Germany
Optimal Supply Chains and Power Sector Benefits of Green Hydrogen
Jul 2021
Publication
Green hydrogen can help to decarbonize parts of the transportation sector but its power sector interactions are not well understood so far. It may contribute to integrating variable renewable energy sources if production is sufficiently flexible in time. Using an open-source co-optimization model of the power sector and four options for supplying hydrogen at German filling stations we find a trade-of between energy efficiency and temporal flexibility. For lower shares of renewables and hydrogen more energy-efficient and less flexible small-scale on-site electrolysis is optimal. For higher shares of renewables and/or hydrogen more flexible but less energy-efficient large-scale hydrogen supply chains gain importance as they allow to temporally disentangle hydrogen production from demand via storage. Liquid hydrogen emerges as particularly beneficial followed by liquid organic hydrogen carriers and gaseous hydrogen. Large-scale hydrogen supply chains can deliver substantial power sector benefits mainly through reduced renewable curtailment. Energy modelers and system planners should consider the distinct flexibility characteristics of hydrogen supply chains in more detail when assessing the role of green hydrogen in future energy transition scenarios. We also propose two alternative cost and emission metrics which could be useful in future analyses.
Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs
Oct 2020
Publication
Human health is a key pillar of modern conceptions of sustainability. Humanity pays a considerable price for its dependence on fossil-fueled energy systems which must be addressed for sustainable urban development. Public hospitals are focal points for communities and have an opportunity to lead the transition to renewable energy. We have reimagined the healthcare energy ecosystem with sustainable technologies to transform hospitals into networked clean energy hubs. In this concept design hydrogen is used to couple energy with other on-site medical resource demands and vanadium flow battery technology is used to engage the public with energy systems. This multi-generation system would reduce harmful emissions while providing reliable services tackling the linked issues of human and environmental health.
Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System
Nov 2021
Publication
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon a careful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrometer (QMS) was used for the continuous flow monitoring of the evolved gases while high performance ion chromatography (HPIC) isotopic labeling and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photoKolbe reaction mechanism a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2 HD and/or D2 matched those of the solvent; however using D2O decreased the reaction rate. Interestingly the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism and thus the hydrogen yield as indicated by the QMS and the EPR measurements. The added KI promoted H2 evolution to reach the theoretically predictable amount and inhibited the formation of intermediates without affecting the oxalic acid degradation rate. The proposed mechanism by which KI boosts the photocatalytic performance is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reforming.
A Policy Review of Green Hydrogen Economy in Southern Africa
Nov 2021
Publication
Renewable energy and clean energy have been on the global agenda for energy transition for quite a long time but recently gained strong momentum especially with the anticipated depletion of fossil fuels alongside increasing environmental degradation from their exploitation and the changing climate caused by their excessive carbon emissions. Despite this Africa’s pursuit to transition to a green economy using renewable energy resources still faces constraints that hamper further development and commercialization. These may include socio-economic technical political financial and institutional policy framework barriers. Although hydrogen demand is still low in Southern Africa the region can meet the global demands for green hydrogen as a major supplier because of its enormous renewable energy resource-base. This article reviews existing renewable energy resources and hydrogen energy policies in the Southern African Development Community (SADC). The significance of this review is that it explores how clean energy technologies that utilize renewable energy resources address the United Nations sustainable development goals (UN SDGs) and identifies the hydrogen energy policy gaps. This review further presents policy options and recommends approaches to enhance hydrogen energy production and ramp the energy transition from a fossil fuel-based economy to a hydrogen energy-based economy in Southern Africa. Concisely the transition can be achieved if the existing hydrogen energy policy framework gap is narrowed by formulating policies that are specific to hydrogen development in each country with the associated economic benefits of hydrogen energy clearly outlined.
Underground Storage of Green Hydrogen—Boundary Conditions for Compressor Systems
Aug 2022
Publication
The large-scale storage of hydrogen in salt caverns modelled on today’s natural gas storage is a promising approach to storing renewable energy over a large power range and for the required time period. An essential subsystem of the overall gas storage is the surface facility and in particular the compressor system. The future design of compressor systems for hydrogen storage strongly depends on the respective boundary conditions. Therefore this work analyses the requirements of compressor systems for cavern storage facilities for the storage of green hydrogen i.e. hydrogen produced from renewable energy sources using the example of Lower Saxony in Germany. In this course a hydrogen storage demand profile of one year is developed in hourly resolution from feed-in time series of renewable energy sources. The injection profile relevant for compressor operation is compared with current natural gas injection operation modes
Underground Bio-methanation: Concept and Potential
Feb 2020
Publication
As a major part of the energy turn around the European Union and other countries are supporting the development of renewable energy technologies to decrease nuclear and fossil energy production. Therefore efficient use of renewable energy resources is one challenge as they are influenced by environmental conditions and hence the intensity of resources such as wind or solar power fluctuates. To secure constant energy supply suitable energy storage and conversion techniques are required. An upcoming solution is the utilization and storage of hydrogen or hydrogen-rich natural gas in porous formations in the underground. In the past microbial methanation was observed as a side effect during these gas storage operations. The concept of underground bio-methanation arised which uses the microbial metabolism to convert hydrogen and carbon dioxide into methane. The concept consists of injecting gaseous hydrogen and carbon dioxide into an underground structure during energy production peaks which are subsequently partly converted into methane. The resulting methane-rich gas mixture is withdrawn during high energy demand. The concept is comparable to engineered bio-reactors which are already locally integrated into the gas infrastructure. In both technologies the conversion process of hydrogen into methane is driven by hydrogenotrophic methanogenic archaea present in the aqueous phase of the natural underground or above-ground engineered reactor. Nevertheless the porous medium in the underground provides compared to the engineered bio-reactors a larger interface between the gas and aqueous phase caused by the enormous volume in the underground porous media. The following article summarizes the potential and concept of underground methanation and the current state of the art in terms of laboratory investigations and pilot tests. A short system potential analysis shows that an underground bio-reactor with a storage capacity of 850 Mio. Sm3 could deliver methane to more than 600000 households based on a hydrogen production from renewable energies.
