Egypt
Hydrogen Energy Storage: New Techno-economic Emergence Solution Analysis
Aug 2015
Publication
The integration of various renewable energy sources as well as the liberalization of electricity markets are established facts in modern electrical power systems. The increased share of renewable sources within power systems intensifies the supply variability and intermittency. Therefore energy storage is deemed as one of the solutions for stabilizing the supply of electricity to maintain generation-demand balance and to guarantee uninterrupted supply of energy to users. In the context of sustainable development and energy resources depletion the question of the growth of renewable energy electricity production is highly linked to the ability to propose new and adapted energy storage solutions. The purpose of this multidisciplinary paper is to highlight the new hydrogen production and storage technology its efficiency and the impact of the policy context on its development. A comprehensive techno/socio/economic study of long term hydrogen based storage systems in electrical networks is addressed. The European policy concerning the different energy storage systems and hydrogen production is explicitly discussed. The state of the art of the techno-economic features of the hydrogen production and storage is introduced. Using Matlab-Simulink for a power system of rated 70 kW generator the excess produced hydrogen during high generation periods or low demand can be sold either directly to the grid owners or as filled hydrogen bottles. The affordable use of Hydrogen-based technologies for long term electricity storage is verified.
Design and Analysis of Photovoltaic/wind Operations at MPPT for Hydrogen Production using a PEM Electrolyzer: Towards Innovations in Green Technology
Jul 2023
Publication
In recent times renewable energy systems (RESs) such as Photovoltaic (PV) and wind turbine (WT) are being employed to produce hydrogen. This paper aims to compare the efficiency and performance of PV and WT as sources of RESs to power polymer electrolyte membrane electrolyzer (PEMEL) under different conditions. The study assessed the input/ output power of PV and WT the efficiency of the MPPT controller the calculation of the green hydrogen production rate and the efficiency of each system separately. The study analyzed variable irradiance from 600 to 1000 W/m2 for a PV system and a fixed temperature of 25˚C while for the WT system it considered variable wind speed from 10 to 14 m/s and zero fixed pitch angle. The study demonstrated that the applied controllers were effective fast low computational and highly accurate. The obtained results showed that WT produces twice the PEMEL capacity while the PV system is designed to be equal to the PEMEL capacity. The study serves as a reference for designing PV or WT to feed an electrolyzer. The MATLAB program validated the proposed configurations with their control schemes.
Recent Application of Nanomaterials to Overcome Technological Challenges of Microbial Electrolysis Cells
Apr 2022
Publication
Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus understanding the technological challenges of MECs the characteristics of nanomaterials and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein the critical challenges that need to be addressed for MECs are highlighted and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.
Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates
Jan 2023
Publication
In this study a green hydrogen system was studied to provide electricity for an office building in the Sharjah emirate in the United Arab Emirates. Using a solar PV a fuel cell a diesel generator and battery energy storage; a hybrid green hydrogen energy system was compared to a standard hybrid system (Solar PV a diesel generator and battery energy storage). The results show that both systems adequately provided the power needed for the load of the office building. The cost of the energy for both the basic and green hydrogen energy systems was 0.305 USD/kWh and 0.313 USD/kWh respectively. The cost of the energy for both systems is very similar even though the capital cost of the green hydrogen energy system was the highest value; however the replacement and operational costs of the basic system were higher in comparison to the green hydrogen energy system. Moreover the impact of the basic system in terms of the carbon footprint was more significant when compared with the green hydrogen system. The reduction in carbon dioxide was a 4.6 ratio when compared with the basic system.
