Germany
Hydrogen Onboard Storage: An Insertion of the Probabilistic Approach Into Standards & Regulations?
Sep 2005
Publication
The growing attention being paid by car manufacturers and the general public to hydrogen as a middle and long term energy carrier for automotive purpose is giving rise to lively discussions on the advantages and disadvantages of this technology – also with respect to safety. In this connection the focus is increasingly and justifiably so on the possibilities offered by a probabilistic approach to loads and component characteristics: a lower weight obliged with a higher safety level basics for an open minded risk communication the possibility of a provident risk management the conservation of resources and a better and not misleading understanding of deterministic results. But in the case of adequate measures of standards or regulations completion there is a high potential of additional degrees of freedom for the designers obliged with a further increasing safety level. For this purpose what follows deals briefly with the terminological basis and the aspects of acceptance control conservation of resources misinterpretation of deterministic results and the application of regulations/standards.<br/>This leads into the initial steps of standards improvement which can be taken with relatively simple means in the direction of comprehensively risk-oriented protection goal specifications. By this it’s not focused on to provide to much technical details. It’s focused on the context of different views on probabilistic risk assessment. As main result some aspects of the motivation and necessity for the currently running pre-normative research studies within the 6th frame-work program of the EU will be shown.
Safety of Hydrogen-fueled Motor Vehicles with IC Engines.
Sep 2005
Publication
Clarification of questions of safety represents a decisive contribution to the successful introduction of vehicles fuelled by hydrogen. At the moment the safety of hydrogen is being discussed and investigated by various bodies. The primary focus is on fuel-cell vehicles with hydrogen stored in gaseous form. This paper looks at the safety of hydrogen-fuelled vehicles with an internal combustion engine and liquefied hydrogen storage. The safety concept of BMW’s hydrogen vehicles is described and the specific aspects of the propulsion and storage concepts discussed. The main discussion emphasis is on the utilization of boil-off parking of the vehicles in an enclosed space and their crash behaviour. Theoretical safety observations are complemented by the latest experimental and test results. Finally reference is made to the topic-areas in the field of hydrogen safety in which cooperative research work could make a valuable contribution to the future of the hydrogen-powered vehicle.
Measuring and Modelling Unsteady Radiation of Hydrogen Combustion
Sep 2005
Publication
Burning hydrogen emits thermal radiation in UV NIR and IR spectral range. Especially in the case of large cloud explosion the risk of heat radiation is commonly underestimated due to the non-visible flame of hydrogen-air combustion. In the case of a real explosion accident organic substances or inert dust might be entrained from outer sources to produce soot or heated solids to substantially increase the heat release by continuum radiation. To investigate the corresponding combustion phenomena different hydrogen-air mixtures were ignited in a closed vessel and the combustion was observed with fast scanning spectrometers using a sampling rate up to 1000 spectra/s. In some experiments to take into account the influence of organic co-combustion a spray of a liquid glycol-ester and milk powder was added to the mixture. The spectra evaluation uses the BAM code of ICT to model bands of reaction products and thus to get the temperatures. The code calculates NIR/IR-spectra (1 - 10 μm) of non-homogenous gas mixtures of H2O CO2 CO NO and HCl taking into consideration also emission of soot particles. It is based on a single line group model and makes also use of tabulated data of H2O and CO2 and a Least Squares Fit of calculated spectra to experimental ones enables the estimation of flame temperatures. During hydrogen combustion OH emits an intense spectrum at 306 nm. This intermediary radical allows monitoring the reaction progress. Intense water band systems between 1.2 and 3 μm emit remarkable amounts of heat radiation according to a measured flame temperature of 2000 K. At this temperature broad optically-thick water bands between 4.5 μm and 10 μm contribute only scarcely to the total heat output. In case of co-combustion of organic materials additional emission bands of CO and CO2 as well as a continuum radiation of soot and other particles occur and particularly increase the total thermal output drastically.
