Germany
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Heat and Mass Transfer Modeling of Vacuum Insulated Vessel Storing Cryogenic Liquid in Loss of Vacuum Accident
Sep 2023
Publication
Cryogenic liquid is often stored in a vacuum insulated Dewar vessel for a high efficiency of thermal insulation. Multi-layer insulation (MLI) can be further applied in the double-walled vacuum space to reduce the heat transfer from the environment to the stored cryogenic fluid. However in loss-of-vacuum accident (LOVA) scenarios heat flux across the MLI will raise to orders of magnitudes larger than with an intact vacuum shield. The cryogenic liquid will boil intensively and pressurize the vessel due to the heat ingress. The pressurization endangers the integrity of the vessel and poses an extra catastrophic risk if the vapor is flammable e.g. hydrogen. Therefore safety valves have to be designed and installed appropriately to make sure the pressure is limited to acceptable levels. In this work the dynamic process of the heat and mass transfers in the LOVA scenarios is studied theoretically. The mass deposition - desublimation of gaseous nitrogen on cryogenic surfaces is modeled as it provides the dominant contribution of the thermal load to the cryogenic fluid. The conventional heat convection and radiation are modeled too although they play only secondary roles as realized in the course of the study. The temperature dependent thermal properties of e.g. gaseous and solid nitrogen and stainless steel are used to improve the accuracy of calculation in the cryogenic temperature range. Presented methodology enabling the computation of thermodynamic parameters in the cryogenic storage system during LOVA scenarios provides further support for the future risk assessment and safety system design.
Experimental Study on the Ignition of Hydrogen Containing Atmospheres by Mechanical Impacts
Sep 2023
Publication
In international regulations on explosion protection mechanical friction impact or abrasion is usually named as one of 13 ignition sources that must be avoided in hazardous zones with explosive atmospheres. In different studies it is even identified as one of the most frequent ignition sources in practice. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere the properties of the material pairing the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In some previous works test procedures with poor reproducibility or undefined kinetic impact energy were applied for this purpose. In other works only homogeneous material pairings were considered. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel low alloy steel concrete and non-iron-metals. It was found that ignition can be avoided if non-iron metals are used in combination with different metallic materials but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. Based on the test results it can be evaluated under which circumstances the use of tools made of non-iron-metals or other non-sparking materials can be an effective measure to avoid ignition sources in hazardous zones containing hydrogen for example during maintenance work.
Numerical Investigations of Hydrogen Release and Dispersion Due to Silane Decomposition in a Ventilated Container
Sep 2023
Publication
In recent years new chemical release agents based on silane are being used in the tire industry. Silane is an inorganic chemical compound consisting of a silicon backbone and hydrogen. Silanes can be thermally decomposed into high-purity silicon and hydrogen. If silane is stored and transported in Intermediate Bulk Containers (IBCs) equipped with safety valves in vented semi-confined spaces such as ISO-Containers hydrogen can be accumulated and become explosive mixture with air. A conservative CFD analysis using the GASFLOW-MPI code has been carried out to assess the hydrogen risk inside the vented containers. Two types of containers with different natural ventilation systems were investigated under various hypothetical accident scenarios. A continuous release of hydrogen due to the chemical decomposition of silane from IBCs was studied as the reference case. The effect of the safety valves on hydrogen accumulation in the container which results in small pulsed releases of hydrogen was investigated. The external effects of the sun and wind on hydrogen distribution and ventilation were also evaluated. The results can provide detailed information on hydrogen dispersion and mixing within the vented enclosures and used to evaluate the hydrogen risks such as flammability. Based on the assumptions used in this study it indicates that the geometry of ventilation openings plays a key role in the efficiency of the indoor air exchange process. In addition the use of safety valves makes it possible to reduce the concentration of hydrogen by volume in air compared to the reference case. The effect of the sun which results in a temperature difference between two container walls allows a strong mixing of hydrogen and air which helps to obtain a concentration lower than both the base case and the case of the pulsed releases. But the best results for the venting process are obtained with the wind that can drive the mixture to the downwind wall vent holes.
Towards the Simulation of Hydrogen Leakage Scenarios in Closed Buildings Using ContainmentFOAM
Sep 2023
Publication
The increase of using hydrogen as a replacement for fossil fuels in power generation and mobility is expected to witness a huge leap in the next decades. However several safety issues arise due to the physical and chemical properties of hydrogen especially its wide range of flammability. In case of Hydrogen leakage in confined areas Hydrogen clouds can accumulate in the space and their concentration can build up quickly to reach the lower flammability limit (LFL) in case of not applying a proper ventilation system. As a part of the Living Lab Energy Campus (LLEC) project at Jülich Research Centre the use of hydrogen mixed with natural gas as a fuel for the central heating system of the campus is being studied. The current research aims to investigate the release dispersion and formation and the spread of a hydrogen cloud inside the central utility building at the campus of Jülich Research Centre in case of hypothetical accidental leakage. Such a leakage is simulated using the opensource containmentFoam package base on OpenFOAM CFD code to numerically simulate the behavior of the air-hydrogen mixture. The critical locations where hydrogen concentrations can reach the LFL values are shown.