Potential of Power-to-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization
Oct 2018
Publication
Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM which include limited biomass potential low Power-to-Liquid performance use of PtM waste heat among others can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale.
Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios
Oct 2022
Publication
The steel industry is focused on reducing its environmental impact. Using the life cycle assessment (LCA) methodology the impacts of the primary steel production via the blast furnace route and the scrap-based secondary steel production via the EAF route are assessed. In order to achieve environmentally friendly steel production breakthrough technologies have to be implemented. With a shift from primary to secondary steel production the increasing steel demand is not met due to insufficient scrap availability. In this paper special focus is given on recycling methodologies for metals and steel. The decarbonization of the steel industry requires a shift from a coal-based metallurgy towards a hydrogen and electricity-based metallurgy. Interim scenarios like the injection of hydrogen and the use of pre-reduced iron ores in a blast furnace can already reduce the greenhouse gas (GHG) emissions up to 200 kg CO2/t hot metal. Direct reduction plants combined with electrical melting units/furnaces offer the opportunity to minimize GHG emissions. The results presented give guidance to the steel industry and policy makers on how much renewable electric energy is required for the decarbonization of the steel industry
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li Na K Ca Mg Y Eu and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
Methanol Synthesis Using Captured CO2 as Raw Material: Techno-economic and Environmental Assessment
Aug 2015
Publication
The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H2 and captured CO2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO2 emissions and (ii) the cost of production in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However raw materials prices i.e. H2 and captured CO2 do not allow such a project to be financially viable. In order to make the CCU plant financially attractive the price of MeOH should increase in a factor of almost 2 or H2 costs should decrease almost 2.5 times or CO2 should have a value of around 222 €/t under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO2 emissions of a pulverised coal (PC) power plant that produces 550MWnet of electricity. The net CO2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional MeOH synthesis process). The results demonstrate that there is a net but small potential for CO2 emissions reduction; assuming that such CCU plants are constructed in Europe to meet the MeOH demand growth and the quantities that are currently imported the net CO2 emissions reduction could be of 2.71 MtCO2/yr.
Cryogenic and Ambient Gaseous Hydrogen Blowdown with Discharge Line Effects
Sep 2021
Publication
The present work performed within the PRESLHY EC-project presents a simplified 1-d transient modelling methodology to account for discharge line effects during blowdown. The current formulation includes friction extra resistance area change and heat transfer through the discharge line walls and is able to calculate the mass flow rate and distribution of all physical variables along the discharge line. Choked flow at any time during the transient is calculated using the Possible Impossible Flow (PIF) algorithm. Hydrogen single phase physical properties and vapour-liquid equilibrium are calculated using the Helmholtz Free Energy (HFE) formulation. Homogeneous Equilibrium Mixture (HEM) model is used for two-phase physical properties. Validation is performed against the new experiments with compressed gaseous hydrogen performed at the DISCHA facility in the framework of PRESLHY (200 bar ambient and cryogenic initial tank temperature 77 K and 4 nozzle diameters 0.5 1 2 and 4 mm) and an older experiment at 900 bar ambient temperature and 2 mm nozzle. Predictions are compared against measured data from the experiments and the relative importance of line heat transfer compared to flow resistance is analysed.
Industrial Decarbonization Pathways: The Example of the German Glass Industry
Nov 2022
Publication
Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately +200%. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching the complete phase-out from natural gas to renewable energy carriers. Furthermore the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target.
The Industry Transformation from Fossil Fuels to Hydrogen will Reorganize Value Chains: Big Picture and Case Studies for Germany
Jan 2024
Publication
In many industries low-carbon hydrogen will substitute fossil fuels in the course of the transformation to climate neutrality. This paper contributes to understanding this transformation. This paper provides an overview of energy- and emission-intensive industry sectors with great potential to defossilize their production processes with hydrogen. An assessment of future hydrogen demand for various defossilization strategies in Germany that rely on hydrogen as a feedstock or as an energy carrier to a different extent in the sectors steel chemicals cement lime glass as well as pulp and paper is carried out. Results indicate that aggregate industrial hydrogen demand in those industries would range between 197 TWh and 298 TWh if production did not relocate abroad for any industry sector. The range for hydrogen demand is mainly due to differences in the extent of hydrogen utilization as compared to alternative transformation paths for example based on electrification. The attractiveness of production abroad is then assessed based on the prospective comparative cost advantage of relocating parts of the value chain to excellent production sites for low-carbon hydrogen. Case studies are provided for the steel industry as well as the chemical industry with ethylene production through methanol and the production of urea on the basis of ammonia. The energy cost of the respective value chains in Germany is then compared to the case of value chains partly located in regions with excellent conditions for renewable energies and hydrogen production. The results illustrate that at least for some processes – as ammonia production – relocation to those favorable regions may occur due to substantial comparative cost advantages.
