progressively cold drawn pearlitic steels on the basis of their microstructural evolution during manufacturing by multi-step cold drawing that produces slenderizing and orientation of the pearlitic colonies together with densification and orientation of the Fe/Fe3C lamellae reviewing previous research by the author. Results of fracture test using notched specimens of cold drawn pearlitic steels with different degrees of cold drawing (distinct levels of strain hardening) in air and hydrogen environment shows: (i) the key impact of the colonies and lamellae alignment and orientation on notch-induced fracture producing anisotropic fracture behavior with its related crack path deflection (or fracture path deviation); (ii) the necessity of both stress triaxiality (constraint) and microstructural orientation (colonies/lamellae) alignment to produce fracture path deflection; (iii) hydrogen presence (the circumstance) promotes crack path deviation in addition to the inherent microstructural anisotropy created by cold drawing; (iv) the anisotropic fracture path with a stepped profile in cold drawn pearlitic steel consisting of deflections and deviations from the initial transverse fracture path in mode I resembles Masaccio’s Tribute Money painting with its mountains at the background so that the present paper can be considered as a Tribute to Masaccio.
Application of the Incremental Step Loading Technique to Small Punch Tests on S420 Steel in Acid Environments
Dec 2020
Publication
The Small Punch test has been recently used to estimate mechanical properties of steels in aggressive environments. This technique very interesting when there is shortage of material consists in using a small plane specimen and punch it until it fails. The type of tests normally used are under a constant load in an aggressive environment with the target to determine the threshold stress. However this is an inaccurate technique which takes time as the tests are quite slow. In this paper the Small Punch tests are combined with the step loading technique collected in the standard ASTM F1624 [1] to obtain the value of threshold stress of an S420 steel in a total time of approximately one week. The ASTM F1624 indicates how to apply constant load steps in hydrogen embrittlement environments increasing them subsequently and adapting their duration until the specimen fails. The environment is created by means of cathodic polarization of cylindrical tensile specimens in an acid electrolyte. A batch of standard tests are performed to validate the methodology.
Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe
Jun 2015
Publication
Currently hydrogen is mainly produced through steam reforming of natural gas. However this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion global warming ozone layer depletion photochemical oxidant formation land competition acidification and eutrophication. Furthermore the cumulative (total and non-renewable) energy demand is calculated as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected) relevance of the feedstock and impact categories considered results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming in contrast to first-generation bioglycerol.
Multi-vector Energy Management System including Scheduling Electrolyser, Electric Vehicle Charging Station and Other Assets in a Real Scenario
Oct 2022
Publication
Today in the field of energy the main goal is to reduce emissions with 7 the aim of maintaining a clean environment. To reduce energy consumption 8 from fossil fuels new tools for micro-grids have been proposed. In the context 9 of multi-vector energy management systems the present work proposes an 10 optimal scheduler based on genetic algorithms to manage flexible assets in the 11 energy system such as energy storage and manageable demand. This tool is 12 applied to a case study for a Spanish technology park (360 kW consumption 13 peak) with photovoltaic and wind generation (735 kW generation peak) 14 hydrogen production (15 kW) and electric and fuel cell charging stations. 15 It provides an hourly day-ahead scheduling for the existing flexible assets: 16 the electrolyser the electric vehicle charging station the hydrogen refuelling 17 station and the heating ventilation and air conditioning system in one 18 building of the park. 19 A set of experiments is carried out over a period of 14 days using real 20 data and performing computations in real time in order to test and validate 21 the tool. The analysis of results show that the solution maximises the use of 22 local renewable energy production (demand is shifted to those hours when 23 there is a surplus of generation) which means a reduction in energy costs 24 whereas the computational cost allows the implementation of the tool in real 25 time.
