Spain
Structural Health Monitoring Techniques for Damages Detection in Hydrogen Pressure Vessels
Sep 2013
Publication
Damages due to mechanical impacts on the structural integrity of pressure vessels in composite material to store compressed hydrogen can lead to disastrous failures if they are not detected and fixed on time. A wide variety of damage modes in composites such as delamination and fiber breakage introduced by impact is difficult to be detected by conventional methods. Structural Health Monitoring (SHM) provides a system with the ability to detect and interpret adverse changes in a structure like a pressure vessel. Different types of methods will be proposed for damage detection based on comparing signals to baseline recorded from the undamaged structure. Guided wave based diagnosis method is one of the most effective used techniques due to its sensitivity to small defects. The paper pretend to identify the more adequate inspection methods to classify by smart rules based in artificial intelligence the effect of an impact on the structural integrity of the pressure vessel thus improving the level of safety.
Assessment of Power-to-power Renewable Energy Storage Based on the Smart Integration of Hydrogen and Micro Gas Turbine Technologies
Mar 2022
Publication
Power-to-Power is a process whereby the surplus of renewable power is stored as chemical energy in the form of hydrogen. Hydrogen can be used in situ or transported to the consumption node. When power is needed again hydrogen can be consumed for power generation. Each of these processes incurs energy losses leading to a certain round-trip efficiency (Energy Out/Energy In). Round-trip efficiency is calculated considering the following processes; water electrolysis for hydrogen production compressed liquefied or metal-hydride for hydrogen storage fuel-cell-electric-truck for hydrogen distribution and micro-gas turbine for hydrogen power generation. The maximum achievable round-trip efficiency is of 29% when considering solid oxide electrolysis along with metal hydride storage. This number goes sharply down when using either alkaline or proton exchange membrane electrolyzers 22.2% and 21.8% respectively. Round-trip efficiency is further reduced if considering other storage media such as compressed- or liquefied-H2. However the aim of the paper is to highlight there is still a large margin to increase Power-to-Power round-trip efficiency mainly from the hydrogen production and power generation blocks which could lead to round-trip efficiencies of around 40%e42% in the next decade for Power-to-Power energy storage systems with micro-gas turbines.
Hydrogen Transport to Fracture Sites in Metals and Alloys Multiphysics Modelling
Sep 2017
Publication
Generalised continuum model of hydrogen transport to fracture loci is developed for the purposes of analysis of the hydrogenous environment assisted fracture (HEAF). The model combines the notions of the theories of gas flow surface science and diffusion and trapping in stressed solids. Derived flux and balance equations describe the species migration across different states (gas adsorbed specie at the gas-metal interface interstitial solute in metal bulk) and a variety of corresponding sites of energy minimums along the potential relief for hydrogen in a system. The model accounts for the local kinetics of hydrogen interchange between the closest dissimilar neighbour sites and for the nonlocal interaction of hydrogen trapping in definite positions with the species wandering in their farer surroundings. In particular situations certain balance equations of the model may degenerate into equilibrium constraints as well as some terms in the generalised equations may be insignificant. A series of known theories of hydrogen transport in material-environment system can be recovered then as particular limit cases of the generalised model. Presented theory can help clarifying the advantages and limitations of particularised models so that appropriate one may be chosen for the analysis of a particular HEAF case.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
Using Solar Power Regulation to Electrochemically Capture Carbon Dioxide: Process Integration and Case Studies
Mar 2022
Publication
This work focuses on the use of solar photovoltaic energy to capture carbon dioxide by means of a combined electrolyzer–absorption system and compares operating results obtained in two cases studies (operation during one clear and one cloudy day in March) in which real integration of solar photovoltaics electrolyzer and absorption technologies is made at the bench-scale. The system is a part of a larger process (so-called EDEN⃝R Electrochemically-based Decarbonizing ENergy) which aims to regulate solar photovoltaic energy using a reversible chloralkaline electrochemical cell. Results demonstrate the feasibility of the sequestering technology which can produce chlorine and hydrogen but also the sequestration of CO2 and its transformation into a mixture of sodium chloride bicarbonate and carbonate useful as raw matter. Efficiencies over 70% for chlorine 60% for hydrogen and 90% for sodium hydroxide were obtained. The sequestration of carbon dioxide reached 24.4 mmol CO2/Ah with an average use of 1.6 mmol NaOH/mmol CO2. Important differences are found between the performance of the system in a clear and a cloudy day which point out the necessity of regulating the dosing of the electrochemically produced sodium hydroxide to optimize the sequestration of CO2.
Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking
Jan 2022
Publication
The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional routes.
Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study
Nov 2020
Publication
When steel components fail in service due to the intervention of hydrogen assisted cracking discussion of the root cause arises. The failure is frequently blamed on component design working conditions the manufacturing process or the raw material. This work studies the influence of quench and tempering and hot-dip galvanizing on the hydrogen embrittlement behavior of a high strength steel. Slow strain rate tensile testing has been employed to assess this influence. Two sets of specimens have been tested both in air and immersed in synthetic seawater at three process steps: in the delivery condition of the raw material after heat treatment and after heat treatment plus hot-dip galvanizing. One of the specimen sets has been tested without further manipulation and the other set has been tested after applying a hydrogen effusion treatment. The outcome for this case study is that fracture risk issues only arise due to hydrogen re-embrittlement in wet service.
Safety Aspects in the Production and Separation of Hydrogen from Biomass
Sep 2011
Publication
Tecnalia is working in the development of gasification technology for the production of hydrogen from biomass. Biomass is an abundant and disperse renewable energy source that can be important for the production of hydrogen. The development of hydrogen system from biomass requires multifaceted studies on hydrogen production systems hydrogen separation methods and hydrogen safety aspects. Steam gasification of biomass produces a syngas with high hydrogen content but this syngas requires a post-treatment to clean and to separate the hydrogen. As a result of this analysis Tecnalia has defined a global process for the production cleaning enrichment and separation of hydrogen from the syngas produced from biomass gasification. But besides the technical aspects safety considerations affecting all the described processes have been identified. For that reason it is being developed a procedure to establish the technical requirements and the recommended practices to ensure the highest level of safety in the production and handing of hydrogen.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming
Jan 2022
Publication
Identifying sustainable energy vectors is perhaps one of the most critical issues that needs addressing to achieve a climate-neutral society by 2050. In this context the hydrogen economy has been proposed as a solution to mitigate our current fossil-based energy system while the concept of the circular economy aims to boost the efficient use of resources. Photoreforming offers a promising opportunity for recycling and transforming widely available biomass-derived wastes (e.g. crude glycerol from biodiesel) into clean hydrogen fuel. This processing technology may be a versatile method that can be performed not only under UV light but also under visible light. However this approach is currently at the lab-scale and some inherent challenges must be overcome not least the relatively modest hydrogen production rates for the lamps’ substantial energy consumption. This study aims to assess the main environmental impacts identifying the hotspots and possible trade-off in which this technology could operate feasibly. We introduce an assessment of the windows of opportunity using seven categories of environmental impact with either artificial light or sunlight as the source of photocatalytic conversion. We compared the environmental indicators from this study with those of the benchmark water electrolysis and steam–methane reforming (SMR) technologies which are currently operating at a commercial scale. The results obtained in this study situate biowaste photoreforming within the portfolio of sustainable H2 production technologies of interest for future development in terms of target H2 production rates and lifetimes of sustainable operation.
Potential for Hydrogen Production from Biomass Residues in the Valencian Community
Sep 2007
Publication
The production of hydrogen from renewable sources is essential to develop the future hydrogen economy. Biomass is an abundant clean and renewable energy source and it can be important in the production of hydrogen. The Valencian Community due to its great agricultural and forestry activities generates an important quantity of biomass residues that can be used for energy generation approximately 778 kt of wet biomass residues per year. This great quantity of biomass can be transformed into a hydrogen-rich gas by different thermochemical conversion processes. In this article the potential of production of hydrogen-rich gas is analyzed considering several factors affecting the conversion yield of these processes. As a result of this analysis it could be possible to produce 1271 MNm3 of H2 per year considering the total biomass residues of the community and selecting the gasification processes.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility
May 2021
Publication
The percentage of the population in urban areas has increased by ten points from 2000 (46%) to 2020 (56%); it is expected to reach up to 70% by 2050. This undoubtedly will encourage society to use alternative transports. On the other hand the widespread fear of pandemics seems to be here to stay and it is causing most people to leave public transport to use private cars and a few have chosen unipersonal electric vehicles. As a consequence the decision of using private cars negatively affects the air quality and consequently urban population health. This paper aims to demonstrate a sustainable solution for urban mobility based on a hydrogen powered unipersonal electric vehicle which as shown provides great advantages over the conventional battery powered unipersonal electric vehicle. To show this the authors have developed both vehicles in comparable versions using the same platform and ensuring that the total weight of the unipersonal electric vehicle was the same in both cases. They have been subjected to experimental tests that support the features of the hydrogen-based configuration versus the battery-based one including higher specific energy more autonomy and shorter recharge time.