What Does the Public Know About Technological Solutions for Achieving Carbon Neutrality? Citizens' Knowledge of Energy Transition and the Role of Media
Aug 2023
Publication
The present study explores the relation between media use and knowledge in the context of the energy transition. To identify relevant knowledge categories we relied on the expertise of an interdisciplinary research team. Based on this expertise we identified awareness-knowledge of changes in the energy system and principles-knowledge of hydrogen as important knowledge categories. With data obtained from a nationwide online survey of the German-speaking population (n = 2025) conducted in August 2021 we examined the level of knowledge concerning both categories in the German population. Furthermore we studied its associations with exposure to journalistic media and direct communication from non-media actors (e.g. scientists). Our results revealed a considerable lack of knowledge for both categories. Considering the media variables we found only weak and in some cases even negative relations with the use of journalistic media or other actors that spread information online. However we found comparably strong associations between both knowledge categories and the control variables of sex education and personal interest. We use these results to open up a general discussion of the role of the media in knowledge acquisition processes.
Regime-driven Niches and Institutional Entrepreneurs: Adding Hydrogen to Regional Energy Systems in Germany
Nov 2023
Publication
In recent years production and supply of hydrogen has gained significant attention within the German energy transition. This is due to increasingly urgent pressures to mitigate climate change and geopolitical imperatives to substitute natural gas. Hydrogen is seen as an important cross-sectoral energy carrier serving multiple functions including heat production for industry and households fuel for transportation and energy storage for stabilization of electricity supply. In the context of various funding mechanisms on several administrative levels regional value chains for green hydrogen supply are emerging. To date however few studies analyzing regional hydrogen systems exist. Due to its high projected demand of energy sources for heating industrial processes and mobility Germany appears to be a very relevant research area in this emerging field. Situated within the concept of the multi-level perspective this article examines the way how regional “niches” of green hydrogen evolve and how they are organized. The study takes an evolutionary perspective in analyzing processes of embedding green hydrogen infrastructures in regional energy regimes which entered “re-configuration”-pathways. It argues that the congruence of available resources for renewable electricity established networks of institutional entrepreneurs and access to higher level funding are conditions which put incumbent regime-actors in favorable positions to implement green hydrogen niches. Conversely the embedding of green hydrogen infrastructures in regional energy systems is a case in point of how the attributes of niches in particular technological domains can be used to explain the transition pathway entered by a surrounding energy regime.
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
Refuelling Tests of a Hydrogen Tank for Heavy-duty Applications
Sep 2023
Publication
A transition towards zero-emission fuels is required in the mobility sector in order to reach the climate goals. Here (green) renewable hydrogen for use in fuel cells will play an important role especially for heavy duty applications such as trucks. However there are still challenges to overcome regarding efficient storage infrastructure integration and optimization of the refuelling process. A key aspect is to reduce the refuelling duration as much as possible while staying below the maximum allowed temperature of 85 C. Experimental tests for the refuelling of a 320 l type III tank were conducted at different operating conditions and the tank gas temperature measured at the front and back ends. The results indicate a strongly inhomogeneous temperature field where measuring and verifying the actual maximum temperatures proves difficult. Furthermore a simulation approach is provided to calculate the average tank gas temperature at the end of the refuelling process.
Towards Green Hydrogen? - A Comparison of German and African Visions and Expectations in the Context of the H2Atlas-Africa Project
Sep 2023
Publication
Green hydrogen promises to be critical in achieving a sustainable and renewable energy transition. As green hydrogen is produced with renewables green hydrogen could become an energy storage medium of the future and even substitute the current unsustainable grey or blue hydrogen used in the industry. Bringing this transition into reality for instance in Germany there are visions to rapidly build hydrogen facilities in Africa and export the produced green hydrogen to Europe. One problem however is that these visions presumably conflict with the visions of actors within Africa. Therefore this study aims to provide an initial assessment of African stakeholders’ visions for future energy exports and renewable energy expectations. By comparing visions from Germany and Africa this assessment was conducted to identify differences in green energy and hydrogen visions that could lead to conflict and similarities that could be the basis for cooperation. The National Hydrogen Strategy outlines the German visions which clarifies that Germany will have to import green hydrogen to meet its green transition target. In this context of future energy export demand a partnership between German and African researchers on assessing green hydrogen potentials in Africa started. The African visions were explored by surveying the partners from different African countries working on the project. The results revealed that while both sides see the need for an immediate transition to renewable energy the African side is not envisioning the immediate export of green hydrogen. Based on the responses the partners are primarily concerned with improving the continent’s still deficient energy access for both the population and industry. Nevertheless this African perspective greatly emphasises cross-border cooperation where both sides can realise their visions. In the case of Germany that German investment could build infrastructure which would benefit the receiving African country or countries and open up the possibility for the envisioned green hydrogen export to Europe.
Hydrogen Storage Capacity of Salt Caverns and Deep Aquifers Versus Demand for Hydrogen Storage: A Case Study of Poland
Nov 2023
Publication
Geological structures in deep aquifers and salt caverns can play an important role in large-scale hydrogen storage. However more work needs to be done to address the hydrogen storage demand for zero-emission energy systems. Thus the aim of the article is to present the demand for hydrogen storage expressed in the number of salt caverns in bedded rock salt deposits and salt domes or the number of structures in deep aquifers. The analysis considers minimum and maximum hydrogen demand cases depending on future energy system configurations in 2050. The method used included the estimation of the storage capacity of salt caverns in bedded rock salt deposits and salt domes and selected structures in deep aquifers. An estimation showed a large hydrogen storage potential of geological structures. In the case of analyzed bedded rock salt deposits and salt domes the average storage capacity per cavern is 0.05–0.09 TWhH2 and 0.06–0.20 TWhH2 respectively. Hydrogen storage capacity in analyzed deep aquifers ranges from 0.016 to 4.46 TWhH2. These values indicate that in the case of the upper bound for storage demand there is a need for the 62 to 514 caverns depending on considered bedded rock salt deposits and salt domes or the 9 largest analyzed structures in deep aquifers. The results obtained are relevant to the discussion on the global hydrogen economy and the methodology can be used for similar considerations in other countries.