Techno-Economic Potential of Wind-Based Green Hydrogen Production in Djibouti: Literature Review and Case Studies
Aug 2023
Publication
Disputed supply chains inappropriate weather and low investment followed by the Russian invasion of Ukraine has led to a phenomenal energy crisis especially in the Horn of Africa. Accordingly proposing eco-friendly and sustainable solutions to diversify the access of electricity in the Republic of Djibouti which has no conventional energy resources and is completely energy dependent on its neighboring countries has become a must. Therefore the implementation of sustainable renewable and energy storage systems is nationally prioritized. This paper deals for the first time with the exploitation of such an affordable and carbon-free resource to produce hydrogen from wind energy in the rural areas of Nagad and Bara Wein in Djibouti. The production of hydrogen and the relevant CO2 emission reduction using different De Wind D6 Vestas and Nordex wind turbines are displayed while using Alkaline and Proton Exchange Membrane (PEM) electrolyzers. The Bara Wein and Nagad sites had a monthly wind speed above 7 m/s. From the results the Nordex turbine accompanied with the alkaline electrolyzer provides the most affordable electricity production approximately 0.0032 $/kWh for both sites; this cost is about one per hundred the actual imported hydroelectric energy price. Through the ecological analysis the Nordex turbine is the most suitable wind turbine with a CO2 emission reduction of 363.58 tons for Bara Wein compared to 228.76 tons for Nagad. While integrating the initial cost of wind turbine implementation in the capital investment the mass and the levelized cost of the produced green hydrogen are estimated as (29.68 tons and 11.48 $/kg) for Bara Wein with corresponding values of (18.68 tons and 18.25 $/kg) for Nagad.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry
Sep 2023
Publication
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public transport that could increase general audience acceptability thanks to their showcase potential. In this study a short sea journey ferry used in the port of Genova as a public transport vehicle is analyzed to evaluate a ”zero emission propulsion” retrofitting process. In the paper different types of solutions (batteries proton exchange membrane fuel cell (PEMFC) solid oxide fuel cell (SOFC)) and fuels (hydrogen ammonia natural gas and methanol) are investigated to identify the most feasible technology to be implemented onboard according to different aspects: ferry daily journey and scheduling available volumes and spaces propulsion power needs energy storage/fuel tank capacity needed economics etc. The paper presents a multi-aspect analysis that resulted in the identification of the hydrogen-powered PEMFC as the best clean power system to guarantee for this specific case study a suitable retrofitting of the vessel that could guarantee a zero-emission journey
Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production
Apr 2023
Publication
Hydrogen is known to be the carbon-neutral alternative energy carrier with the highest energy density. Currently more than 95% of hydrogen production technologies rely on fossil fuels resulting in greenhouse gas emissions. Water electrolysis is one of the most widely used technologies for hydrogen generation. Nuclear power a renewable energy source can provide the heat needed for the process of steam electrolysis for clean hydrogen production. This review paper analyses the recent progress in hydrogen generation via high-temperature steam electrolysis through solid oxide electrolysis cells using nuclear thermal energy. Protons and oxygen-ions conducting solid oxide electrolysis processes are discussed in this paper. The scope of this review report covers a broad range including the recent advances in material development for each component (i.e. hydrogen electrode oxygen electrode electrolyte interconnect and sealant) degradation mechanisms and countermeasures to mitigate them.
Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units
Apr 2023
Publication
Recently with the large-scale integration of renewable energy sources into microgrid (µGs) power electronics distributed energy systems have gained popularity. However low inertia reduces system frequency stability and anti-disturbance capabilities exposing power quality to intermittency and uncertainty in photovoltaics or wind turbines. To ensure system stability the virtual inertia control (VIC) is presented. This paper proposes two solutions to overcome the low inertia problem and the surplus in capacities resulting from renewable energy sources. The first solution employs superconducting magnetic energy storage (SMES) which can be deemed as an efficient solution for damping the frequency oscillations. Therefore in this work SMES that is managed by a simple proportional-integral-derivative controller (PID) controller is utilized to overcome the low inertia. In the second solution the hydrogen storage system is employed to maintain the stability of the microgrid by storing surplus power generated by renewable energy sources (RESs). Power-to-Power is a method of storing excess renewable energy as chemical energy in the form of hydrogen. Hydrogen can be utilized locally or delivered to a consumption node. The proposed µG operation demonstrates that the integration of the photovoltaics (PVs) wind turbines (WTs) diesel engine generator (DEG) electrolyzer micro gas turbine (µGT) and SMES is adequate to fulfill the load requirements under transient operating circumstances such as a low and high PV output power as well as to adapt to sudden changes in the load demand. The effectiveness of the proposed schemes is confirmed using real irradiance data (Benban City Egypt) using a MATLAB/SIMULINK environment.
