Egypt
Innovative Hybrid Energy Storage Systems with Sustainable Integration of Green Hydrogen and Energy Management Solutions for Standalone PV Microgrids Based on Reduced Fractional Gradient Descent Algorithm
Oct 2024
Publication
This paper investigates innovative solutions to enhance the performance and lifespan of standalone photovoltaic (PV)-based microgrids with a particular emphasis on off-grid communities. A major challenge in these systems is the limited lifespan of batteries. To overcome this issue researchers have created hybrid energy storage systems (HESS) along with advanced power management strategies. This study introduces innovative multi-level HESS approaches and a related energy management strategy designed to alleviate the charge/discharge stress on batteries. Comprehensive Matlab Simulink models of various HESS topologies within standalone PV microgrids are utilized to evaluate system performance under diverse weather conditions and load profiles for rural site. The findings reveal that the proposed HESS significantly extends battery life expectancy compared to existing solutions. Furthermore the paper presents a novel energy management strategy based on the Reduced Fractional Gradient Descent (RFGD) algorithm optimization tailored for hybrid systems that include photovoltaic fuel cell battery and supercapacitor components. This strategy aims to minimize hydrogen consumption of Fuel Cells (FCs) thereby supporting the production of green ammonia for local industrial use. The RFGD algorithm is selected for its minimal user-defined parameters and high convergence efficiency. The proposed method is compared with other algorithms such as the Lyrebird Optimization Algorithm (LOA) and Osprey Optimization Algorithm (OOA). The RFGD algorithm exhibits superior accuracy in optimizing energy management achieving a 15% reduction in hydrogen consumption. Its efficiency is evident from the reduced computational time compared to conventional algorithms. Although minor losses in computational resources were observed they were substantially lower than those associated with traditional optimization techniques. Overall the RFGD algorithm offers a robust and efficient solution for enhancing the performance of hybrid energy systems.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Robust Control for Techno-economic Efficiency Energy Management of Fuel Cell Hybrid Electric Vehicles
Apr 2022
Publication
The design of an efficient techno-economic autonomous fuel cell hybrid electric vehicle(FCHEV) is a crucial challenge. This paper investigates the design of a near optimal PI controller for an automated FCHEV where autonomy is expressed as efficient and robust tracking of a given reference speed trajectory without driver’s intervention. An impartial comparison is introduced to illustrate the effectiveness of the proposed metaheuristic-based optimal controllers in enhancing the system dynamic performance. The comprehensive optimization performance indicator is considered as a function of the vehicle dynamic characteristics while determining the optimal controller gains. In this paper the proposed effective up-to-date metaheuristic techniques are the grey wolf optimization (GWO) as well as the artificial bee colony (ABC). Using MATLAB TM /Simulink numerical simulations clearly illustrate the efficiency of near-optimal gains in the optimized tuning methodologies and the fixed manual one in realizing adequate velocity tracking. The simulation results demonstrate the superiority of both ABC and GWO rather than the manual controller for driving cycles of high acceleration and deceleration levels. In absence of these latter the manual defined gain controller is considered sufficient. Through a comprehensive sensitivity analysis the robustness of both metaheuristic-based controllers is verified under diverse driving cycles of different operation features and nature. Despite GWO results in better dynamic characteristics the ABC provides more economical feature with about 1.5% compared to manual system in extra urban driving cycle. However manual-controller has the minimum fuel cost under the United States driving cycle developed by the environmental protection agency as a New York city cycle(US EPA NYCC) and urban driving cycle (ECE). Ecologically electric vehicles have an environmentally friendly effect especially when driven with green hydrogen. Autonomous vehicles involving velocity control systems would raise car share and provide more comfort.