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
May 2021
Publication
The hydrogen economy has received resurging interest in recent years as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR) which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points both in terms of efficiency and CO2 avoidance.
Transportation in a 100% Renewable Energy System
Jan 2018
Publication
A 100% renewable economy would give a lasting solution to the challenges raised by climate change energy security sustainability and pollution. The conversion of the present transport system appears to be one of the most difficult aspects of such renewable transition. This study reviews the technologies and systems that are being proposed or proven as alternative to fossil-fuel based transportation and their prospects for their entry into the post-carbon era from both technological and energetic viewpoints. The energetic cost of the transition from the current transportation system into global 100% renewable transportation is estimated as well as the electrical energy required for the operation of the new renewable transportation sector. A 100% renewable transport providing the same service as global transport in 2014 would demand about 18% less energy. The main reduction is expected in road transport (69%) but the shipping and air sectors would notably increase their consumptions: 163% and 149% respectively. The analysis concludes that a 100% renewable transportation is feasible but not necessarily compatible with indefinite increase of resources consumption. The major material and energy limitations and obstacles of each transport sector for this transition are shown.
Absence of Spillover of Hydrogen Adsorbed on Small Palladium Clusters Anchored to Graphene Vacancies
May 2021
Publication
Experimental evidence exists for the enhancement of the hydrogen storage capacity of porous carbons when these materials are doped with metal nanoparticles. One of the most studied dopants is palladium. Dissociation of the hydrogen molecules and spillover of the H atoms towards the carbon substrate has been advocated as the reason for the enhancement of the storage capacity. We have investigated this mechanism by performing ab initio density functional molecular dynamics (AIMD) simulations of the deposition of molecular hydrogen on Pd6 clusters anchored on graphene vacancies. The clusters are initially near-saturated with atomic and molecular hydrogen. This condition would facilitate the occurrence of spillover since our energy calculations based on density functional theory indicate that migration of preadsorbed H atoms towards the graphene substrate becomes exothermic on Pd clusters with high hydrogen coverages. However AIMD simulations show that the H atoms prefer to intercalate and absorb within the Pd cluster rather than migrate to the carbon substrate. These results reveal that high activation barriers exist preventing the spillover of hydrogen from the anchored Pd clusters to the carbon substrate.
Analysis of Stress Corrosion Cracking in X80 Pipeline Steel: An Approach from the Theory of Critical Distances
Dec 2018
Publication
This paper presents an analysis of Stress Corrosion Cracking (SCC) based on the Theory of Critical Distances (TCD). The research is based on an experimental program composed of fracture specimens with notch radius varying from 0 mm (crack-like defect) up to 1 mm and tensile specimens. A pipeline steel was used in this work (X80). It has been analysed in one hydrogen embrittlement situation. The study has been completed with Finite Elements Simulation analysis. The capacity of the TCD to analyse SCC processes has been proven.