Comparative Sustainability Study of Energy Storage Technologies Using Data Envelopment Analysis
Mar 2022
Publication
The transition to energy systems with a high share of renewable energy depends on the availability of technologies that can connect the physical distances or bridge the time differences between the energy supply and demand points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy storage alternatives is compared considering sustainability aspects by means of data envelopment analysis. To this end storage alternatives are first classified into two clusters: fast-response and long-term. The levelized cost of energy energy and water consumption global warming potential and employment are common indicators considered for both clusters while energy density is used only for fast-response technologies where it plays a key role in technology selection. Flywheel reveals the highest efficiency between all the fast-response technologies while green ammonia powered with solar energy ranks first for long-term energy storage. An uncertainty analysis is incorporated to discuss the reliability of the results. Overall results obtained and guidelines provided can be helpful for both decision-making and research and development purposes. For the former we identify the most appealing energy storage options to be promoted while for the latter we report quantitative improvement targets that would make inefficient technologies competitive if attained. This contribution paves the way for more comprehensive studies in the context of energy storage by presenting a powerful framework for comparing options according to multiple sustainability indicators.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Resilience-oriented Schedule of Microgrids with Hybrid Energy Storage System using Model Predictive Control
Nov 2021
Publication
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects while resilience criteria are ignored. This paper shows the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS) which is validated via numerical simulations. A hybrid ESS composed of hydrogen and batteries is therefore considered with the objective of improving the autonomy of the microgrid while achieving a rapid transition response. The control problem is formulated using Stochastic Model Predictive Control (SMPC) techniques in order to take into account possible transitions between grid-connected and islanded modes at all the sample instants of the schedule horizon (SH). The control problem is developed by considering a healthy operation of the hybrid ESS thus avoiding degradation issues. The plant is modeled using the Mixed Logic Dynamic (MLD) framework owing to the presence of logic and dynamic control variables.
Global Gas Report 2022
May 2022
Publication
This edition of the Global Gas Report covers two very turbulent years in the global gas industry and the wider global energy markets. The Covid-19 pandemic lockdowns with a brief period of excess supply and low prices gave way to tight energy markets extreme price volatility and a compounding geopolitical challenge to energy security. At the time of writing the ongoing Russia-Ukraine conflict has been affecting the flows of gas and has put Europe on a quest to diversify its energy and gas supply that is now opening a new paradigm in the energy industry. This report comes at a time when the situation for global commodity and gas markets is in a state of rapid change and the strategic path forwards for the gas industry and energy policy-makers is continually developing. One thing is clear this is a critical and decisive moment for the gas industry. How it navigates the way through this crisis and charts a path forward will shape its long-term success and the role that it will play in the energy transition and beyond. This is the moment for the gas industry to demonstrate that gas can deliver a sustainable and secure energy future for all and that natural gas and a portfolio of decarbonized low- and zero-carbon gases are key to an achievable energy transition. This year’s report assesses key gas market trends from 2020 and 2021 including Covid-19 outcomes tightness of supply price volatility investments and the upward reversal in the global emissions trend. It then turns to the main topic on the global energy agenda – security – and considers key variables impacting it from industry and policy perspectives as well as considering possible paths to reinforce it. Finally the report looks at the main decarbonization pathways for gas supply as they progressively develop to make gas itself a low or zero-carbon fuel for the future. This report seeks to deliver insights about the global gas sector and to inform its stakeholders partners and importantly global decision-makers about the state of play today and possibilities for the future. It concludes with key insights on how sustainability security and competitiveness can help to deliver a sustainable future in line with the goals of the Paris Agreement and the UN Sustainable Development Agenda.