Explosion Characteristics of Hydrogen-air and Hydrogen-Oxygen Mixtures at Elevated Pressures
Sep 2005
Publication
An essential problem for the operation of high pressure water electrolyzers and fuel cells is the permissible contamination of hydrogen and oxygen. This contamination can create malfunction and in the worst case explosions in the apparatus and gas cylinders. In order to avoid dangerous conditions the exact knowledge of the explosion characteristics of hydrogen/air and hydrogen/oxygen mixtures is necessary. The common databases e.g. the CHEMSAFE® database published by DECHEMA BAM and PTB contains even a large number of evaluated safety related properties among other things explosion limits which however are mainly measured according to standard procedures under atmospheric conditions.<br/>Within the framework of the European research project “SAFEKINEX” and other research projects the explosion limits explosion pressures and rates of pressure rise (KG values) of H2/air and H2/O2 mixtures were measured at elevated conditions of initial pressures and temperatures by the Federal Institute of Materials Research and Testing (BAM). Empirical equations of the temperature influence could be deduced from the experimental values. An anomaly was found at the pressure influence on the upper explosion limits of H2/O2 and H2/air mixtures in the range of 20 bars. In addition explosion pressures and also rates of pressure rises have been measured for different hydrogen concentrations inside the explosion range. Such data are important for constructive explosion protection measures. Furthermore the mainly used standards for the determination of explosion limits have been compared. Therefore it was interesting to have a look at the systematic differences between the new EN 1839 tube and bomb method ASTM E 681-01 and German DIN 51649-1.
Analysis Methodology for Hydrogen Behaviour in Accident Scenarios
Sep 2005
Publication
Hydrogen is not more dangerous than current fossil energy carriers but it behaves differently. Therefore hydrogen specific analyses and countermeasures will be needed to support the development of safe hydrogen technologies. A systematic step-by-step procedure for the mechanistic analysis of hydrogen behaviour and mitigation in accidents is presented. The procedure can be subdivided into four main parts:<br/>1) 3D modelling of the H2-air mixture generation<br/>2) hazard evaluation for this mixture based on specifically developed criteria for flammability flame acceleration and detonation on-set<br/>3) numerical simulation of the appropriate combustion regime using verified 3D-CFD codes and<br/>4) consequence analysis based on the calculated pressure and temperature loads.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
Path to Hydrogen Competitiveness: A Cost Perspective
Jan 2020
Publication
This latest Hydrogen Council report shows that the cost of hydrogen solutions will fall sharply within the next decade – and sooner than previously expected. As scale up of hydrogen production distribution equipment and component manufacturing continues cost is projected to decrease by up to 50% by 2030 for a wide range of applications making hydrogen competitive with other low-carbon alternatives and in some cases even conventional options.
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
- Strong fall in the cost of producing low carbon and renewable hydrogen;
- Lower distribution and refuelling costs thanks to higher load utilisation and scale effect on infrastructure utilisation; and
- Dramatic drop in the cost of components for end-use equipment under scaling up of manufacturing.
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
How Hydrogen Empowers the Energy Transition
Jan 2017
Publication
This report commissioned by the Hydrogen Council and announced in conjunction with the launch of the initiative at the World Economic Forum in January 2017 details the future potential that hydrogen is ready to provide and sets out the vision of the Council and the key actions it considers fundamental for policy makers to implement to fully unlock and empower the contribution of hydrogen to the energy transition.
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition
Nov 2017
Publication
Deployed at scale hydrogen could account for almost one-fifth of total final energy consumed by 2050. This would reduce annual CO2 emissions by roughly 6 gigatons compared to today’s levels and contribute roughly 20% of the abatement required to limit global warming to two degrees Celsius.
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Thermal Loading Cases of Hydrogen High Pressure Storage Cylinders
Sep 2007
Publication
Composite cylinders with metal liner are used for the storage of compressed hydrogen in automotive application. These hybrid pressure cylinders are designed for a nominal working pressure of up to 70 MPa. They also have to withstand a temperature range between -40°C and +85°C according GRPE draft [1] and for short periods up to a maximum temperature of 140°C during filling (fast filling) [2]. In order to exploit the material properties efficiently with a high degree of lightweight optimization and a high level of safety on the same time a better understanding of the structural behavior of hybrid designs is necessary. Work on this topic has been carried out in the frame of a work package on safety aspects and regulation (Subproject SAR) of the European IP StorHy (www.storhy.net). The temperature influence on the composite layers is distinctive due to there typical polymer material behavior. The stiffness of the composite layer is a function of temperature which influences global strains and stress levels (residual stresses) in operation. In order to do an accurate fatigue assessment of composite hybrid cylinders a realistic modeling of a representative temperature load is needed. For this climate data has been evaluated which were collected in Europe over a period of 30 years [3]. Assuming that the temperature follows a Gaussian (normal) distribution within the assessed period of 30 years it is possible to generate a frequency distribution for different temperature classes for the cold extreme and the hot extreme. Combining these distributions leads to the overall temperature range distribution (frequency over temperature classes). The climatic temperature influence the filling temperature and the pressure load have to be considered in combination with the operation profile of the storage cylinder to derive a complete load vector for an accurate assessment of the lifetime and safety level.