Gaseous Fueling of an Adapted Commercial Automotive Spark-ignition Engine: Simplified Thermodynamic Modeling and Experimental Study Running on Hydrogen, Methane, Carbon Monoxide and their Mixtures
Dec 2022
Publication
In the present work methane carbon monoxide hydrogen and the binary mixtures 20 % CH4–80 % H2 80 % CH4–20 % H2 25 % CO–75 % H2 (by volume) were considered as fuels of a naturally aspirated port-fuel injection four-cylinder Volkswagen 1.4 L spark-ignition (SI) engine. The interest in these fuels lies in the fact that they can be obtained from renewable resources such as the fermentation or gasification of residual biomasses as well as the electrolysis of water with electricity of renewable origin in the case of hydrogen. In addition they can be used upon relatively easy modifications of the engines including the retrofitting of existing internal combustion engines. It has been found that the engine gives similar performance regardless the gaseous fuel nature if the air–fuel equivalence ratio (λ) is the same. Maximum brake torque and mean effective pressure values within 45–89 N⋅m and 4.0–8.0 bar respectively have been obtained at values of λ between 1 and 2 at full load engine speed of 2000 rpm and optimum spark-advance. In contrast the nature of the gaseous fuel had great influence upon the range of λ values at which a fuel (either pure or blend) could be used. Methane and methane-rich mixtures with hydrogen or carbon monoxide allowed operating the engine at close to stoichiometric conditions (i.e. 1 < λ < 1.5) yielding the highest brake torque and mean effective pressure values. On the contrary hydrogen and hydrogen-rich mixtures with methane or carbon monoxide could be employed only in the very fuel-lean region (i.e. 1.5 < λ < 2). The behavior of carbon monoxide was intermediate between that of methane and hydrogen. The present study extends and complements previous works in which the aforementioned fuels were compared only under stoichiometric conditions in air (λ = 1). In addition a simple zero-dimensional thermodynamic combustion model has been developed that allows describing qualitatively the trends set by the several fuels. Although the model is useful to understand the influence of the fuels properties on the engine performance its predictive capability is limited by the simplifications made.
Direct Route from Ethanol to Pure Hydrogen through Autothermal Reforming in a Membrane Reactor: Experimental Demonstration, Reactor Modelling and Design
Nov 2020
Publication
This work reports the integration of thin (~3e4 mm thick) Pd-based membranes for H2 separation in a fluidized bed catalytic reactor for ethanol auto-thermal reforming. The performance of a fluidized bed membrane reactor has been investigated from an experimental and numerical point of view. The demonstration of the technology has been carried out over 50 h under reactive conditions using 5 thin Pd-based alumina-supported membranes and a 3 wt%Pt-10 wt%Ni catalyst deposited on a mixed CeO2/SiO2 support. The results have confirmed the feasibility of the concept in particular the capacity to reach a hydrogen recovery factor up to 70% while the operation at different fluidization regimes oxygen-to-ethanol and steam-to-ethanol ratios feed pressures and reactor temperatures have been studied. The most critical part of the system is the sealing of the membranes where most of the gas leakage was detected. A fluidized bed membrane reactor model for ethanol reforming has been developed and validated with the obtained experimental results. The model has been subsequently used to design a small reactor unit for domestic use showing that 0.45 m2 membrane area is needed to produce the amount of H2 required for a 5 kWe PEM fuel-cell based micro-CHP system.
Cohesive Zone Modelling of Hydrogen Assisted Fatigue Crack Growth: The Role of Trapping
Apr 2022
Publication
We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end a new formulation combining multi-trap stress-assisted diffusion mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented and numerically implemented. The results show that the ratio of loading frequency to effective diffusivity governs fatigue crack growth behaviour. Increasing the density of beneficial traps not involved in the fracture process results in lower fatigue crack growth rates. The combinations of loading frequency and carbide trap densities that minimise embrittlement susceptibility are identified providing the foundation for a rational design of hydrogen-resistant alloys.
Environmentally Assisted Cracking Behavior of S420 and X80 Steels Containing U-notches at Two Different Cathodic Polarization Levels: An Approach from the Theory of Critical Distances
May 2019
Publication
This paper analyzes using the theory of critical distances the environmentally assisted cracking behaviour of two steels (S420 and API X80) subjected to two different aggressive environments. The propagation threshold for environmentally assisted cracking (i.e. the stress intensity factor above which crack propagation initiates) in cracked and notched specimens (KIEAC and KNIEAC) has been experimentally obtained under different environmental conditions. Cathodic polarization has been employed to generate the aggressive environments at 1 and 5 mA/cm2 causing hydrogen embrittlement on the steels. The point method and the line method both belonging to the theory of critical distances have been applied to verify their capacity to predict the initiation of crack propagation. The results demonstrate the capacity of the theory of critical distances to predict the crack propagation onset under the different combinations of material and aggressive environments.