Hydrogen-assisted Fatigue Crack Growth: Pre-charging vs In-situ Testing in Gaseous Environments
Mar 2023
Publication
We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel a primary candidate for the future hydrogen transport infrastructure allowing us to additionally gain insight into the differences in behavior between the base steel and the coarse grain heat affected zone. The results reveal significant differences between the two testing approaches and the two weld regions. The differences are particularly remarkable for the comparison of testing methodologies with fatigue crack growth rates being more than one order of magnitude higher over relevant loading regimes when the samples are tested in a hydrogen-containing environment relative to the pre-charged samples. Aided by finite element modelling and microscopy analysis these differences are discussed and rationalized. Independent of the testing approach the heat affected zone showed a higher susceptibility to hydrogen embrittlement. Similar microstructural behavior is observed for both testing approaches with the base metal exhibiting martensite lath decohesion while the heat affected zone experienced both martensite lath decohesion and intergranular fracture.
Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities
Jun 2022
Publication
Whilst various new technologies for power generation are continuously being evaluated the owners of almost-new facilities such as combined-cycle gas turbine (CCGT) plants remain motivated to adapt these to new circumstances and avoid the balance-sheet financial impairments of underutilization. Not only are the owners reluctant to decommission the legacy CCGT assets but system operators value the inertia and flexibilities they contribute to a system becoming predominated with renewable generation. This analysis therefore focuses on the reinvestment cases for adapting CCGT to hydrogen (H2 ) synthetic natural gas (SNG) and/or retrofitted carbon capture and utilization systems (CCUS). Although H2 either by itself or as part of SNG has been evaluated attractively for longer-term electricity storage the business case for how it can be part of a hybrid legacy CCGT system has not been analyzed in a market context. This work compares the power to synthetic natural gas to power (PSNGP) adaptation with the simpler and less expensive power to hydrogen to power (P2HP) adaptation. Both the P2HP and PSNGP configurations are effective in terms of decarbonizations. The best results of the feasibility analysis for a UK application with low CCGT load factors (around 31%) were obtained for 100% H2 (P2HP) in the lower range of wholesale electricity prices (less than 178 GBP/MWh) but in the higher range of prices it would be preferable to use the PSNGP configuration with a low proportion of SNG (25%). If the CCGT load factor increased to 55% (the medium scenario) the breakeven profitability point between P2HP and PSNGP decreased to a market price of 145 GBP/MWh. Alternatively with the higher load factors (above 77%) satisfactory results were obtained for PSNGP using 50% SNG if with market prices above 185 GBP/MWh.
Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides
Feb 2022
Publication
Recently perovskite-type oxides have attracted researchers as new materials for solid hydrogen storage. This paper presents the performances of perovskite-type oxide LaCrO3 dedicated for hydrogen solid storage using both numerical and experimental methods. Ab initio calculations have been used here with the aim to investigate the electronic mechanical and elastic properties of LaCrO3Hx (x = 0 6) for hydrogen storage applications. Cell parameters crystal structures and mechanical properties are determined. Additionally the cohesive energy indicates the stability of the hydride. Furthermore the mechanical properties showed that both compounds (before and after hydrogenation) are stable. The microstructure and storage capacity at different temperatures of these compounds have been studied. We have shown that storage capacities are around 4 wt%. The properties obtained from this type of hydride showed that it can be used for future applications. XRD analysis was conducted in order to study the structural properties of the compound. Besides morphological thermogravimetric analysis was also conducted on the perovskite-type oxide. Finally a comparison of these materials with other hydrides used for hydrogen storage was carried out.
Challenges and Prospects of Renewable Hydrogen-based Strategies for Full Decarbonization of Stationary Power Applications
Oct 2021
Publication
The exponentially growing contribution of renewable energy sources in the electricity mix requires large systems for energy storage to tackle resources intermittency. In this context the technologies for hydrogen production offer a clean and versatile alternative to boost renewables penetration and energy security. Hydrogen production as a strategy for the decarbonization of the energy sources mix has been investigated since the beginning of the 1990s. The stationary sector i.e. all parts of the economy excluding the transportation sector accounts for almost three-quarters of greenhouse gases (GHG) emissions (mass of CO2-eq) in the world associated with power generation. While several publications focus on the hybridization of renewables with traditional energy storage systems or in different pathways of hydrogen use (mainly power-to-gas) this study provides an insightful analysis of the state of art and evolution of renewable hydrogen-based systems (RHS) to power the stationary sector. The analysis started with a thorough review of RHS deployments for power-to-power stationary applications such as in power generation industry residence commercial building and critical infrastructure. Then a detailed evaluation of relevant techno-economic parameters such as levelized cost of energy (LCOE) hydrogen roundtrip efficiency (HRE) loss of power supply probability (LPSP) self-sufficiency ratio (SSR) or renewable fraction (fRES) is provided. Subsequently lab-scale plants and pilot projects together with current market trends and commercial uptake of RHS and fuel cell systems are examined. Finally the future techno-economic barriers and challenges for short and medium-term deployment of RHS are identified and discussed.