An Optimal Standalone Wind-photovoltaic Power Plant System for Green Hydrogen Generation: Case Study for Hydrogen Refueling Station
May 2024
Publication
Sustainability goals include the utilization of renewable energy resources to supply the energy needs in addition to wastewater treatment to satisfy the water demand. Moreover hydrogen has become a promising energy carrier and green fuel to decarbonize the industrial and transportation sectors. In this context this research investigates a wind-photovoltaic power plant to produce green hydrogen for hydrogen refueling station and to operate an electrocoagulation water treatment unit in Ostrava Czech Republic’s northeast region. The study conducts a techno-economic analysis through HOMER Pro® software for optimal sizing of the power station components and to investigate the economic indices of the plant. The power station employs photovoltaic panels and wind turbines to supply the required electricity for electrolyzers and electrocoagulation reactors. As an offgrid system lead acid batteries are utilized to store the surplus electricity. Wind speed and solar irradiation are the key role site dependent parameters that determine the cost of hydrogen electricity and wastewater treatment. The simulated model considers the capital operating and replacement costs for system components. In the proposed system 240 kg of hydrogen as well as 720 kWh electrical energy are daily required for the hydrogen refueling station and the electrocoagulation unit respectively. Accordingly the power station annually generates 6997990 kWh of electrical energy in addition to 85595 kg of green hydrogen. Based on the economic analysis the project’s NPC is determined to be €5.49 M and the levelized cost of Hydrogen (LCH) is 2.89 €/kg excluding compressor unit costs. This value proves the effectiveness of this power system which encourages the utilization of green hydrogen for fuel-cell electric vehicles (FCVs). Furthermore emerging electrocoagulation studies produce hydrogen through wastewater treatment increasing hydrogen production and lowering LCH. Therefore this study is able to provide practicable methodology support for optimal sizing of the power station components which is beneficial for industrialization and economic development as well as transition toward sustainability and autonomous energy systems.
Recent Advances in Sustainable Hydrogen Production from Microalgae: Mechanisms, Challenges, and Future Perspectives
Jan 2024
Publication
The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel hydrogen and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate ability to thrive in diverse habitats ability to resolve conflicts between fuel and food pro duction and capacity to capture and utilize atmospheric carbon dioxide. Therefore microalgae-based bio hydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end the review paper emphasizes recent information related to microalgae-based biohydrogen production mechanisms of sustainable hydrogen production factors affecting biohydrogen production by microalgae bioreactor design and hydrogen production advanced strategies to improve efficiency of biohydrogen production by microalgae along with bottlenecks and perspectives to over come the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to con ventional hydrocarbon biofuels thereby expediting the carbon neutrality target that is most advantageous to the environment.
Optimal Scheduling of Hydrogen Storage in Integrated Energy System Including Multi-source and Load Uncertainties
Dec 2024
Publication
Demand response (DR) is a crucial element in the optimization of integrated energy systems (IESs) that incor porate distributed generation (DG). However its inherent uncertainty poses significant challenges to the eco nomic viability of IESs. This research presents a novel economic dispatch model for IESs utilizing information gap decision theory (IGDT). The model integrates various components to improve IES performance and dispatch efficiency. With a focus on hydrogen energy the model considers users’ energy consumption patterns thereby improving system flexibility. By applying IGDT the model effectively addresses the uncertainty associated with DR and DG overcoming the limitations of traditional methods. The research findings indicate that in relation to the baseline method the proposed model has the potential to reduce operating costs by 6.3 % and carbon emissions by 4.2 %. The integration of a stepwise carbon trading mechanism helps boost both economic and environmental advantages achieving a 100 % wind power consumption rate in the optimized plan. In addition the daily operating costs are minimized to 23758.99 ¥ while carbon emissions are significantly reduced to 34192 kg. These findings provide quantitative decision support for IES dispatch planners to help them develop effective dispatch strategies that are consistent with low-carbon economic initiatives.
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Dec 2022
Publication
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry; (v) the possibility to apply fuel cell systems on different ship types. This review aims to be a reference and a guide to state both the limitations and the developing potential of fuel cell systems for different maritime applications.
A Review of Water Electrolysis-based Systems for Hydrogen Production using Hybrid/Solar/Wind Energy Systems
Oct 2022
Publication
Hydrogen energy as clean and efcient energy is considered signifcant support for the construction of a sustainable society in the face of global climate change and the looming energy revolution. Hydrogen is one of the most important chemical substances on earth and can be obtained through various techniques using renewable and nonrenewable energy sources. However the necessity for a gradual transition to renewable energy sources signifcantly hampers eforts to identify and implement green hydrogen production paths. Therefore this paper’s objective is to provide a technological review of the systems of hydrogen production from solar and wind energy utilizing several types of water electrolyzers. The current paper starts with a short brief about the diferent production techniques. A detailed comparison between water electrolyzer types and a complete illustration of hydrogen production techniques using solar and wind are presented with examples after which an economic assessment of green hydrogen production by comparing the costs of the discussed renewable sources with other production methods. Finally the challenges that face the mentioned production methods are illuminated in the current review.
