China, People’s Republic
Utilization of Food Waste for Hydrogen-based Power Generation: Evidence from Four Cities in Ghana
Mar 2023
Publication
Hydrogen gas will be an essential energy carrier for global energy systems in the future. However non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt followed by Accra with 31.62 kt while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period followed by Accra with 759.76 kt Secondi-Takoradi with 255.23 kt and Tamale with 81.85 kt. According to the current study Kumasi had the largest percentage contribution of hydrogen (47.15%) followed by Accra (36.60%) Secondi-Takoradi (12.31%) and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.
A Bibliometric and Visualized Overview of Hydrogen Embrittlement from 1997 to 2022
Dec 2022
Publication
The mechanical properties of materials deteriorate when hydrogen embrittlement (HE) occurs seriously threatening the reliability and durability of the hydrogen system. Therefore it is important to summarize the status and development trends of research on HE. This study reviewed 6676 publications concerned with HE from 1997 to 2022 based on the Web of Science Core Collection. VOSviewer was used to conduct the bibliometric analysis and produce visualizations of the publications. The results showed that the number of publications on HE increased after 2007 especially between 2017 and 2019. Japan was the country with the highest numbers of productive authors and citations of publications and the total number of citations of Japanese publications was 24589. Kyushu University was the most influential university and the total number of citations of Kyushu University publications was 7999. Akiyama was the most prolific and influential author publishing 88 publications with a total of 2565 citations. The USA South Korea and some European countries are also leading in HE research; these countries have published more than 200 publications. It was also found that the HE publications generally covered five topics: “Hydrogen embrittlement in different materials” “Effect of hydrogen on mechanical properties of materials” “Effect of alloying elements or microstructure on hydrogen embrittlement” “Hydrogen transport” and “Characteristics and mechanisms of hydrogen related failures”. Research hotspots included “Fracture failure behavior and analysis” “Microstructure” “Hydrogen diffusion and transport” “Mechanical properties” “Hydrogen resistance” and so on. These covered the basic methods and purposes of HE research. Finally the distribution of the main subject categories of the publications was determined and these categories covered various topics and disciplines. This study establishes valuable reference information for the application and development of HE research and provides a convenient resource to help researchers and scholars understand the development trends and research directions in this field.
Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
Mar 2023
Publication
Solid oxide electrolysis cells (SOECs) have great application prospects because of their excellent performance but the long-term applications of the stacks are restricted by the structural degradation under the high-temperature conditions. Therefore an SOEC degradation model is developed and embedded in a process model of the high-temperature steam electrolysis (HTSE) system to investigate the influence of the stack degradation at the system level. The sensitivity analysis and optimization were carried out to study the influence factors of the stack degradation and system hydrogen production efficiency and search for the optimal operating conditions to improve the hydrogen production efficiency and mitigate the stack degradation. The analysis results show that the high temperature and large current density can accelerate the stack degradation but improve the hydrogen production efficiency while the high temperature gradually becomes unfavorable in the late stage. The low air-to-fuel feed ratio is beneficial to both the degradation rate and hydrogen production efficiency. The results show that the optimization method can improve the hydrogen production efficiency and inhibit the stack degradation effectively. Moreover part of the hydrogen production efficiency has to be sacrificed in order to obtain a lower stack degradation rate.
Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies
Mar 2023
Publication
In recent years the problem of environmental pollution especially the emission of greenhouse gases has attracted people’s attention to energy infrastructure. At present the fuel consumed by transportation mainly comes from fossil energy and the strong traffic demand has a great impact on the environment and climate. Fuel cell electric vehicles (FCEVs) use hydrogen energy as a clean alternative to fossil fuels taking into account the dual needs of transportation and environmental protection. However due to the low power density and high manufacturing cost of hydrogen fuel cells their combination with other power supplies is necessary to form a hybrid power system that maximizes the utilization of hydrogen energy and prolongs the service life of hydrogen fuel cells. Therefore the hybrid power system control mode has become a key technology and a current research hotspot. This paper first briefly introduces hydrogen fuel cells then summarizes the existing hybrid power circuit topology categorizes the existing technical solutions and finally looks forward to the future for different scenarios of hydrogen fuel cell hybrid power systems. This paper provides reference and guidance for the future development of renewable hydrogen energy and hydrogen fuel cell hybrid electric vehicles.
Modeling of Hydrogen Production System for Photovoltaic Power Generation and Capacity Optimization of Energy Storage System
Sep 2022
Publication
Hydrogen production using solar energy is an important way to obtain hydrogen energy. However the inherent intermittent and random characteristics of solar energy reduce the efficiency of hydrogen production. Therefore it is necessary to add an energy storage system to the photovoltaic power hydrogen production system. This paper establishes a model of a photovoltaic power generation hydrogen system and optimizes the capacity configuration. Firstly the mathematical model is modeled and analyzed and the system is modeled using Matlab/Simulink; secondly the principle of optimal configuration of energy storage capacity is analyzed to determine the optimization strategy we propose the storage capacity configuration algorithm based on the low-pass filtering principle and optimal time constant selection; finally a case study is conducted whose photovoltaic installed capacity of 30 MW verifying the effectiveness of the proposed algorithm analyzing the relationship between energy storage capacity and smoothing effect. The results show that as the cut-off frequency decreases the energy storage capacity increases and the smoothing effect is more obvious. The proposed algorithm can effectively reduce the 1 h maximum power variation of PV power generation. In which the maximum power variation of PV generation 1 h before smoothing is 4.31 MW. We set four different sets of time constants the maximum power variation of PV generation 1 h after smoothing is reduced to 0.751 0.389 0.078 and 0.04 MW respectively.