Hyper Experiments on Catastrophic Hydrogen Releases Inside a Fuel Cell Enclosure
Sep 2009
Publication
As a part of the experimental work of the EC-funded project HYPER Pro-Science GmbH performed experiments to evaluate the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet. During this study hydrogen distribution and combustion experiments were performed using a generic enclosure model with the dimensions of the fuel cell "Penta H2" provided by ARCOTRONICS (now EXERGY Fuel Cells) to the project partner UNIPI for their experiments on small foreseeable leaks. Hydrogen amounts of 1.5 to 15 g H2 were released within one second into the enclosure through a nozzle with an internal diameter of 8 mm. In the distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Based on the results of these experiments combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe the characteristics and the hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen that is released into a partly vented and partly obstructed enclosure with different venting characteristics.
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Safety Considerations and Approval Procedures for the Integration of Fuel Cells on Board of Ships
Sep 2009
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's hare of emissions to air is regarded to be significant and public concern lead to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce additional regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or main propulsion. The presentation summarizes the legal background in international shipping related to the use for gas as ship fuel and fuel cells. The focus of the presentation will be on the safety principles for the use of gas as fuel and fuel cells on board of ships and boats. The examples given show the successful integration of such systems on board of ships. Furthermore a short outlook will be given to the ongoing and planed projects for the use of fuel cells on board of ships.
Achievements of The EC Network of Excellence Hysafe
Sep 2009
Publication
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles. The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas” “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified to build up three large internal research projects “InsHyde” “HyTunnel” and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations. The integration provided by the network is manifested by a series of workshops and benchmarks related to experimental and numerical work. Besides the network generated the following products: the International Conference on Hydrogen Safety the first academic education related to hydrogen safety and the Safety Handbook. Finally the network initiated the founding of the International Association for Hydrogen Safety which will open up the future networking to all interested parties on an international level. The indicated results of this five years integration activity will be described in short.
Hydrogen Storage in Glass Capillary Arrays for Portable and Mobile Systems
Sep 2009
Publication
A crucial problem of new hydrogen technologies is the lightweight and also safe storage of acceptable amounts of hydrogen for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure safe infusion storage and controlled release of hydrogen gas although storage pressures up to 1200 bar are applied. This technology enables the storage of a significantly greater amount of hydrogen than other approaches. In storage tests with first capillary arrays a gravimetric storage capacity of about 33% and a volumetric capacity of 28% was determined at a comparative low pressure of only 400 bar. This is much more than the actual published storage capacities which are to find for other storage systems. This result already surpassed the US Department of Energy's 2010 target and it is expected to meet the DOE's 2015 target in the near future.<br/>Different safety aspects have been evaluated. On the one hand experiments with single capillaries or arrays of them have been carried out. The capillaries are made of quartz and other glasses. Especially quartz has a three times higher strength than steel. At the same time the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in dependence of capillary materials and dimensions wall thickness etc. in order to find out optimal parameters for the “final” capillaries. In these tests also the sudden release of hydrogen was tested in order to observe possible spontaneous ignitions. On the other hand a theoretical evaluation of explosion hazards was done. Different situations were analyzed e.g. release of hydrogen by diffusion or sudden rupture.
A Direct Synthesis of Platinum/Nickel Co-catalysts on Titanium Dioxide Nanotube Surface from Hydrometallurgical-type Process Streams
Aug 2018
Publication
Solutions that simulate hydrometallurgical base metal process streams with high nickel (Ni) and minor platinum (Pt) concentrations were used to create Pt/Ni nanoparticles on TiO2 nanotube surfaces. For this electrochemical deposition – redox replacement (EDRR) was used that also allowed to control the nanoparticle size density and Pt/Ni content of the deposited nanoparticles. The Pt/Ni nanoparticle decorated titanium dioxide nanotubes (TiO2 nanotubes) become strongly activated for photocatalytic hydrogen (H2) evolution. Moreover EDRR facilitates nanoparticle formation without the need for any additional chemicals and is more effective than electrodeposition alone. Actually a 10000-time enrichment level of Pt took place on the TiO2 surface when compared to Pt content in the solution with the EDRR method. The results show that hydrometallurgical streams offer great potential as an alternative raw material source for industrial catalyst production when coupled with redox replacement electrochemistry.