Simulations of Hydrogen Dispersion from Fuel Cell Vehicles' Leakages Inside Full-scale Tunnel
Sep 2023
Publication
In this work real scale experiments involving hydrogen dispersion inside a road tunnel have been modelled using the Computational Fluid Dynamics (CFD) methodology. The aim is to assess the performance of the ADREA-HF CFD tool against full-scale tunnel dispersion data resulting from high-pressure hydrogen leakage through Thermal Pressure Relief Device (TPRD) of a vehicle. The assessment was performed with the help of experiments conducted by the French Alternative Energies and Atomic Energy Commission (CEA) in a real inclined tunnel in France. In the experiments helium as hydrogen surrogate has been released from 200 bar storage pressure. Several tests were carried out examining different TPRD sizes and release directions (upwards and downwards). For the CFD evaluation two tests were considered: one with downwards and one with upwards release both through a TPRD with a diameter of 2 mm. The comparison between the CFD results and the experiments shows the good predictive capabilities of the ADREA-HF code that can be used as a safety tool in hydrogen dispersion studies. The comparison reveals some of the strengths and weaknesses of both the CFD and the experiments. It is made clear that CFD can contribute to the design of the experiments and to the interpretation of the experimental results.
QRA of Hydrogen Vehicles in a Road Tunnel
Sep 2023
Publication
Hydrogen energy is recognized by many European governments as an important part of the development to achieve a more sustainable energy infrastructure. Great efforts are spent to build up a hydrogen supply chain to support the increasing number of hydrogen-powered vehicles. Naturally these vehicles will use the common traffic infrastructure. Thus it has to be ensured these infrastructures are capable to withstand the hazards and associated risks that may arise from these new technologies. In order to have an appropriate assessment tool for hydrogen vehicles transport through tunnels a new QRA methodology is developed and presented here. In Europe the PIARC is a very common approach. It is therefore chosen as a starting point for the new methodology. It provides data on traffic statistics accident frequencies tunnel geometries including certain prevention and protection measures. This approach is enhanced by allowing better identification of hazards and their respective sources for hydrogen vehicles. A detailed analysis of the accident scenarios that are unique for hydrogen vehicles hereunder the initiating events severity of collision types that may result in a release of hydrogen gas in a tunnel and the location of such an accident are included. QRA enables the assessment and evaluation of scenarios involving external fires or vehicles that burst into fire because of an accident or other fire sources. Event Tree Analysis is the technique used to estimate the event frequencies. The consequence analysis includes the hazards from blast waves hydrogen jet fires DDT.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Unconfined Hydrogen Detonations: Experiments, Modelling, Scaling
Sep 2023
Publication
A series of unconfined hydrogen detonation bench-mark experiments are analyzed with respect to CFD code validation and safety measures development. 1-Dimensional in-house code COM1D was applied for validation against experimental data for unconfined detonation of a hemispherical envelope of about 3- and 5-m radius with hydrogen-air mixtures from 20 to 30% hydrogen in air. The code demonstrates a very good agreement with experimental data and allows an adequate simulation of the unconfined hydrogen detonation. All calculated data were scaled in Sachs coordinates to compare with experimental data and to approximate the data for practical evaluation of safety distances. Numerical experiments with different hydrogen inventories from 50 g to 50 kg and different sizes of the cloud from 1 to 2 m radius of the same amount of hydrogen 50g were carried out to clarify the problem of energy of gaseous explosion responsible for the strength of blast wave. Additionally a comparison of hydrogen-air explosion pressure with blast wave properties from the hypothetical cloud of hot compressed combustion products (P=Picc; T=Ticc) and simply a hot air of the same initial pressure and temperature as combustion products showed very good agreement of shock wave strength at far distances beyond the cloud. This confirms the governing role of energy of combustion on blast wave propagation and its ability to scale the strength of blast waves. The dynamics of the explosion process and combustion product expansion were also analyzed experimentally and numerically to evaluate the dimension of the heat radiation zone and heat flux from combustion products. To demonstrate the capability of tested COM1D code the modeling and analysis of high-pressure hydrogen tanks rupture at 350 and 700 bar were conducted to investigate blast wave strength and evaluate the safety distances.