Hydrogen Induced Damage in Heavily Cold-Drawn Wires of Lean Duplex Stainless Steel
Sep 2017
Publication
The paper addresses the sensitivity to hydrogen embrittlement of heavily cold-drawn wires made of the new generation of lower alloyed duplex stainless steels often referred to as lean duplex grades. It includes comparisons with similar data corresponding to cold-drawn eutectoid and duplex stainless steels. For this purpose fracture tests under constant load were carried out with wires in the as-received condition and fatigue-precracked in air and exposed to ammonium thiocyanate solution. Microstructure and fractographic observations were essential means for the cracking analysis. The effect of hydrogen-assisted embrittlement on the damage tolerance of lean duplex steels was assessed regarding two macro-mechanical damage models that provide the upper bounds of damage tolerance and accurately approximate the failure behavior of the eutectoid and duplex stainless steels wires.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Hydrogen Assisted Macrodelamination in Gas Lateral Pipe
Jul 2016
Publication
Hydrogen assisted macrodelamination in the pipe elbows of 40-year exploited lateral pipelines located behind the compressor station was studied. The crack on the external surface of the pipe elbow was revealed. Macrodelamination was occurred in the steel being influenced by the joined action of working loads and hydrogen absorbed by metal during long-term operation. The causes of the material degradation were investigated by non-destructive testing using ultrasound thickness meter observing microstructure hydrostatic pressure testing and mechanical properties testing of pipe steel.<br/>Intensive degradation of steel primarily essential reduction of plasticity was revealed. The degradation degree of the pipe elbow steel was higher than of the straight pipe steel regardless of a section was tensioned or compressed. Basing on the tensile tests carried out on cylindrical smooth and notched specimens from the pipe elbow steel it was established that the plasticity of the damaged steel could be measured correctly only on the specimens with a circular notch due to concentration of deformation in the cross section location only. The limitations in using elongation and reduction in area for characterisation of plasticity of the pipe steel with extensive delamination were defined. The diagnostic features of macrodelamination namely an abnormal thickness meter readings and a sharp decrease in hardness and plasticity of the pipe elbow steel were established.
Novel Safe Method Of Manufacturing Hydrogen Metallic Hydrides
Sep 2005
Publication
The present work proposes a novel safe method for obtaining metallic hydrides. The method is called SHS (Self-Propagating High temperature synthesis). A novel high pressure gas reactor governed by an electromechanical control device has been designed and built up in order to synthesise metallic hydrides. This system is provided with a control system that allows calculating the amount of gas coming into the reaction vessel at every stage of the process. The main feature of this method is that metallic hydrides can be safely synthesised using low gas reaction pressures. In order to validate the assessing system the main kinetic regularities of SHS in Ti-H2 system were studied. In addition phase analysis (by means of X ray diffraction) as well as chemical analysis have been performed.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
Role of the Sulphur Source in the Solvothermal Synthesis of Ag-CdS Photocatalysts: Effects on the Structure and Photoactivity for Hydrogen Production
Dec 2020
Publication
The aim of this work is to study the influence of the sulphur source (elemental sulphur thiourea and L-cysteine) in the solvothermal synthesis of Ag-CdS over its growth structuration and state of Ag and how these changes influence on its photoactivity. The differences in the generation rate of the S2− from the sulphur sources during the solvothermal synthesis determine the nucleation and growth pathways of CdS affecting to the silver state and its incorporation into the CdS lattice. The hydrogen production on Ag-CdS photocatalysts decreases according the sequence: thiourea > elemental sulphur >> L-cysteine. The changes in the photoactivity of Ag-CdS samples are analysed in terms of the differences in the insertion of Ag+ into the CdS lattice the formation of composites between CdS and Ag2S and the formation of CdS crystalline domains with strong confinement effect derived from the different sulphur source used in the solvothermal synthesis
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case
Feb 2019
Publication
Standalone renewable energy is widely used to power irrigation systems. However in agricultural facilities electricity from the grid and diesel are also consumed. The design and sizing of renewable generation involves difficulties derived from the different seasonal profiles of production and demand. If the generation is 100% renewable a considerable energy surplus is usually included. This paper is focused on a renewable energy system which has been installed in a vineyard located in the northeast of Spain. With energy from the photovoltaic fields the wastewater treatment plant of the winery a drip irrigation system and other ancillary consumptions are fed. The favourable effect of combining consumptions with different seasonal profiles is shown. The existence of some deferrable loads and the energy management strategy result in an aggregate consumption curve that is well suited to production. Besides the required energy storage is relatively small. The surplus energy is used for the on-site production of hydrogen by the electrolysis of water. The hydrogen refuels a hybrid fuel cell electric vehicle used for the mobility of workers in the vineyard. In summary electricity and hydrogen are produced on-site (to meet the energy needs) from 100% renewable sources and without operating emissions.
Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach
Oct 2020
Publication
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy where hydrogen fuel cells stand out. However the implementation of a competitive hydrogen economy still presents several challenges related to economic costs required infrastructures and environmental performance. In this context the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations considering as functional unit 1 kg of hydrogen produced 1 kWh of energy obtained and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream the use of photovoltaic electricity and the implementation of an energy recovery system for the residual methane stream.
Development of an Operation Strategy for Hydrogen Production Using Solar PV Energy Based on Fluid Dynamic Aspects
Apr 2017
Publication
Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However wind and solar energy sources are highly dependent on weather conditions. As a result power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim a mathematical model including the influence of electrode-membrane distance temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy especially when the electrolyzer is powered by renewable energies.
Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage
Apr 2018
Publication
Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM) fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and U.S. Department of Energy (DOE). Recent projections indicate that a system possessing: (i) an ideal enthalpy in the range of 20–50 kJ/mol H2 to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii) a gravimetric hydrogen density of 5 wt. % H2 and (iii) fast sorption kinetics below 110 ◦C is strongly recommended. Among the known hydrogen storage materials amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however some barriers still have to be overcome before considering this class of material mature for real applications. In this review the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties experimentally measured for the most promising systems are reported and properly discussed.
Photocatalytic Production of Hydrogen from Binary Mixtures of C-3 Alcohols on Pt/TiO2: Influence of Alcohol Structure
Oct 2018
Publication
The effect of alcohol structure on photocatalytic production of H2 from C-3 alcohols was studied on 0.5% Pt/TiO2. A C-2 alcohol (ethanol) was also included for comparative purposes. For individual reactions from 10% v/v aqueous solutions of alcohols hydrogen production followed the order ethanol ≈ propan-2-ol > propan-1- ol > propane-123-triol > propane-12-diol > propane-13-diol. The process was found to be quite sensitive to the presence of additional alcohols in the reaction medium as evidenced by competitive reactions. Therefore propan-2-ol conversion was retarded in the presence of traces of the other alcohols this effect being particularly significant for vicinal diols. Additional experiments showed that adsorption of alcohols on Pt/TiO2 followed the order propane-123-triol > propane-12-diol > propane-13-diol > propan-1-ol > ethanol > propan-2-ol. Adsorption studies (DRIFT) and monitoring of reaction products showed that the main photocatalyzed process for propan-2-ol and propan-1-ol transformation is dehydrogenation to the corresponding carbonyl compound (especially for propan-2-ol both in the liquid and the gas phase). In the case of liquid-phase transformation of propan-1-ol ethane was also detected which is indicative of the dissociative mechanism to lead to the corresponding C-1 alkane. All in all competitive reactions proved to be very useful for mechanistic studies.
Prediction of Hydrogen-Heavy Fuel Combustion Process with Water Addition in an Adapted Low Speed Two Stroke Diesel Engine: Performance Improvement
Jun 2021
Publication
Despite their high thermal efficiency (>50%) large two-stroke (2 T) diesel engines burning very cheap heavy fuel oil (HFO) produce a high level of carbon dioxide (CO2). To achieve the low emission levels of greenhouse gases (GHG) that will be imposed by future legislation the use of hydrogen (H2) as fuel in 2 T diesel engines is a viable option for reducing or almost eliminate CO2 emissions. In this work from experimental data and system modelling an analysis of dual combustion is carried out considering different strategies to supply H2 to the engine and for different H2 fractions in energy basis. Previously a complete thermodynamic model of a 2 T diesel engine with an innovative scavenging model is developed and validated. The most important drawbacks of this type of engines are controlled in this work using dual combustion and water injection reducing nitrogen oxides emissions (NOx) self-ignition and combustion knocking. The results show that the developed model matches engine performance data in diesel mode achieving a higher efficiency and mean effective pressure (MEP) in hydrogen mode of 53% and 14.62 bar respectively.