The Future Potential Hydrogen Demand in Energy-intensive Industries - A Site-specific Approach Applied to Germany
Dec 2021
Publication
Hydrogen when based on renewable electricity can play a key role in the transition towards CO2-neutral industrial production since its use as an energy carrier as well as a feedstock in various industrial process routes is promising. At the same time a large-scale roll-out of hydrogen for industrial use would entail substantial impacts on the energy system which can only be assessed if the regional distribution of future hydrogen demand is considered. Here we assess the technical potential of hydrogen-based technologies for energy-intensive industries in Germany. The site-specific and process-specific bottom-up calculation considers 615 individual plants at 367 sites and results in a total potential hydrogen demand of 326 TWh/a. The results are available as an open dataset. Using hydrogen for non-energy-intensive sectors as well increases the potential hydrogen demand to between 482 and 534 TWh/a for Germany - based on today’s industrial structure and production output. This assumes that fossil fuels are almost completely replaced by hydrogen for process heating and feedstocks. The resulting hydrogen demand is very unevenly distributed: a few sites account for the majority of the overall potential and similarly the bulk of demand is concentrated in a few regions with steel and chemical clusters.
Pressurized Hydrogen from Charged Liquid Organic Hydrogen Carrier Systems by Electrochemical Hydrogen Compression
Feb 2021
Publication
We demonstrate that the combination of hydrogen release from a Liquid Organic Hydrogen Carrier (LOHC) system with electrochemical hydrogen compression (EHC) provides three decisive advantages over the state-of-the-art hydrogen provision from such storage system: a) The EHC device produces reduced hydrogen pressure on its suction side connected to the LOHC dehydrogenation unit thus shifting the thermodynamic equilibrium towards dehydrogenation and accelerating the hydrogen release; b) the EHC device compresses the hydrogen released from the carrier system thus producing high value compressed hydrogen; c) the EHC process is selective for proton transport and thus the process purifies hydrogen from impurities such as traces of methane. We demonstrate this combination for the production of compressed hydrogen (absolute pressure of 6 bar) from perhydro dibenzyltoluene at dehydrogenation temperatures down to 240 °C in a quality suitable for fuel cell operation e.g. in a fuel cell vehicle. The presented technology may be highly attractive for providing compressed hydrogen at future hydrogen filling stations that receive and store hydrogen in a LOHC-bound manner.
Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment
Apr 2021
Publication
Hydrogen gas pressure is an important test parameter when considering materials for high-pressure hydrogen applications. A large set of data on the effect of hydrogen gas pressure on mechanical properties in gaseous hydrogen experiments was reviewed. The data were analyzed by converting pressures into fugacities (f) and by fitting the data using an f|n| power law. For 95% of the data sets |n| was smaller than 0.37 which was discussed in the context of (i) rate-limiting steps in the hydrogen reaction chain and (ii) statistical aspects. This analysis might contribute to defining the appropriate test fugacities (pressures) to qualify materials for gaseous hydrogen applications.
Mechanism of Action of Polytetrafluoroethylene Binder on the Performance and Durability of High-temperature Polymer Electrolyte Fuel Cells
Feb 2021
Publication
In this work new insights into impacts of the polytetrafluoroethylene (PTFE) binder on high temperature polymer electrolyte fuel cells (HT-PEFCs) are provided by means of various characterizations and accelerated stress tests. Cathodes with PTFE contents from 0 wt% to 60 wt% were fabricated and compared using electrochemical measurements. The results indicate that the cell with 10 wt% PTFE in the cathode catalyst layer (CCL) shows the best performance due to having the lowest mass transport resistance and cathode protonic resistance. Moreover cyclic voltammograms show that Pt (100) edge and corner sites are significantly covered by PTFE and phosphate anions when the PTFE content is higher than 25 wt%. Open-circuit and low load-cycling conditions are applied to accelerate degradation processes of the HT-PEFCs. The PTFE binder shows a network structure in the pores of the catalyst layer which reduces phosphoric acid leaching during the aging tests. In addition the high binder HT-PEFCs more easily suffer from a mass transport problem leading to more severe performance degradation.
Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study
Dec 2022
Publication
With the growing need for decarbonization the future gas demand will decrease and the necessity of a gas distribution network is at stake. A remaining industrial gas demand on the distribution network level could lead to industry becoming the main gas consumer supplied by the gas distribution network leading to the question: can industry keep the gas distribution network alive? To answer this research question a three-stage analysis was conducted starting from a rough estimate of average gas demand per production site and then increasing the level of detail. This paper shows that about one third of the German industry sites investigated are currently supplied by the gas distribution network. While the steel industry offers new opportunities the food and tobacco industry alone cannot sustain the gas distribution network by itself.