Regional Capabilities and Hydrogen Adoption Barriers
Dec 2023
Publication
Hydrogen is gaining importance to decarbonize the energy system and tackle the climate crisis. This exploratory study analyzes three focus groups with representatives from relevant organizations in a Northern German region that has unique beneficial characteristics for the transition to a hydrogen economy. Based upon this data (1) a category system of innovation adoption barriers for hydrogen technologies is developed (2) decision levels associated with the barriers are identified (3) detailed insights on how decision levels contribute to the adoption barriers are provided and (4) the barriers are evaluated in terms of their importance. Our analysis adds to existing literature by focusing on short-term barriers and exploring relevant decision levels and their associated adoption barriers. Our main results comprise the following: flaws in the funding system complex approval procedures lack of networks and high costs contribute to hydrogen adoption barriers. The (Sub-)State level is relevant for the uptake of the hydrogen economy. Regional entities have leeway to foster the hydrogen transition especially with respect to the distribution infrastructure. Funding policy technological suitability investment and operating costs and the availability of distribution infrastructure and technical components are highly important adoption barriers that alone can impede the transition to a hydrogen economy.
The Market Introduction of Hydrogen Focussing on Bus Refueling
Dec 2023
Publication
Public transport plays a prominent role with respect to mitigating transport-related environmental effects by improving passenger transport efficiency and the quality of life in cities. Batteries and fuel cells are at the forefront of the technological shift to zero-emission powertrains. Within the scope of the German-funded project BIC H2 corresponding systems analysis research focuses on the market introduction of fuel cell–electric buses in the Rhine–Ruhr Metropolitan Region through 2035. This study presents the related methods and major outcomes of this techno-economic research which spans spatially-resolved hydrogen demand modeling of all relevant sectors to hydrogen refueling stations and upstream infrastructure modeling to scenario-based analyses. The latter builds upon an empirical study supporting the development of the Hydrogen Roadmap of the State of North Rhine–Westphalia (NRW). Our results show that the demand in NRW alone is expected to account for one third of total German hydrogen use. Hydrogen bus refueling could substantially support market introduction during its early phases. In the long term however hydrogen demand in industry is significantly higher compared to that in the transport sector. Furthermore spatial analysis identifies regions with pronounced hydrogen demands that could therefore be candidates for initial infrastructure investments. With the Cologne area showing the highest hydrogen demand levels such regions can offer particularly high infrastructure utilization e.g. for bus refueling. On the infrastructure side trailers for transporting gaseous hydrogen to refueling stations are the most favorable option through 2035. Pipelines would be the preferred solution soon after 2035 due to increased hydrogen demand. If effectively deployed converted natural gas pipelines would be the most cost-effective option even earlier.
Parameterization Proposal to Determine the Feasibility of Geographic Areas for the Green Hydrogen Industry under Socio-environmental and Technical Constraints in Chile
Oct 2023
Publication
Chile abundant in solar and wind energy resources presents significant potential for the production of green hydrogen a promising renewable energy vector. However realizing this potential requires an understanding of the most suitable locations for the installation of green hydrogen industries. This study proposes a quantitative methodology that identifies and ranks potential public lands for industrial use based on a range of technical parameters (such as solar and wind availability) and socio-environmental considerations (including land use restrictions and population density). The results reveal optimal locations that can facilitate informed sustainable decision-making for large-scale green hydrogen implementation in Chile. While this methodology does not replace project-specific technical or environmental impact studies it provides a flexible general classification to guide initial site selection. Notably this approach can be applied to other regions worldwide with abundant solar and wind resources such as Australia and Northern Africa promoting more effective and sustainable global decision-making for green hydrogen production.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
Benchmark Study for the Simulation of Underground Hydrogen Storage Operations
Aug 2022
Publication
While the share of renewable energy sources increased within the last years with an ongoing upward trend the energy sector is facing the problem of storing large amounts of electrical energy properly. To compensate daily and seasonal fluctuations a sufficient storage system has to be developed. The storage of hydrogen in the subsurface referred to as Underground Hydrogen Storage (UHS) shows potential to be a solution for this problem. Hydrogen produced from excess energy via electrolysis is injected into a subsurface reservoir and withdrawn when required. As hydrogen possesses unique thermodynamic properties many commonly used correlations can not be simply transferred to a system with a high hydrogen content. Mixing processes with the present fluids are essential to be understood to achieve high storage efficiencies. Additionally in the past microbial activity e.g. by methanogenic archaea was observed leading to a changing fluid composition over time. To evaluate the capability of reservoir simulators to cover these processes the present study establishes a benchmark scenario of an exemplary underground hydrogen storage scenario. The benchmark comprises of a generic sandstone gas reservoir and a typical gas storage schedule is defined. Based on this benchmark the present study assesses the capabilities of the commercial simulator Schlumberger ECLIPSE and the open-source simulator DuMux to mimic UHS related processes such as hydrodynamics but also microbial activity. While ECLIPSE offers a reasonable mix of user-friendliness and computation time DuMux allows for a better adjustment of correlations and the implementation of biochemical reactions. The corresponding input data (ECLIPSE format) and relevant results are provided in a repository to allow this simulation study’s reproduction and extension.