Controller Design for Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications
May 2021
Publication
Continuous developments in Proton Exchange Membrane Fuel Cells (PEMFC) make them a promising technology to achieve zero emissions in multiple applications including mobility. Incremental advancements in fuel cells materials and manufacture processes make them now suitable for commercialization. However the complex operation of fuel cell systems in automotive applications has some open issues yet. This work develops and compares three different controllers for PEMFC systems in automotive applications. All the controllers have a cascade control structure where a generator of setpoints sends references to the subsystems controllers with the objective to maximize operational efficiency. To develop the setpoints generators two techniques are evaluated: off-line optimization and Model Predictive Control (MPC). With the first technique the optimal setpoints are given by a map obtained off-line of the optimal steady state conditions and corresponding setpoints. With the second technique the setpoints time profiles that maximize the efficiency in an incoming time horizon are continuously computed. The proposed MPC architecture divides the fast and slow dynamics in order to reduce the computational cost. Two different MPC solutions have been implemented to deal with this fast/slow dynamics separation. After the integration of the setpoints generators with the subsystems controllers the different control systems are tested and compared using a dynamic detailed model of the automotive system in the INN-BALANCE project running under the New European Driving Cycle.
Multi-Tubular Reactor for Hydrogen Production CFD Thermal Design and Experimental Testing
Jan 2019
Publication
This study presents the Computational Fluid Dynamics (CFD) thermal design and experimental tests results for a multi-tubular solar reactor for hydrogen production based on the ferrite thermochemical cycle in a pilot plant in the Plataforma Solar de Almería (PSA). The methodology followed for the solar reactor design is described as well as the experimental tests carried out during the testing campaign and characterization of the reactor. The CFD model developed for the thermal design of the solar reactor has been validated against the experimental measurements with a temperature error ranging from 1% to around 10% depending on the location within the reactor. The thermal balance in the reactor (cavity and tubes) has been also solved by the CFD model showing a 7.9% thermal efficiency of the reactor. CFD results also show the percentage of reacting media inside the tubes which achieve the required temperature for the endothermic reaction process with 90% of the ferrite pellets inside the tubes above the required temperature of 900 °C. The multi-tubular solar reactor designed with aid of CFD modelling and simulations has been built and operated successfully
Opportunities and Barriers of Hydrogen–Electric Hybrid Powertrain Vans: A Systematic Literature Review
Oct 2020
Publication
The environmental impact of the road transport sector together with urban freight transport growth has a notable repercussions in global warming health and economy. The need to reduce emissions caused by fossil fuel dependence and to foster the use of renewable energy sources has driven the development of zero-emissions powertrains. These clean transportation technologies are not only necessary to move people but to transport the increasing demand for goods and services that is currently taking place in the larger cities. Full electric battery-powered vans seem to be the best-placed solution to the problem. However despite the progress in driving range and recharge options those and other market barriers remain unsolved and the current market share of battery electric vehicles (BEVs) is not significant. Based on the development of hydrogen fuel cell stacks this work explains an emerging powertrain architecture concept for N1 class type vans that combines a battery-electric configuration with a fuel cell stack powered by hydrogen that works as a range extender (FC-EREV). A literature review is conducted with the aim to shed light on the possibilities of this hybrid light-duty commercial van for metropolitan delivery tasks providing insights into the key factors and issues for sizing the powertrain components and fuel management strategies to meet metropolitan freight fleet needs.
Hydrogen Permeation Studies of Composite Supported Alumina-carbon Molecular Sieves Membranes: Separation of Diluted Hydrogen from Mixtures with Methane
Jun 2020
Publication
One alternative for the storage and transport of hydrogen is blending a low amount of hydrogen (up to 15 or 20%) into existing natural gas grids. When demanded hydrogen can be then separated close to the end users using membranes. In this work composite alumina carbon molecular sieves membranes (Al-CMSM) supported on tubular porous alumina have been prepared and characterized. Single gas permeation studies showed that the H2/CH4 separation properties at 30 °C are well above the Robeson limit of polymeric membranes. H2 permeation studies of the H2–CH4 mixture gases containing 5–20% of H2 show that the H2 purity depends on the H2 content in the feed and the operating temperature. In the best scenario investigated in this work for samples containing 10% of H2 with an inlet pressure of 7.5 bar and permeated pressure of 0.01 bar at 30 °C the H2 purity obtained was 99.4%.