Synthesis and Characterisation of Platinum-cobalt-manganese Ternary Alloy Catalysts Supported on Carbon Nanofibers: An Alternative Catalyst for Hydrogen Evolution Reaction
Mar 2020
Publication
A systematic method for obtaining a novel electrode structure based on PtCoMn ternary alloy catalyst supported on graphitic carbon nanofibers (CNF) for hydrogen evolution reaction (HER) in acidic media is proposed. Ternary alloy nanoparticles (Co0.6Mn0.4 Pt) with a mean crystallite diameter under 10 nm were electrodeposited onto a graphitic support material using a two-step pulsed deposition technique. Initially a surface functionalisation of the carbon nanofibers is performed with the aid of oxygen plasma. Subsequently a short galvanostatic pulse electrodeposition technique is applied. It has been demonstrated that if pulsing current is employed compositionally controlled PtCoMn catalysts can be achieved. Variations of metal concentration ratios in the electrolyte and main deposition parameters such as current density and pulse shape led to electrodes with relevant catalytic activity towards HER. The samples were further characterised using several physico-chemical methods to reveal their morphology structure chemical and electrochemical properties. X-ray diffraction confirms the PtCoMn alloy formation on the graphitic support and energy dispersive X-ray spectroscopy highlights the presence of the three metallic components from the alloy structure. The preliminary tests regarding the electrocatalytic activity of the developed electrodes display promising results compared to commercial Pt/C catalysts. The PtCoMn/CNF electrode exhibits a decrease in hydrogen evolution overpotential of about 250 mV at 40 mA cm−2 in acidic solution (0.5 M H2SO4) when compared to similar platinum based electrodes (Pt/CNF) and a Tafel slope of around 120 mV dec−1 indicating that HER takes place under the Volmer-Heyrovsky mechanismm
The Limitations of Hydrogen Blending in the European Gas Grid
Jan 2022
Publication
In recent years various studies have put forward the prospect of relying on low-carbon or renewable gases such as green hydrogen (H2) or biomethane to replace the supply of natural gas. Hydrogen in particular is receiving much attention as a versatile energy carrier that could complement direct electrification in a plethora of end-uses and questions over its production and deployment play an important part in the ongoing discussions around the energy chapters of the European Commission’s Green Deal agenda.
The aim of the short study was to assess the technical feasibility emission savings and cost impacts of the addition of hydrogen to the existing gas transport network the so-called practice of “hydrogen blending” which is currently being discussed as a deployment pathway in the context of the review of the EU Gas Market Regulation (GMR) and the Trans-European Networks for Energy (TEN-E) regulation.
The document can be downloaded from their website
The aim of the short study was to assess the technical feasibility emission savings and cost impacts of the addition of hydrogen to the existing gas transport network the so-called practice of “hydrogen blending” which is currently being discussed as a deployment pathway in the context of the review of the EU Gas Market Regulation (GMR) and the Trans-European Networks for Energy (TEN-E) regulation.
The document can be downloaded from their website
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications such as brake disks for windmills and trucks filtration systems in refineries and fossil power plants transfer rolls for hot-rolled steel strips and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and (iii) number (type) of defects on the thermo-mechanical properties. Additionally environmental degradation of the alloys consisting of hydrogen embrittlement anodic or cathodic dissolution localized corrosion and oxidation resistance in different environments should be well known. Recently some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements environmental items and crystal structure on the deformation behavior of alloys. In this paper we will review the extensive work which has been done during the last decades to address each of the points mentioned above.
Linking Ab Initio Data on Hydrogen and Carbon in Steel to Statistical and Continuum Descriptions
Mar 2018
Publication
We present a selection of scale transfer approaches from the electronic to the continuum regime for topics relevant to hydrogen embrittlement. With a focus on grain boundary related hydrogen embrittlement we discuss the scale transfer for the dependence of the carbon solution behavior in steel on elastic effects and the hydrogen solution in austenitic bulk regions depending on Al content. We introduce an approximative scheme to estimate grain boundary energies for varying carbon and hydrogen population. We employ this approach for a discussion of the suppressing influence of Al on the substitution of carbon with hydrogen at grain boundaries which is an assumed mechanism for grain boundary hydrogen embrittlement. Finally we discuss the dependence of hydride formation on the grain boundary stiffness
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
Aug 2019
Publication
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite achieving an extraordinary balance of mechanical properties and alloying cost. In the present work two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.
Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys
Mar 2021
Publication
It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels nickel superalloys and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THEmax where the degradation of this mechanical property reaches a maximum. Above and below this temperature the degradation is less. Unfortunately the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THEmax are in the range of about 200–340 K which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is the value of THEmax itself as well as the slope of the gradient might affect the materials selection for a dedicated application. Given the current lack of scientific understanding a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminium Hexahydride
Feb 2021
Publication
A systematic study of different ratios of CO CO2 N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2in H2 and CO CO2 N2 in H2 mixture were investigated. Both CO and CO2gas react with the complex hydride forming Al oxy-compounds NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2 the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3% respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2 full degradation was observed whereas after 6 cycles with 10 vol % CO2+ 90 vol % H2 degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2+ 27 vol % H2 + 61.5 vol % N2 the degradation of 94% after 6 cycles was shown. According to these results it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Interaction of Hydrogen Jets with Hot Surfaces of Various Sizes and Temperatures
Sep 2019
Publication
The formation of hydrogen jets from pressurized sources and ignition has been studied by many projects also when hitting hot devices. In the paper presented at the conference 2 years ago the ignition was caused by glow plug a “point like source” at various temperatures distances of igniter and source and source pressures. In continuation of that work ignition now occurred by 1 or 3 platelets of size 45 x 18 mm at a temperatures of 1223 K. When hitting these hot platelets the resulting flame explosions and flame jets show interesting characteristics in contrast to the point like ignition where the explosions drifts downstream with the jet. Parameters of the experiments vary in initial pressure of the tubular source (10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (1223 K). The initial explosions stabilize already at the stagnation point or the wake of the hot platelets. Furthermore flames propagate upstream and downstream depending on the pressure of the hydrogen reservoir and the distance. The achieved flame velocities vary strongly from 30 to 240 m/s. With all investigated hydrogen pressures strong reactions v > 40 m/s occur at platelet distances of 3 and 5 m. The higher values are mainly achieved with jets with 40 MPa pressure at 3 m distance. In these cases the initial explosion contours show irregular shapes. Various effects are found like explosion separation further independently initiated explosions and two parallel flame jets upstream as well as downstream.
Validation of a 3d Multiphase-multicomponent CFD Model for Accidental Liquid and Gaseous Hydrogen Releases
Sep 2017
Publication
As hydrogen-air mixtures are flammable in a wide range of concentrations and the minimum ignition energy is low compared to hydrocarbon fuels the safe handling of hydrogen is of utmost importance. Additional hazards may arise with the accidental spill of liquid hydrogen. Such a release of LH2 leads to a formation of a cryogenic pool a dynamic vaporization process and consequently a dispersion of gaseous hydrogen into the environment. Several LH2 release experiments as well as modelling approaches address this phenomenology. In contrast to existing approaches a new CFD model capable of simulating liquid and gaseous distribution was developed at Forschungszentrum Jülich. It is validated against existing experiments and yields no substantial lacks in the physical model and reveals a qualitatively consistent prediction. Nevertheless the deviation between experiment and simulation raises questions on the completeness of the database in particular with regard to the boundary conditions and available measurements.
Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC)
Dec 2021
Publication
The liquid organic hydrogen carriers (LOHC) are aromatic molecules which can be considered as an attractive option for the storage and transport of hydrogen. A considerable amount of hydrogen up to 7–8% wt. can be loaded and unloaded with a reversible chemical reaction. Substituted quinolines and pyridines are available from petroleum coal processing and wood preservation or they can be synthesized from aniline. Quinolines and pyridines can be considered as potential LOHC systems provided they have favorable thermodynamic properties which were the focus of this current study. The absolute vapor pressures of methyl-quinolines were measured using the transpiration method. The standard molar enthalpies of vaporization of alkyl-substituted quinolines and pyridines were derived from the vapor pressure temperature dependencies. Thermodynamic data on vaporization and formation enthalpies available in the literature were collected evaluated and combined with our own experimental results. The theoretical standard molar gas-phase enthalpies of formation of quinolines and pyridines calculated using the quantum-chemical G4 methods agreed well with the evaluated experimental data. Reliable standard molar enthalpies of formation in the liquid phase were derived by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporization. The liquid-phase hydrogenation/dehydrogenation reaction enthalpies of alkyl-substituted pyridines and quinolines were calculated and compared with the data for other potential liquid organic hydrogen carriers. The comparatively low enthalpies of reaction make these heteroaromatics a seminal LOHC system.
Hydrogen Release from a High-Pressure Gh2 Reservoir in Case of a Small Leak
Sep 2009
Publication
High-pressure GH2 systems are of interest for storage and distribution of hydrogen. The dynamic blow-down process of a high-pressure GH2 reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states which needs to be understood for safety investigations.<br/>This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak position. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. The model chain was evaluated by jet experiments with sonic hydrogen releases from different reservoir pressures and temperatures.<br/>Predictions are made for the blow-down of hydrogen reservoirs with 10 30 and 100 MPa initial pressure. The evolution of the pressure in the reservoir and of the H2 mass flux at the orifice are presented in dimensionless form which allows scaling to other system dimensions and initial gas conditions. Computed hydrogen concentrations and masses in the jet are given for the 100 MPa case. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of burnable H2-air mixtures.