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Utilization of Hydrogen and Methane as Energy Carriers with Exhaust Gas Recirculation for Sustainable Diesel Engines
May 2024
Publication
Hydrogen and methane as secondary fuels in diesel engines can be promising solutions to meet energy demand. The current study investigated the effect of the specialty gases of different compositions on diesel engine performance and exhaust gases. Four gases with various compositions of exhaust gas recirculation (Carbon monoxide Carbon dioxide and Nitrogen) and fuels (Hydrogen and Methane) were used at various mass flow rates of 10 20 and 25 LPM (liter per minute) and various engine speeds of 2000 2500 3000 and 3500 rpm (revolutions per minute). The procured results revealed that adding specialty gases improved brake thermal efficiency and power. Similarly the brake-specific fuel consumption was also massively retarded compared to diesel due to the influence of the hydrogen and methane composition. However the fuel with the higher nitrogen reported less BTE (brake thermal efficiency) and comparatively higher exhaust gas temperature owing to the higher presence of nitrogen in their composition. Regarding emissions including exhaust gas recirculation dropped the formation of pollutants efficiently compared to diesel. Among various fuels Case 1 (30 % H2 5 % CH4 5 CO2 and 60 % CO) reported the lowest emission of NOx and Case 2 (25 % H2 5 % CH4 5 CO2 30 % CO and 35 % N2) of CO and CO2 emissions. Generally specialty gases with a variable composition of exhaust gas recirculation gases can be a promising sustainable replacement for existing fossil fuels.
Critical Challenges in Biohydrogen Production Processes from the Organic Feedstocks
Aug 2020
Publication
The ever-increasing world energy demand drives the need for new and sustainable renewable fuel to mitigate problems associated with greenhouse gas emissions such as climate change. This helps in the development toward decarbonisation. Thus in recent years hydrogen has been seen as a promising candidate in global renewable energy agendas where the production of biohydrogen gains more attention compared with fossil-based hydrogen. In this review biohydrogen production using organic waste materials through fermentation biophotolysis microbial electrolysis cell and gasification are discussed and analysed from a technological perspective. The main focus herein is to summarise and criticise through bibliometric analysis and put forward the guidelines for the potential future routes of biohydrogen production from biomass and especially organic waste materials. This research review claims that substantial efforts currently and in the future should focus on biohydrogen production from integrated technology of processes of (i) dark and photofermentation (ii) microbial electrolysis cell (MEC) and (iii) gasification of combined different biowastes. Furthermore bibliometric mapping shows that hydrogen production from biomethanol and the modelling process are growing areas in the biohydrogen research that lead to zero-carbon energy soon.
Green Hydrogen Generation in Alkaline Solution Using Electrodeposited Ni-Co-nano-graphene Thin Film Cathode
Apr 2024
Publication
Green hydrogen generation technologies are currently the most pressing worldwide issues ofering promising alternatives to existing fossil fuels that endanger the globe with growing global warming. The current research focuses on the creation of green hydrogen in alkaline electrolytes utilizing a Ni-Co-nano-graphene thin flm cathode with a low overvoltage. The recommended conditions for creating the target cathode were studied by electrodepositing a thin Ni-Co-nano-graphene flm in a glycinate bath over an iron surface coated with a thin copper interlayer. Using a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) mapping analysis the obtained electrode is physically and chemically characterized. These tests confrm that Ni Co and nano-graphene are homogeneously dispersed resulting in a lower electrolysis voltage in green hydrogen generation. Tafel plots obtained to analyze electrode stability revealed that the Ni-Co-nano-graphene cathode was directed to the noble direction with the lowest corrosion rate. The Ni-Co-nano-graphene generated was used to generate green hydrogen in a 25% KOH solution. For the production of 1 kg of green hydrogen utilizing Ni-Co-nano-graphene electrode the electrolysis efciency was 95.6% with a power consumption of 52 kwt h−1 whereas it was 56.212. kwt h−1 for pure nickel thin flm cathode and 54. kwt h−1 for nickel cobalt thin flm cathode respectively.
No more items...