Production of Hydrogen by Chemical Looping Reforming of Methane and Biogas using a Reactive and Durable Cu-based Oxygen Carrier
Apr 2022
Publication
The objective of this work was to assess the suitability of a synthetic Cu-based oxygen carrier in a continuous pilot plant for the production of blue and green hydrogen through the autothermal Chemical Looping Reforming (CLRa). In CLRa methane is converted to a H2 + CO mixture through partial oxidation and reforming reactions in the fuel reactor. The degree of the partial oxidation of methane was defined by controlling the oxygen flow in the air reactor. Steam was used as reforming gas in natural gas to produce blue H2 but the existing CO2 in biogas was the reforming gas to produce green H2. Operating at 950 ◦C in the fuel and air reactors CH4 conversion and H2 yield parameters were 96 % and 2.60 mol of H2 per mole of CH4 respectively. These experimental results were close to the theoretical values that could be achieved in the CLRa process. Furthermore the physico-chemical characterization of the samples extracted from the pilot plant throughout the experimental campaign revealed that the Cu-based oxygen carrier maintained its mechanical integrity and chemical stability under harsh operating conditions. Therefore it can be concluded that Cu-based oxygen carriers can be considered a promising alternative to Ni-based materials for the production of blue and green hydrogen through the CLRa process.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Thermodynamic, Economic and Environmental Assessment of Renewable Natural Gas Production Systems
May 2020
Publication
One of the options to reduce the dependence on fossil fuels is to produce gas with the quality of natural gas but based on renewable energy sources. It can encompass among other biogas generation from various types of biomass and its subsequent upgrading. The main aim of this study is to analyze under a combined technical economic and environmental perspective three of the most representative technologies for the production of biomethane (bio-based natural gas): (i) manure fermentation and its subsequent upgrading by CO2 removal (ii) manure fermentation and biogas methanation using renewable hydrogen from electrolysis and (iii) biomass gasification in the atmosphere of oxygen and methanation of the resulted gas. Thermodynamic economic and environmental analyses are conducted to thoroughly compare the three cases. For these purposes detailed models in Aspen Plus software were built while environmental analysis was performed using the Life Cycle Assessment methodology. The results show that the highest efficiency (66.80%) and the lowest break-even price of biomethane (19.2 €/GJ) are reached for the technology involving fermentation and CO2 capture. Concerning environmental assessment the system with the best environmental performance varies depending on the impact category analyzed being the system with biomass gasification and methanation a suitable trade-off solution for biomethane production.
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries
Dec 2022
Publication
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them the following have been identified: concentrating solar power heat pumps and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
Methane Cracking as a Bridge Technology to the Hydrogen Economy
Nov 2016
Publication
Shifting the fossil fuel dominated energy system to a sustainable hydrogen economy could mitigate climate change through reduction of greenhouse gas emissions. Because it is estimated that fossil fuels will remain a significant part of our energy system until mid-century bridge technologies which use fossil fuels in an environmentally cleaner way offer an opportunity to reduce the warming impact of continued fossil fuel utilization. Methane cracking is a potential bridge technology during the transition to a sustainable hydrogen economy since it produces hydrogen with zero emissions of carbon dioxide. However methane feedstock obtained from natural gas releases fugitive emissions of methane a potent greenhouse gas that may offset methane cracking benefits. In this work a model exploring the impact of methane cracking implementation in a hydrogen economy is presented and the impact on global emissions of carbon dioxide and methane is explored. The results indicate that the hydrogen economy has the potential to reduce global carbon dioxide equivalent emissions between 0 and 27% when methane leakage from natural gas is relatively low methane cracking is employed to produce hydrogen and a hydrogen fuel cell is applied. This wide range is a result of differences between the scenarios and the CH4 leakage rates used in the scenarios. On the other hand when methane leakage from natural gas is relatively high methane steam reforming is employed to produce hydrogen and an internal combustion engine is applied the hydrogen economy leads to a net increase in global carbon dioxide equivalent emissions between 19 and 27%.
Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments
Mar 2022
Publication
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas electrochemically pre-charged and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables such as the applied current density the electrolyte composition and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
No more items...