Modeling of Tube Deformation and Failure under Conditions of Hydrogen Detonation
Sep 2023
Publication
In case of accidental conditions involving high-speed hydrogen combustion the considerable pressure and thermal loads could result in substantial deformation and/or destruction of the industrial appliances. Accounting of such effects in the safety analysis with CFD tools can provide critical information on the design and construction of the sensitive appliances’ elements. The current paper presents the development and the implementation of a new 3D-technique which makes possible to perform simulations of the gas-dynamic processes simultaneously with adaptation of the geometry of complex configurations. Using the data obtained in the experiments on the flame acceleration and DDT in the tubes of industrial arrangements performed in MPA and KIT the authors performed a series of the combustion simulations corresponding to the experimental conditions. The combustion gas-dynamics was simulated using COM3D code and the tube wall material behavior was modelled using finite-element code ABAQUS - © Dassault Systèmes with real-time data exchange between the codes. Obtained numerical results demonstrated good agreement with the observed experimental data on both pressure dynamics and tube deformation history.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
A Techno-economic Analysis of Future Hydrogen Reconversion Technologies
Jun 2024
Publication
The transformation of fossil fuel-based power generation systems towards greenhouse gas-neutral ones based on renewable energy sources is one of the key challenges facing contemporary society. The temporal volatility that accompanies the integration of renewable energy (e.g. solar radiation and wind) must be compensated to ensure that at any given time a sufficient supply of electrical energy for the demands of different sectors is available. Green hydrogen which is produced using renewable energy sources via electrolysis can be used to chemically store electrical energy on a seasonal basis. Reconversion technologies are needed to generate electricity from stored hydrogen during periods of low renewable electricity generation. This study presents a detailed technoeconomic assessment of hydrogen gas turbines. These technologies are also superior to fuel cells due to their comparatively low investment costs especially when it comes to covering the residual loads. As of today hydrogen gas turbines are only available in laboratory or small-scale settings and have no market penetration or high technology readiness level. The primary focus of this study is to analyze the effects on gas turbine component costs when hydrogen is used instead of natural gas. Based on these findings an economic analysis addressing the current state of these turbine components is conducted. A literature review on the subsystems is performed considering statements from leading manufactures and researchers to derive the cost deviations and total cost per installed capacity (€/kWel). The results reveal that a hydrogen gas turbine power plant has an expected cost increase of 8.5% compared to a conventional gas turbine one. This leads to an average cost of 542.5 €/kWel for hydrogen gas turbines. For hydrogen combined cycle power plants the expected cost increase corresponds to the cost of the gas turbine system as the steam turbine subsystem remains unaffected by fuel switching. Additionally power plant retrofit potentials were calculated and the respective costs in the case of an upgrade were estimated. For Germany as a case study for an industrialized country the potential of a possible retrofit is between 2.7 and 11.4 GW resulting to a total investment between 0.3 and 1.1 billion €.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion
Aug 2024
Publication
This study reviews existing simulation models and describes a selected model for analysing combustion dynamics in hydrogen and natural gas mixtures specifically within non-ferrous melting furnaces. The primary objectives are to compare the combustion characteristics of these two energy carriers and assess the impact of hydrogen integration on furnace operation and efficiency. Using computational fluid dynamics (CFD) simulations incorporating actual furnace geometries and a detailed combustion and NOx emission prediction model this research aims to accurately quantify the effects of hydrogen blending. Experimental tests on furnaces using only natural gas confirmed the validity of these simulations. By providing precise predictions for temperature distribution and NOx emissions this approach reduces the need for extensive laboratory testing facilitates broader exploration of design modifications accelerates the design process and ultimately lowers product development costs.
Strategy Development for Hydrogen-Conversion Businesses in Côte d’Ivoire
Aug 2024
Publication
Côte d’Ivoire has substantially neglected crop residues from farms in rural areas so this study aimed to provide strategies for the sustainable conversion of these products to hydrogen. The use of existing data showed that in the Côte d’Ivoire there were up to 16801306 tons of crop residues from 11 crop types in 2019 from which 1296424.84 tons of hydrogen could potentially be derived via theoretical gasification and dark fermentation approaches. As 907497.39 tons of hydrogen is expected annually the following estimations were derived. The three hydrogen-project implementation scenarios developed indicate that Ivorian industries could be supplied with 9026635 gigajoules of heat alongside 17910 cars and 4732 buses in the transport sector. It was estimated that 817293.95 tons of green ammonia could be supplied to farmers. According to the study 5727992 households could be expected to have access to 1718.40 gigawatts of electricity. Due to these changes in the transport energy industry and agricultural sectors a reduction of 1644722.08 tons of carbon dioxide per year could theoretically be achieved. With these scenarios around 263276.87 tons of hydrogen could be exported to other countries. The conversion of crop residues to hydrogen is a promising opportunity with environmental and socio-economic impacts. Therefore this study requires further extensive research.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
No more items...