Three-dimensional Simulations of Lean H2-air Flames Propagating in a Narrow Gap: n the Validity of the Quasi-two-dimensional Appoximation
Sep 2021
Publication
The premixed propagation of lean isobaric H2-air flames (φ = 0.3) in Hele-Shaw cells (i.e. two parallel plates separated by a small distance h on the order of the thickness of the planar adiabatic flame δf ∼ 3 mm) is investigated numerically. Three-dimensional (3D) simulations with detailed chemistry and transport are used to examine the effect of h on the flame dynamics and its overall normalized propagation speed (S T /S L) for a semi-closed system of size 25δf × 25δf × h. To determine the validity of an existing quasi-two-dimensional (quasi-2D) formulation (derived in the limit of h → 0) to capture the 3D dynamics results for h = 0.1δf h = 0.5δf and h = δf are reported. For h = 0.1δf strong cell splitting/merging is observed with associated low frequency/high amplitude oscillations in the temporal evolution of S T /S L (10-17Hz; 6 ≤ S T /S L ≤ 10). Larger values of h exhibit a much smoother evolution. For h = 0.5δf the cell splitting/merging is milder relaxing to a steady propagating speed of S T /S L ∼ 6 after an initial transient; for h = 1δf the flame dynamics along the h direction starts to play an important role showing two distinct phases: (i) initial symmetric propagation with a linear increase in S T /S L (from 5.3 to 6.8) as early signs of asymmetry are visible (ii) followed by a fully non-symmetric propagation resulting in an abrupt increase in S T /S L that quickly relaxes to a constant value thereafter (S T /S L ∼ 10). Our preliminary results suggest that for the lean H2-air mixture considered the quasi-2D approximation breaks down for h > 0.1δf .
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
Experimental Study of Biogas-Hydrogen Mixtures Combustion in Conventional Natural Gas Systems
Jul 2021
Publication
Biogas is a renewable gas with low heat energy which makes it extremely difficult to use as fuel in conventional natural gas equipment. Nonetheless the use of hydrogen as a biogas additive has proven to have a beneficial effect on flame stability and combustion behavior. This study evaluates the biogas–hydrogen combustion in a conventional natural gas burner able to work up to 100 kW. Tests were performed for three different compositions of biogas: BG70 (30% CO2) BG60 (40% CO2) and BG50 (50% CO2). To achieve better flame stability each biogas was enriched with hydrogen from 5% to 25%. The difficulty of burning biogas in conventional systems was proven as the burner does not ignite when the biogas composition contains more than 40% of CO2. The best improvements were obtained at 5% hydrogen composition since the exhaust gas temperature and thus the enthalpy rises by 80% for BG70 and 65% for BG60. The stability map reveals that pure biogas combustion is unstable in BG70 and BG60; when the CO2 content is 50% ignition is inhibited. The properties change slightly when the hydrogen concentrations are more than 20% in the fuel gas and do not necessarily improve.
A Hybrid Intelligent Model to Predict the Hydrogen Concentration in the Producer Gas from a Downdraft Gasifier
Apr 2022
Publication
This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory with a mean absolute prediction error of only 0.134% by volume. Accordingly the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas.
No more items...