3D Modeling of the Different Boiling Regimes During Spill and Spreading of Liquid Hydrogen
Nov 2012
Publication
In a future energy generation market the storage of energy is going to become increasingly important. Besides classic ways of storage like pumped storage hydro power stations etc the production of hydrogen will play an important role as an energy storage system. Hydrogen may be stored as a liquefied gas (LH2) on a long term base as well as for short term supply of fuel stations to ensure a so called “green” mobility. The handling with LH2 has been subject to several recent safety studies. In this context reliable simulation tools are necessary to predict the spill and spreading of LH2 during an accidental release. This paper deals with the different boiling regimes: film boiling transition boiling and nucleation boiling after a release and their modeling by means of an inhouse-code for wall evaporation which is implemented in the commercial CFD code ANSYS CFX. The paper will describe the model its implementation and validation against experimental data such as the HSL LH2 spill experiments.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review
Sep 2023
Publication
Globally a green hydrogen economy rush is underway and many companies investors governments and environmentalists consider it as an energy source that could foster the global energy transition. The enormous potential for hydrogen production for domestic use and export places Africa in the spotlight in the green hydrogen economy discourse. This discourse remains unsettled regarding how natural resources such as land and water can be sustainably utilized for such a resource-intensive project and what implications this would have. This review argues that green hydrogen production (GHP) in Africa has consequences where land resources (and their associated natural resources) are concerned. It discusses the current trends in GHP in Africa and the possibilities for reducing any potential pressures it may put on land and other resource use on the continent. The approach of the review is interpretive and hinges on answering three questions concerning the what why and how of GHP and its land consequences in Africa. The review is based on 41 studies identified from Google Scholar and sources identified via snowballed recommendations from experts. The GHP implications identified relate to land and water use mining-related land stress and environmental ecological and land-related socioeconomic consequences. The paper concludes that GHP may not foster the global energy transition as is being opined by many renewable energy enthusiasts but rather could help foster this transition as part of a greener energy mix. It notes that African countries that have the potential for GHP require the institutionalization of or a change in their existing approaches to land-related energy governance systems in order to achieve success.
How to Make Climate-neutral Aviation Fly
Jul 2023
Publication
The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction however must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts here we show that from a technological standpoint using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However with a continuous increase in air traffic synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.
The Race Between Hydrogen and Heat Pumps for Space and Water Heating: A Model-based Scenario Analysis
Nov 2023
Publication
This paper analyses different levels and means of the electrification of space and hot water heating using an explorative modelling approach. The analysis provides guidance to the ongoing discussion on favourable pathways for heating buildings and the role of secondary energy carriers such as hydrogen or synthetic fuels. In total 12 different scenarios were modelled with decarbonisation pathways until 2050 which cover all 27 member states of the European Union. Two highly detailed optimisation models were combined to cover the building stock and the upstream energy supply sector. The analysis shows that decarbonisation pathways for space and water heating based on large shares of heat pumps have at least 11% lower system costs in 2050 than pathways with large shares of hydrogen or synthetic fuels. This translates into system cost savings of around €70 bn. Heat pumps are cost-efficient in decentralised systems and in centralised district heating systems. Hence heat pumps should be the favoured option to achieve a cost-optimal solution for heating buildings. Accordingly the paper makes a novel and significant contribution to understanding suitable and cost-efficient decarbonisation pathways for space and hot water heating via electrification. The results of the paper can provide robust guidance for policymakers.
Evaluating Partners for Renewable Energy Trading: A Multidimensional Framework and Tool
Apr 2024
Publication
The worsening climate crisis has increased the urgency of transitioning energy systems from fossil fuels to renewable sources. However many industrialized countries are struggling to meet their growing demand for renewable energy (RE) through domestic production alone and therefore seek to import additional RE using carriers such as hydrogen ammonia or metals. The pressing question for RE importers is therefore how to select trading partners i.e. RE exporting countries. Recent research has identified a plethora of different selection criteria reflecting the complexity of energy systems and international cooperation. However there is little guidance on how to reduce this complexity to more manageable levels as well as a lack of tools for effective partner evaluation. This article aims to fill these gaps. It proposes a new multidimensional framework for evaluating and comparing potential RE trading partners based on four dimensions: economy and technology environment and development regulation and governance and innovation and cooperation. Focusing on Germany as an RE importer an exploratory factor analysis is used to identify a consolidated set of composite selection criteria across these dimensions. The results suggest that Germany’s neighboring developed countries and current net energy exporters such as Canada and Australia are among the most attractive RE trading partners for Germany. A dashboard tool has been developed to provide the framework and composite criteria including adjustable weights to reflect the varying preferences of decision-makers and stakeholders. The framework and the dashboard can provide helpful guidance and transparency for partner selection processes facilitating the creation of RE trade networks that are essential for a successful energy transition.
Efficiency and Optimal Load Capacity of E-Fuel-Based Energy Storage Systems
Apr 2023
Publication
This work evaluates the effectiveness of chemical-based solutions for storing large amounts of renewable electricity. Four “Power-to-X-to-Power” pathways are examined comprising hydrogen methane methanol and ammonia as energy carriers. The pathways are assessed using a model scenario where they are produced with electricity from an onshore wind farm stored in suitable facilities and then reconverted to electricity to meet the energy demand of a chemical site. An energy management and storage capacity estimation tool is used to calculate the annual load coverage resulting from each pathway. All four pathways offer a significant increase in load coverage compared to a scenario without storage solution (56.19%). The hydrogen-based pathway has the highest load coverage (71.88%) and round-trip efficiency (36.93%) followed by the ammonia-based (69.62% 31.37%) methanol-based (67.85% 27.00%) and methane-based (67.64% 26.47% respectively) pathways. The substantially larger storage capacity required for gaseous energy carriers to ensure a steady supply to the consumer could be a decisive factor. The hydrogen pathway requires a storage volume up to 10.93 times larger than ammonia and 16.87 times larger than methanol. Notably ammonia and methanol whose load coverages are only 2.26 and 4.03 percentage points lower than that of hydrogen offer the possibility of implementing site-specific storage solutions avoiding potential bottlenecks due to limited pipeline and cavern capacities.