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
Sep 2007
Publication
We analytically investigated the influence of light hydrocarbons on turbulent premixed H2/air atmospheric flames under lean conditions in view of safe handling of H2 systems applications in H2 powered IC engines and gas turbines and also with an orientation towards modelling of H2 combustion. For this purpose an algebraic flame surface wrinkling model included with pressure and fuel type effects is used. The model predictions of turbulent premixed flames are compared with the set of corresponding experimental data of Kido et al. (Kido Nakahara et al. 2002). These expanding spherical flame data include H2–air mixtures doped with CH4 and C3H8 while the overall equivalence ratio of all the fuel/air mixtures is fixed at 0.8 for constant unstretched laminar flame speed of 25 cm/s by varying N2 composition. The model predictions show that there is little variation in turbulent flame speed ST for C3H8 additions up to 20-vol%. However for 50 vol% doping flame speed decreases by as much as 30 % from 250 cm/s that of pure H2–air mixtures for turbulence intensity of 200 cm/s. With respect to CH4 for 50 vol% doping ST reduces by only 6 % cf. pure H2/air mixture. In the first instance the substantial decrease of ST with C3H8 addition may be attributed to the increase in the Lewis number of the dual-fuel mixture and proportional restriction of molecular mobility of H2. That is this decrease in flame speed can be explained using the concept of leading edges of the turbulent flame brush (Lipatnikov and Chomiak 2005). As these leading edges have mostly positive curvature (convex to the unburned side) preferential-diffusive-thermal instabilities cause recognizable impact on flame speed at higher levels of turbulence with the effect being very strong for lean H2 mixtures. The lighter hydrocarbon substitutions tend to suppress the leading flame edges and possibly transition to detonation in confined structures and promote flame front stability of lean turbulent premixed flames. Thus there is a necessity to develop a predictive reaction model to quantitatively show the strong influence of molecular transport coefficients on ST.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
Laser Powder Bed Fusion of WE43 in Hydrogen-argon-gas Atmosphere
Sep 2020
Publication
Growing demand for individual and especially complex parts with emphasis on biomedical or lightweight applications enhances the importance of laser powder bed fusion. Magnesium alloys offer both biocompatibility and low density but feature a very high melting point of oxide layers while the evaporation temperature of pure magnesium is much lower. This impedes adequate part quality and process reproducibility. To weaken this oxide layer and enhance processability a 2 %-hydrogen-argon-gas atmosphere was investigated. A machine system was modified to the use of the novel inert gas to determine the influence of gas atmosphere on hollow cuboids and solid cubes. While processing a 20.3 % decrease in structure width and 20.6 % reduction in standard deviation of the cuboids was determined. There was no significate influence on relative density of solid cubes although eight of the ten highest density specimen were fabricated with the hydrogen addition.
Analysis of Transient Hydrogen Release, Dispersion and Explosion in a Tunnel with Fuel Cell Vehicles using All-Speed CFD Code
Sep 2019
Publication
Hydrogen energy is expanding world wide in recent years while hydrogen safety issues have drawn considerable attention. It is widely accepted that accidental hydrogen release in an open air environment will disperse quickly hence not causing significant hydrogen hazards. A hydrogen hazard is more likely to occur when hydrogen is accidentally released in a confined place i.e. parking garages and tunnels. Prediction the consequences of hydrogen detonation is important for hydrogen safety assessment and for ensuring the safety of installations during accidents. Hence an accident scenario of hydrogen release nd detonation in a tunnel is analysed with GASFLOW-MPI in this paper. GASFLOW-MPI is a well validated parallel CFD code focusing on hydrogen transport combustion and detonation. GASFLOWMPI solves compressible Navier-Stokes equations with a powerful all-speed Arbitrary-Lagrangian-Eulerian (ALE) method hence it can cover both the non-compressible flow during the hydrogen relesase and dispersion phases and the compressible flow during combustion and detonation. A 3D model of a tunnel including eight cars is modelled. Firstly the hydrogen dispersion in the tunnel is calculated. Then the detonation in the tunnel is calculated by manually igniting the hydrogen at the top of the tunnel when the λ criterion is maximum. The pressure loads are calculated to evaluate the consequence of the hazard.