PEMFC Poly-Generation Systems: Developments, Merits, and Challenges
Oct 2021
Publication
Significant research efforts are directed towards finding new ways to reduce the cost increase efficiency and decrease the environmental impact of power-generation systems. The poly-generation concept is a promising strategy that enables the development of a sustainable power system. Over the past few years the Proton Exchange Membrane Fuel Cell-based Poly-Generation Systems (PEMFC-PGSs) have received accelerated developments due to the low-temperature operation high efficiency and low environmental impact. This paper provides a comprehensive review of the main PEMFC-PGSs including Combined Heat and Power (CHP) co-generation systems Combined Cooling and Power (CCP) co-generation systems Combined Cooling Heat and Power (CCHP) tri-generation systems and Combined Water and Power (CWP) co-generation systems. First the main technologies used in PEMFC-PGSs such as those related to hydrogen production energy storage and Waste Heat Recovery (WHR) etc. are detailed. Then the research progresses on the economic energy and environmental performance of the different PEMFC-PGSs are presented. Also the recent commercialization activities on these systems are highlighted focusing on the leading countries in this field. Furthermore the remaining economic and technical obstacles of these systems along with the future research directions to mitigate them are discussed. The review reveals the potential of the PEMFC-PGS in securing a sustainable future of the power systems. However many economic and technical issues particularly those related to high cost and degradation rate still need to be addressed before unlocking the full benefits of such systems.
Developments in Hydrogen Fuel Cells
Mar 2023
Publication
The rapid growth in fossil fuels has resulted in climate change that needs to be controlled in the near future. Several methods have been proposed to control climate change including the development of efficient energy conversion devices. Fuel cells are environmentally friendly energy conversion devices that can be fuelled by green hydrogen with only water as a by-product or by using different biofuels such as biomass in wastewater urea in wastewater biogas from municipal and agricultural wastes syngas from agriculture wastes and waste carbon. This editorial discusses the fundamentals of the operation of the fuel cell and their application in various sectors such as residential transportation and power generation.
Climate Action for the Shipping Industry: Some Perspectives on the Role of Nuclear Power in Maritime Decarbonization
Feb 2023
Publication
The shipping industry is a major enabler of globalization trade commerce and human welfare. But it is still heavily served by fossil fuels which make it one of the foremost greenhouse gas emitting sectors operational today. It is also one of the hardest to abate segments of the transport industry. As part of the economy-wide climate change mitigation and adaptation efforts it is necessary to consider a low carbon energy transition for this segment as well. This study examines the potential role of nuclear power and cogeneration towards greening this sector and identifies the associated techno-commercial and policy challenges associated with the transition. Quantitative estimates of the economics and investments associated with some of the possible routes are also presented. Alternatives such as nuclear-powered ships along commercial maritime trading routes ships working on nuclear derived green hydrogen ammonia or other sustainable power fuels will enable not only decarbonization of the shipping industry but also allow further diversification of the nuclear industry through non-electric applications of nuclear power and new sector coupling opportunities. In the run-up to the UNFCCC-COP28 meeting in 2023 in UAE nuclear equipped nations heavily engaged in and dependent on maritime trade and commerce should definitely consider nuclear driven decarbonization of shipping and some of the options presented here as part of their climate action strategies.
Large-scale Underground Hydrogen Storage: Integrated Modeling of a Reservoir-wellbore System
Jan 2023
Publication
Underground Hydrogen Storage (UHS) has received significant attention over the past few years as hydrogen seems well-suited for adjusting seasonal energy gaps. We present an integrated reservoir-well model for “Viking A00 the depleted gas field in the North Sea as a potential site for UHS. Our findings show that utilizing the integrated model results in more reasonable predictions as the gas composition changes over time. Sensitivity analyses show that the lighter the cushion gas the more production can be obtained. However the purity of the produced hydrogen will be affected to some extent which can be enhanced by increasing the fill-up period and the injection rate. The results also show that even though hydrogen diffuses into the reservoir and mixes up with the native fluids (mainly methane) the impact of hydrogen diffusion is marginal. All these factors will potentially influence the project's economics.
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Techno-economic Feasibility of Hybrid PV/wind/battery/thermal Storage Trigeneration System: Toward 100% Energy Independency and Green Hydrogen Production
Dec 2022
Publication
With the clear adverse impacts of fossil fuel-based energy systems on the climate and environment ever-growing interest and rapid developments are taking place toward full or nearly full dependence on renewable energies in the next few decades. Estonia is a European country with large demands for electricity and thermal energy for district heating. Considering it as the case study this work explores the feasibility and full potential of optimally sized photovoltaic (PV) wind and PV/wind systems equipped with electric and thermal storage to fulfill those demands. Given the large excess energy from 100% renewable energy systems for an entire country this excess is utilized to first meet the district heating demand and then to produce hydrogen fuel. Using simplified models for PV and wind systems and considering polymer electrolyte membrane (PEM) electrolysis a genetic optimizer is employed for scanning Estonia for optimal installation sites of the three systems that maximize the fulfillment of the demand and the supply–demand matching while minimizing the cost of energy. The results demonstrate the feasibility of all systems fully covering the two demands while making a profit compared to selling the excess produced electricity directly. However the PV-driven system showed enormous required system capacity and amounts of excess energy with the limited solar resources in Estonia. The wind system showed relatively closer characteristics to the hybrid system but required a higher storage capacity by 75.77%. The hybrid PV/wind-driven system required a total capacity of 194 GW most of which belong to the wind system. It was also superior concerning the amount (15.05 × 109 tons) and cost (1.42 USD/kg) of the produced green hydrogen. With such full mapping of the installation capacities and techno-economic parameters of the three systems across the country this study can assist policymakers when planning different country-scale cogeneration systems.