Evaluation of Surplus Hydroelectricity Potential in Nepal until 2040 and its Use for Hydrogen Production Via Electrolysis
May 2023
Publication
The abundant hydro resources in Nepal have resulted in the generation of electricity almost exclusively from hydropower plants. Several hydropower plants are also currently under construction. There is no doubt that the surplus electricity will be significantly high in the coming years. Given the previous trend in electricity consumption it will be a challenge to maximize the use of surplus electricity. In this work the potential solutions to maximize the use of this surplus electricity have been analysed. Three approached are proposed: (i) increasing domestic electricity consumption by shifting the other energy use sectors to electricity (ii) cross-border export of electricity and (iii) conversion of electricity to hydrogen via electrolysis. The current state of energy demand and supply patterns in the country are presented. Future monthly demand forecasts and surplus electricity projections have been made. The hydrogen that can be produced with the surplus electricity via electrolysis is determined and an economic assessment is carried out for the produced hydrogen. The analysis of levelized cost of hydrogen (LCOH) under different scenarios resulted values ranging from 3.8 €/kg to 4.5 €/kg.
Paving the Way: Analysing Energy Transition Pathways and Green Hydrogen Exports in Developing Countries - The Case of Algeria
Apr 2024
Publication
The measures needed to limit global warming pose a particular challenge to current fossil fuel exporters who must not only decarbonise their local energy systems but also compensate for the expected decline in fossil fuel revenues. One possibility is seen in the export of green hydrogen. Using Algeria as a case study this paper analyses how different levels of ambition in hydrogen exports energy efficiency and fuel switching affect the costoptimal expansion of the power sector for a given overall emissions reduction path. Despite falling costs for photovoltaics and wind turbines the results indicate that in countries with very low natural gas prices such as Algeria a fully renewable electricity system by 2050 is unlikely without appropriate policy measures. The expansion of renewable energy should therefore start early given the high annual growth rates required which will be reinforced by additional green hydrogen exports. In parallel energy efficiency is a key factor as it directly mitigates CO2 emissions from fossil fuels and reduces domestic electricity demand which could instead be used for hydrogen production. Integrating electrolysers into the power system could potentially help to reduce specific costs through load shifting. Overall it seems advisable to analyse hydrogen exports together with local decarbonisation in order to better understand their interactions and to reduce emissions as efficiently as possible. These results and the methodology could be transferred to other countries that want to become green hydrogen exporters in the future and are therefore a useful addition for researchers and policy makers.
Economic Complexity of Green Hydrogen Production Technologies - A Trade Data-based Analysis of Country-sepcific Industrial Preconditions
May 2023
Publication
Countries with high energy demand but limited renewable energy potential are planning to meet part of their future energy needs by importing green hydrogen. For potential exporting countries in addition to sufficient renewable resources industrial preconditions are also relevant for the successful implementation of green hydrogen production value chains. A list of 36 “Green H2 Products” needed for stand-alone hydrogen production plants was defined and their economic complexity was analyzed using international trade data from 1995 to 2019. These products were found to be comparatively complex to produce and represent an opportunity for countries to enter new areas of the product space through green diversification. Large differences were revealed between countries in terms of industrial preconditions and their evolution over time. A detailed analysis of nine MENA countries showed that Turkey and Tunisia already possess industrial know-how in various green hydrogen technology components and perform only slightly worse than potential European competitors while Algeria Libya and Saudi Arabia score the lowest in terms of calculated hydrogen-related green complexity. These findings are supported by statistical tests showing that countries with a higher share of natural resources rents in their gross domestic product score significantly lower on economic and green complexity. The results thus provide new perspectives for assessing the capabilities of potential hydrogen-producing countries which may prove useful for policymakers and investors. Simultaneously this paper contributes to the theory of economic complexity by applying its methods to a new subset of products and using a dataset with long-term coverage.
THyGA - Test Report on Mitigation Solutions for Residential Natural Gas Appliances Not Designed for Hydrogen Admixture
Apr 2023
Publication
This report from the WP5 “Mitigation” provides information and test results regarding perturbations that hydrogen could cause to gas appliances when blended to natural gas especially on anatural draught for exhaust fumes or acidity for the condensates. The important topic of on-site adjustment is also studied with test results on alternative technologies and proposals of mitigation approaches.
Pathways to the Hydrogen Economy: A Multidimensional Analysis of the Technological Innovation Systems of Germany and South Korea
Aug 2023
Publication
The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry politics and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea both recognized as global front-runners in advancing and implementing hydrogen-based solutions. By providing a multi-dimensional assessment of pathways to the hydrogen economy our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance and (ii) we emphasize the social perspective within the hydrogen TIS. To this end we conducted 24 semi-structured expert interviews applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However several barriers still hinder the further realization of a hydrogen economy. Based on our findings we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition.
Investigation of Different Load Characteristics, Component Dimensioning, and System Scaling for the Optimized Design of a Hybrid Hydrogen-Based PV Energy System
Jul 2023
Publication
The realization of a carbon-neutral civilization which has been set as a goal for the coming decades goes directly hand-in-hand with the need for an energy system based on renewable energies (REs). Due to the strong weather-related daily and seasonal fluctuations in supply of REs suitable energy storage devices must be included for such energy systems. For this purpose an energy system model featuring hybrid energy storage consisting of a hydrogen unit (for long-term storage) and a lithium-ion storage device (for short-term storage) was developed. With a proper design such a system can ensure a year-round energy supply by using electricity generated by photovoltaics (PVs). In the energy system that was investigated hydrogen (H2) was produced by using an electrolyser (ELY) with a PV surplus during the summer months and then stored in an H2 tank. During the winter due to the lack of PV power the H2 is converted back into electricity and heat by a fuel cell (FC). While the components of such a system are expensive a resource- and cost-efficient layout is important. For this purpose a Matlab/Simulink model that enabled an energy balance analysis and a component lifetime forecast was developed. With this model the results of extensive parameter studies allowed an optimized system layout to be created for specific applications. The parameter studies covered different focal points. Several ELY and FC layouts different load characteristics different system scales different weather conditions and different load levels—especially in winter with variations in heating demand—were investigated.
Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy
Dec 2021
Publication
Synthetic current density profiles with wind and photovoltaic power characteristics were calculated by autoregressive-moving-average (ARMA) models for the experimental evaluation of dynamic operating concepts for alkaline water electrolyzers powered by renewable energy. The selected operating concepts included switching between mixed and split electrolyte cycles and adapting the liquid electrolyte volume flow rate depending on the current density. All experiments were carried out at a pressure of 7 bar a temperature of 60 °C and with an aqueous potassium hydroxide solution with 32 wt.% KOH as the electrolyte. The dynamic operating concepts were compared to stationary experiments with mixed electrolyte cycles and the experimental evaluation showed that the selected operating concepts were able to reduce the gas impurity compared to the reference operating conditions without a noticeable increase of the cell potential. Therefore the overall system efficiency and process safety could be enhanced by this approach.
Some Inconvenient Truths about Decarbonization, the Hydrogen Economy, and Power to X Technologies
May 2024
Publication
The decarbonization of the energy sector has been a subject of research and of political discussions for several decades gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored transported and used. In PtX X stands for example for liquid hydrogen methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g. high capital demand political and social issues) (b) the production transportation and storage of hydrogen and the energy carriers denoted by X in PtX (e.g. high cost and low overall efficiency) and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that in general as long as the conditions for generating large excess amounts of green electricity are not met the quick establishment of a hydrogen economy could not only be very expensive but also counterproductive to the worldwide decarbonization efforts.
The Potential Role of a Hydrogen Network in Europe
Jul 2023
Publication
Europe’s electricity transmission expansion suffers many delays despite its significance for integrating renewable electricity. A hydrogen network reusing the existing gas network could not only help to supply the demand for low-emission fuels but could also balance variations in wind and solar energies across the continent and thus avoid power grid expansion. Our investigation varies the allowed expansion of electricity and hydrogen grids in net-zero CO2 scenarios for a sector-coupled European energy system capturing transmission bottlenecks renewable supply and demand variability and pipeline retrofitting and geological storage potentials. We find that a hydrogen network connecting regions with low-cost and abundant renewable potentials to demand centers electrofuel production and cavern storage sites reduces system costs by up to 26 bnV/a (3.4%). Although expanding both networks together can achieve the largest cost reductions by 9.9% the expansion of neither is essential for a net-zero system as long as higher costs can be accepted and flexibility options allow managing transmission bottlenecks.
Comprehensive Techno-economic Assessment of Power Technologies and Synthetic Fuels under Discussion for Ship Applications
Jun 2023
Publication
The decarbonization of the global ship traffic is one of the industry’s greatest challenges for the next decades and will likely only be achieved with the introduction of synthetic fuels. Until now however not one single best technology solution emerged to ideally fit this task. Instead different energy carriers including hydrogen ammonia methanol methane and synthetic diesel are subject of discussion for usage in either internal combustion engines or fuel cells. In order to drive the selection procedure a case study for the year 2030 with all eligible combinations of power technologies and fuels is conducted. The assessment quantifies the technologies’ economic performances for cost-optimized system designs and in dependence of a ship’s mission characteristics. Thereby the influence of trends for electrofuel prices and shipboard volume opportunity costs are examined. Even if gaseous hydrogen is often considered not suitable for large ship applications due to its low volumetric energy density both the comparatively small fuel price and the high efficiency of fuel cells lead to the overall smallest system costs for passages up to 21 days depending on assumed cost parameters. Only for missions longer than seven days fuel cells operating on methanol or ammonia can compete with gaseous hydrogen economically.
AMHYCO Project - Towards Advanced Accident Guidelines for Hydrogen Safety in Nuclear Power Plants
Sep 2021
Publication
Severe accidents in nuclear power plants are potentially dangerous to both humans and the environment. To prevent and/or mitigate the consequences of these accidents it is paramount to have adequate accident management measures in place. During a severe accident combustible gases — especially hydrogen and carbon monoxide — can be released in significant amounts leading to a potential explosion risk in the nuclear containment building. These gases need to be managed to avoid threatening the containment integrity which can result in the releases of radioactive material into the environment. The main objective of the AMHYCO project is to propose innovative enhancements in the way combustible gases are managed in case of a severe accident in currently operating reactors. For this purpose the AMHYCO project pursues three specific activities including experimental investigations of relevant phenomena related to hydrogen / carbon monoxide combustion and mitigation with PARs (Passive Autocatalytic Recombiners) improvement of the predictive capabilities of analysis tools used for explosion hazard evaluation inside the reactor containment as well as enhancement of the Severe Accident Management Guidelines (SAMGs) with respect to combustible gases risk management based on theoretical and experimental results. Officially launched on 1 October 2020 AMHYCO is an EU-funded Horizon 2020 project that will last 4 years from 2020 to 2024. This international project consists of 12 organizations (six from European countries and one from Canada) and is led by the Universidad Politécnica de Madrid (UPM). AMHYCO will benefit from the worldwide experts in combustion science accident management and nuclear safety in its Advisory Board. The paper will give an overview of the work program and planned outcome of the project.
