Spain
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations Read More
Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo
Sep 2017
Publication
This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD) hydrogen embrittlement (HE) or at the micro-level hydrogen-assisted micro-damage (HAMD) thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen ef Read More
Optimal Energy Management System Using Biogeography Based Optimization for Grid-connected MVDC Microgrid with Photovoltaic, Hydrogen System, Electric Vehicles and Z-source Converters
Oct 2021
Publication
Currently the technology associated with charging stations for electric vehicles (EV) needs to be studied and improved to further encourage its implementation. This paper presents a new energy management system (EMS) based on a Biogeography-Based Optimization (BBO) algorithm for a hybrid EV charging station with a configuration that integrates Z-source converters (ZSC) into medium voltage direct current (MVDC) grids. The EMS uses th Read More
Hydrogen vs. Battery in the Long-term Operation. A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids
Apr 2020
Publication
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time the use of renewable energy sources is pursued to address decarbonization targets but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing at the same time the security and reliability of the microgrids. Locally dist Read More
A Model-based Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation
Jun 2021
Publication
In this study the optimal sizing of a hybrid battery/hydrogen Energy Storage System “ESS” is assessed via a model-based parametric analysis in the context of a real hybrid renewable microgrid located in Huelva Spain supplying a real-time monitored residential load (3.5 kW; 5.6 MWh/year) in island mode. Four storage configurations (battery-only H2-only hybrid battery priority and hybrid H2 priority) are assessed under different Energy Management Strat Read More
Polymer–Ceramic Composite Membranes for Water Removal in Membrane Reactors
Jun 2021
Publication
Methanol can be obtained through CO2 hydrogenation in a membrane reactor with higher yield or lower pressure than in a conventional packed bed reactor. In this study we explore a new kind of membrane with the potential suitability for such membrane reactors. Silicone–ceramic composite membranes are synthetized and characterized for their capability to selectively remove water from a mixture containing hydrogen CO2 and water at temperature Read More
Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries
Mar 2019
Publication
To achieve a vehicle-efficient energy management system an architecture composed of a PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing aiming at minimizing the total cost achieving a cheaper system that can achieve the requirements of the speed profiles. The chosen vehicle is an urban transport bus w Read More
Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments
Jun 2021
Publication
Residues and by-products from vegetables and fruit wholesale markets are suitable for recovery in the form of energy through anaerobic digestion allowing waste recovery and introducing them into the circular economy. This suitability is due to their composition structural characteristics and to the biogas generation process which is stable and without inhibition. However it has been observed that the proportion of methane and the level of degradati Read More
Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Capacities of Slit-shaped Pores, Nanotubes and Torusenes
Jan 2022
Publication
Grand Canonical Monte Carlo GCMC simulations are used to study the gravimetric and volumetric hydrogen storage capacities of different carbon nanopores shapes: Slit-shaped nanotubes and torusenes at room temperature 298.15 K and at pressures between 0.1 and 35 MPa and for pore diameter or width between 4 and 15 A. The influence of the pore shape or curvature on the storage capacities as a function of pressure temperature and pore diam Read More
Analysis of Hydrogen Production Potential from Waste Plastics by Pyrolysis and In Line Oxidative Steam Reforming
Oct 2021
Publication
A study was carried out on the valorization of different waste plastics (HDPE PP PS and PE) their mixtures and biomass/HDPE mixtures by means of pyrolysis and in line oxidative steam reforming. A thermodynamic equilibrium simulation was used for determining steam reforming data whereas previous experimental results were considered for setting the pyrolysis volatile stream composition. The adequacy of this simulation tool was validated usin Read More
Life Cycle Assessment of Improved High Pressure Alkaline Electrolysis
Aug 2015
Publication
This paper investigates environmental impacts of high pressure alkaline water electrolysis systems. An advanced system with membranes on polymer basis is compared to a state-of-the-art system with asbestos membranes using a Life Cycle Assessment (LCA) approach. For the advanced system a new improved membrane technology has been investigated within the EU research project “ELYGRID”. Results indicate that most environmental impacts are cau Read More
Techno-Economics Optimization of H2 and CO2 Compression for Renewable Energy Storage and Power-to-Gas Applications
Nov 2021
Publication
The decarbonization of the industrial sector is imperative to achieve a sustainable future. Carbon capture and storage technologies are the leading options but lately the use of CO2 is also being considered as a very attractive alternative that approaches a circular economy. In this regard power to gas is a promising option to take advantage of renewable H2 by converting it together with the captured CO2 into renewable gases in particular renewabl Read More
Validation of GreenH2armony® as a Tool for the Computation of Harmonised Life-Cycle Indicators of Hydrogen
Apr 2020
Publication
The Life Cycle Assessment (LCA) methodology is often used to check the environmental suitability of hydrogen energy systems usually involving comparative studies. However these comparative studies are typically affected by inconsistent methodological choices between the case studies under comparison. In this regard protocols for the harmonisation of methodological choices in LCA of hydrogen are available. The step-by-step application of these protocol Read More
Flammability Reduction in a Pressurised Water Electrolyser Based on a Thin Polymer Electrolyte Membrane through a Pt-alloy Catalytic Approach
Jan 2019
Publication
Various Pt-based materials (unsupported Pt PtRu PtCo) were investigated as catalysts for recombining hydrogen and oxygen back into water. The recombination performance correlated well with the surface Pt metallic state. Alloying cobalt to platinum was observed to produce an electron transfer favouring the occurrence of a large fraction of the Pt metallic state on the catalyst surface. Unsupported PtCo showed both excellent recombinati Read More
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in mul Read More
Unconventional Pearlitic Pseudocolonies Affecting Macro-, Micro- and Nano-structural Integrity of Cold-drawn Pearlitic Steel Wires: Resembling van Gogh, Bernini, Mantegna and Picasso
Dec 2020
Publication
Prestressing steel wires are manufactured by cold drawing during which a preferential orientation is achieved in the matter of pearlitic colonies and lamellae. In addition to this general trend special (unconventional) pearlitic pseudocolonies evolve during the heavy-drawing manufacture process affecting the posterior macro- micro- and nano-structural integrity of the material. This paper discusses the important role of such a special microstructural uni Read More
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinnin Read More
Analysis of the Environmental Degradation Effects on the Cables of “La Arena” Bridge (Spain)
Sep 2017
Publication
After nearly 25 years of service some of the wires of the tendons of “La Arena” bridge (Spain) started to exhibit the effects of environmental degradation processes. “La Arena” is cable-stayed bridge with 6 towers and a reference span between towers of about 100 meters. After a maintenance inspection of the bridge evidences of corrosion were detected in some of the galvanized wires of the cables. A more in-deep analysis of these wires revealed that Read More
Acoustic and Psychoacoustic Levels from an Internal Combustion Engine Fueled by Hydrogen vs. Gasoline
Feb 2022
Publication
Whereas noise generated by road traffic is an important factor in urban pollution little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried o Read More
Light-Driven Hydrogen Evolution Assisted by Covalent Organic Frameworks
Jun 2021
Publication
Covalent organic frameworks (COFs) are crystalline porous organic polymers built from covalent organic blocks that can be photochemically active when incorporating organic semiconducting units such as triazine rings or diacetylene bridges. The bandgap charge separation capacity porosity wettability and chemical stability of COFs can be tuned by properly choosing their constitutive building blocks by extension of conjugation by adjustment of the siz Read More
No more items...