Precise Dynamic Modelling of Real-World Hybrid Solar-Hydrogen Energy Systems for Grid-Connected Buildings
Jul 2023
Publication
Hybrid renewable hydrogen energy systems could play a key role in delivering sustainable solutions for enabling the Net Zero ambition; however the lack of exact computational modelling tools for sizing the integrated system components and simulating their real-world dynamic behaviour remains a key technical challenge against their widespread adoption. This paper addresses this challenge by developing a precise dynamic model that allows sizing the rated capacity of the hybrid system components and accurately simulating their real-world dynamic behaviour while considering effective energy management between the grid-integrated system components to ensure that the maximum possible proportion of energy demand is supplied from clean sources rather than the grid. The proposed hybrid system components involve a solar PV system electrolyser pressurised hydrogen storage tank and fuel cell. The developed hybrid system model incorporates a set of mathematical models for the individual system components. The developed precise dynamic model allows identifying the electrolyser’s real-world hydrogen production levels in response to the input intermittent solar energy production while also simulating the electrochemical behaviour of the fuel cell and precisely quantifying its real-world output power and hydrogen consumption in response to load demand variations. Using a university campus case study building in Scotland the effectiveness of the developed model has been assessed by benchmarking comparison between its results versus those obtained from a generic model in which the electrochemical characteristics of the electrolyser and fuel cell systems were not taken into consideration. Results from this comparison have demonstrated the potential of the developed model in simulating the real-world dynamic operation of hybrid solar hydrogen energy systems for grid-connected buildings while sizing the exact capacity of system components avoiding oversizing associated with underutilisation costs and inaccurate simulation.
Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm
Jan 2023
Publication
Hydrogen is a new promising energy source. Three operating parameters including inlet gas flow rate pH and impeller speed mainly determine the biohydrogen production from membrane bioreactor. The work aims to boost biohydrogen production by determining the optimal values of the control parameters. The proposed methodology contains two parts: modeling and parameter estimation. A robust ANIFS model to simulate a membrane bioreactor has been constructed for the modeling stage. Compared with RMS thanks to ANFIS the RMSE decreased from 2.89 using ANOVA to 0.0183 using ANFIS. Capturing the proper correlation between the inputs and output of the membrane bioreactor process system encourages the constructed ANFIS model to predict the output performance exactly. Then the optimal operating parameters were identified using the honey badger algorithm. During the optimization process inlet gas flow rate pH and impeller speed are used as decision variables whereas the biohydrogen production is the objective function required to be maximum. The integration between ANFIS and HBA boosted the hydrogen production yield from 23.8 L to 25.52 L increasing by 7.22%.
Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review
Dec 2022
Publication
In this review we compare hydrogen production from waste by pyrolysis and bioprocesses. In contrast the pyrolysis feed was limited to plastic and tire waste unlikely to be utilized by biological decomposition methods. Recent risks of pyrolysis such as pollutant emissions during the heat decomposition of polymers and high energy demands were described and compared to thresholds of bioprocesses such as dark fermentation. Many pyrolysis reactors have been adapted for plastic pyrolysis after successful investigation experiences involving waste tires. Pyrolysis can transform these wastes into other petroleum products for reuse or for energy carriers such as hydrogen. Plastic and tire pyrolysis is part of an alternative synthesis method for smart polymers including semi-conductive polymers. Pyrolysis is less expensive than gasification and requires a lower energy demand with lower emissions of hazardous pollutants. Short-time utilization of these wastes without the emission of metals into the environment can be solved using pyrolysis. Plastic wastes after pyrolysis produce up to 20 times more hydrogen than dark fermentation from 1 kg of waste. The research summarizes recent achievements in plastic and tire waste pyrolysis development.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
No more items...