Shock Tube Experiments on Flame Propagation Regimes and Critical Conditions for Flame Acceleration and Detonation Transition for Hydrogen-air Mixtures at Cryogenic Temperatures
Sep 2021
Publication
A series of more than 100 experiments with hydrogen-air mixtures at cryogenic temperatures have been performed in a shock tube in the frame of the PRESLHY project. A wide range of hydrogen concentrations from 8 to 60%H2 in the shock tube of the length of 5 m and 50 mm id was tested at cryogenic temperatures from 80 to 130K at ambient pressure. Flame propagation regimes were investigated for all hydrogen compositions in the shock tube at three different blockage ratios (BR) 0 0.3 and 0.6 as a function of initial temperature. Pressure sensors and InGaAs-photodiodes have been applied to monitor the flame and shock propagation velocity of the process. The experiments at ambient pressure and temperature were conducted as the reference data for cryogenic experiments. A critical expansion ratio for an effective flame acceleration to the speed of sound was experimentally found at cryogenic temperatures. The detonability criterion for smooth and obstructed channels was used to evaluate the detonation cell sizes at cryogenic temperatures as well. The main peculiarities of cryogenic combustion with respect to the safety assessment were that the maximum combustion pressure was several times higher compared to ambient temperature and the run-up-distance to detonation was several times shorter independent of lower chemical reactivity at cryogenic conditions.
Synergistic Value in Vertically Integrated Power-to-Gas Energy Systems
Oct 2019
Publication
In vertically integrated energy systems integration frequently entails operational gains that must be traded off against the requisite cost of capacity investments. In the context of the model analyzed in this study the operational gains are subject to inherent volatility in both the price and the output of the intermediate product transferred within the vertically integrated structure. Our model framework provides necessary and sufficient conditions for the value (NPV) of an integrated system to exceed the sum of two optimized subsystems on their own. We then calibrate the model in Germany and Texas for systems that combine wind energy with Power-to-Gas (PtG) facilities that produce hydrogen. Depending on the prices for hydrogen in different market segments we find that a synergistic investment value emerges in some settings. In the context of Texas for instance neither electricity generation from wind power nor hydrogen production from PtG is profitable on its own in the current market environment. Yet provided both subsystems are sized optimally in relative terms the attendant operational gains from vertical integration more than compensate for the stand-alone losses of the two subsystems.
Risk Assessment and Mitigation Evaluation for Hydrogen Vehicles in Private Garages. Experiments and Modelling
Sep 2021
Publication
Governments and local authorities introduce new incentives and regulations for cleaner mobility as part of their environmental strategies to address energy challenges. Fuel cell electric vehicles (FCEVs) are becoming increasingly important and will extend beyond captive fleets reaching private users. Research on hydrogen safety issues is currently led in several projects in order to highlight and manage risks of FCEVs in confined spaces such as tunnels underground parkings repair garages etc. But what about private garages - that involve specific geometries volumes congestion ventilation? This study has been carried out in the framework of PRHyVATE JIP project which aims at better understanding hydrogen build-up and distribution in a private garage. The investigation went through different rates and modes of ventilation. As first step an HAZID (Hazard Identification) has been realized for a generic FCEV. This preliminary work allowed to select and prioritize accidental release scenarios to be explored experimentally with helium in a 40-m3 garage. Several configurations of release ventilation modes and congestion – in transient regime and at steady state – have been tested. Then analytical and numerical calculation approaches have been applied and adjusted to develop a simplified methodology. This methodology takes into account natural ventilation for assessment of hydrogen accumulation and mitigation means optimization. Finally a global risk evaluation – including ignition of a flammable hydrogen-air mixture – has been performed to account for the mostly feared events and to evaluate their consequences in a private garage. Thus preliminary recommendations good practices and safety features for safely parking FCEVs in private garages can be proposed.
Fuel Cell Electrical Vehicles as Mobile Coupled Heat and Power Backup-Plant in Neighbourhoods
Apr 2022
Publication
Fuel cell electric vehicles (FCEVs) can be used during idle times to convert hydrogen into electricity in a decentralised manner thus ensuring a completely renewable energy supply. In addition to the electric power waste heat is generated in the fuel cell stack that can also be used. This paper investigates how the energy demand of a compiled German neighbourhood can be met by FCEVs and identifies potential technical problems. For this purpose energy scenarios are modelled in the Open Energy System Modelling Framework (oemof). An optimisation simulation finds the most energetically favourable solution for the 10-day period under consideration. Up to 49% of the heat demand for heating and hot water can be covered directly by the waste heat of the FCEVs. As the number of battery electric vehicles (BEVs) to be charged increases so does this share. 5 of the 252 residents must permanently provide an FCEV to supply the neighbourhood. The amount of hydrogen required was identified as a problem. If the vehicles cannot be supplied with hydrogen in a stationary way 15 times more vehicles are needed than required in terms of performance due to the energy demand.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane
Jun 2022
Publication
This work investigates the cost-efficient integration of renewable hydrogen into steelworks for the production of methane and methanol as an efficient way to decarbonize the steel industry. Three case studies that utilize a mixture of steelworks off-gases (blast furnace gas coke oven gas and basic oxygen furnace gas) which differ on the amount of used off-gases as well as on the end product (methane and/or methanol) are analyzed and evaluated in terms of their economic performance. The most influential cost factors are identified and sensitivity analyses are conducted for different operating and economic parameters. Renewable hydrogen produced by PEM electrolysis is the most expensive component in this scheme and responsible for over 80% of the total costs. Progress in the hydrogen economy (lower electrolyzer capital costs improved electrolyzer efficiency and lower electricity prices) is necessary to establish this technology in the future.
No more items...