Determination of Distribution Function Used in Monte Carlo Simulation on Safety Analysis of Hydrogen Vessels
Sep 2019
Publication
The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and Kolmogorov-Smirnov tests are the mostly favorable approaches for Goodness of Fit. However the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments.<br/>In this study six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) Norm- Log based method b) Least squares regression c) Weighted least squares regression d) A linear approach based on good linear unbiased estimators e) Maximum likelihood estimation and f) The method of moments estimation. In addition various approaches of ranking function are considered. In the study Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end the results are discussed and the best reliable methods are proposed.
Hydrogen-assisted Cracking of GMA Welded 960 & A Grade High-strength Steels
Jan 2020
Publication
High-strength steels with yield strength of 960 MPa are susceptible to hydrogen-assisted cracking (HAC) during welding processing. In the present paper the implant test is used to study HAC in a quenched and tempered steel S960QL and a high-strength steel produced by thermo-mechanical controlled process S960MC. Welding is performed using the gas-metal arc welding process. Furthermore diffusible hydrogen concentration (HD) in arc weld metal is determined. Based on the implant test results lower critical stress (LCS) for complete fracture critical implant stress (σkrit) for crack initiation and embrittlement index (EI) are determined. At HD of 1.66 ml/100 g LCS is 605 MPa and 817 MPa for S960QL and S960MC respectively. EI is 0.30 and 0.46 for S960QL and S960MC respectively. Fracture surfaces of S960QL show higher degradation with reduced deformation. Both higher EI of S960MC and fractography show better resistance to HAC in the HAZ of S960MC compared to S960QL.
Assessment of Hydrogen Quality Dispensed for Hydrogen Refuelling Stations in Europe
Dec 2020
Publication
The fuel quality of hydrogen dispensed from 10 refuelling stations in Europe was assessed. Representative sampling was conducted from the nozzle by use of a sampling adapter allowing to bleed sample gas in parallel while refuelling an FCEV. Samples were split off and distributed to four laboratories for analysis in accordance with ISO 14687 and SAE J2719. The results indicated some inconsistencies between the laboratories but were still conclusive. The fuel quality was generally good. Elevated nitrogen concentrations were detected in two samples but not in violation with the new 300 μmol/mol tolerance limit. Four samples showed water concentrations higher than the 5 μmol/mol tolerance limit estimated by at least one laboratory. The results were ambiguous: none of the four samples showed all laboratories in agreement with the violation. One laboratory reported an elevated oxygen concentration that was not corroborated by the other two laboratories and thus considered an outlier.
Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels
Sep 2019
Publication
The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers both in composite pressure vessels. As a transport regulation the ADR is applicable in Europe and adjoined regions and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012 the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan the USA and China. Subsequently the failure consequences of using trailer vehicles the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort.
State-of-the-Art and Research Priorities in Hydrogen Safety
Sep 2013
Publication
On October 16-17 2012 the International Association for Hydrogen Safety (HySafe) in cooperation with the Institute for Energy and Transport of the Joint Research Centre of the European Commission (JRC IET Petten) held a two-day workshop dedicated to Hydrogen Safety Research Priorities. The workshop was hosted by Federal Institute for Materials Research and Testing (BAM) in Berlin Germany. The main idea of the Workshop was to bring together stakeholders who can address the existing knowledge gaps in the area of the hydrogen safety including identification and prioritization of such gaps from the standpoint of scientific knowledge both experimental and theoretical including numerical. The experience highlighting these gaps which was obtained during both practical applications (industry) and risk assessment should serve as reference point for further analysis. The program included two sections: knowledge gaps as they are addressed by industry and knowledge gaps and state-of-the-art by research. In the current work the main results of the workshop are summarized and analysed.
Status of the Pre-normative Research Project PRESLHY for the Safe Use of LH2
Sep 2019
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large scale transport and storage of hydrogen with higher densities and potentially better safety performance. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducts pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The work program consists of a preparatory phase where the state of the art before the project has been summarized and where the experimental planning was adjusted to the outcome of a research priorities workshop. The central part of the project consists of 3 phenomena oriented work packages addressing Release Ignition and Combustion with analytical approaches experiments and simulations. The results shall improve the general understanding of the behavior of LH2 in accidents and thereby enhance the state-of-the-art what will be reflected in appropriate recommendations for development or revision of specific international standards. The paper presents the status of the project at the middle of its terms.
Modelling and Optimization of a Flexible Hydrogen-fueled Pressurized PEMFC Power Plant for Grid Balancing Purposes
Feb 2021
Publication
In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant hydrogen fueled and scalable to MW-size designed to provide grid support.<br/>In this work different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model validated through dedicated experiments.<br/>The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems
Aug 2015
Publication
This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV) system (nearly 100% self-consumption). Thereby the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.
No more items...