Progress and Challenges in Multi-stack Fuel Cell System for High Power Applications: Architecture and Energy Management
Jan 2023
Publication
With the development of fuel cells multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency durability reliability and pollution-free. Accordingly the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly the MFCS applications are presented in high-power scenarios especially in transportation applications. Then to further investigate the MFCS MFCS including hydrogen and air subsystem thermal and water subsystem multi-stack architecture and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan cost and efficiency in the multi-stack fuel cell system. Finally the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.
Analysis of Crash Characteristics of Hydrogen Storage Structure of Hydrogen Powered UAV
Nov 2022
Publication
In the context of green aviation as an internationally recognized solution hydrogen energy is lauded as the “ultimate energy source of the 21st century” with zero emissions at the source. Developed economies with aviation industries such as Europe and the United States have announced hydrogen energy aviation development plans successively. The study and development of high-energy hydrogen fuel cells and hydrogen energy power systems have become some of the future aviation research focal points. As a crucial component of hydrogen energy storage and delivery the design and development of a safe lightweight and efficient hydrogen storage structure have drawn increasing consideration. Using a hydrogen-powered Unmanned Aerial Vehicle (UAV) as the subject of this article the crash characteristics of the UAV’s hydrogen storage structure are investigated in detail. The main research findings are summarized as follows: (1) A series of crash characteristics analyses of the hydrogen storage structure of a hydrogen-powered UAV were conducted and the Finite Element Analysis (FEA) response of the structure under different impact angles internal pressures and impact speeds was obtained and analyzed. (2) When the deformation of the hydrogen storage structure exceeds 50 mm and the strain exceeds 0.8 an initial crack will appear at this part of the hydrogen storage structure. The emergency release valve should respond immediately to release the gas inside the tank to avoid further damage. (3) Impact angle and initial internal pressure are the main factors affecting the formation of initial cracks.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Recent Advances of Metal Borohydrides for Hydrogen Storage
Aug 2022
Publication
Hydrogen energy is an excellent carrier for connecting various renewable energy sources and has many advantages. However hydrogen is flammable and explosive and its density is low and easy to escape which brings inconvenience to the storage and transportation of hydrogen. Therefore hydrogen storage technology has become one of the key steps in the application of hydrogen energy. Solid-state hydrogen storage method has a very high volumetric hydrogen density compared to the traditional compressed hydrogen method. The main issue of solid-state hydrogen storage method is the development of advanced hydrogen storage materials. Metal borohydrides have very high hydrogen density and have received much attention over the past two decades. However high hydrogen sorption temperature slow kinetics and poor reversibility still severely restrict its practical applications. This paper mainly discusses the research progress and problems to be solved of metal borohydride hydrogen storage materials for solid-state hydrogen storage.
Influence of Hydrogen Production in the CO2 Emissions Reduction of Hydrogen Mettalurgy Transformation in Iron and Steel Industry
Jan 2023
Publication
The transformation of hydrogen metallurgy is a principal means of promoting the iron and steel industry (ISI) in reaching peak and deep emissions reduction. However the environmental impact of different hydrogen production paths on hydrogen metallurgy has not been systemically discussed. To address this gap based on Long-range Energy Alternatives Planning System (LEAP) this paper constructs a bottom-up energy system model that includes hydrogen production iron and steel (IS) production and power generation. By setting three hydrogen production structure development paths namely the baseline scenario business-as-usual (BAU) scenario and clean power (CP) scenario the carbon dioxide (CO2) emissions impact of different hydrogen production paths on hydrogen metallurgy is carefully evaluated from the perspective of the whole industry and each IS production process. The results show that under the baseline scenario the hydrogen metallurgy transition will help the CO2 emissions of ISI peak at 2.19 billion tons in 2024 compared to 2.08 billion tons in 2020 and then gradually decrease to 0.78 billion tons in 2050. However different hydrogen production paths will contribute to the reduction or inhibit the reduction. In 2050 the development of electrolysis hydrogen production with renewable electricity will reduce CO2 emissions by an additional 48.76 million tons (under the CP scenario) while the hydrogen production mainly based on coal gasification and methane reforming will increase the additional 50.04 million tons CO2 emissions (under the BAU scenario). Moreover under the hydrogen production structure relying mainly on fossil and industrial by-products the technological transformation of blast furnace ironmaking with hydrogen injections will leak carbon emissions to the upstream energy processing and conversion process. Furthermore except for the 100% scrap based electric arc furnace (EAF) process the IS production process on hydrogen-rich shaft furnace direct reduced iron (hydrogen-rich DRI) have lower CO2 emissions than other processes. Therefore developing hydrogen-rich DRI will help the EAF steelmaking development to efficiently reduce CO2 emissions under scrap constraints.
Techno-economic Study of a 100-MW-class Multi-energy Vehicle Charging/Refueling Station: Using 100% Renewable, Liquid Hydrogen, and Superconductor Technologies
Dec 2022
Publication
Renewable energies such as the wind energy and solar energy generate low-carbon electricity which can directly charge battery electric vehicles (BEVs). Meanwhile the surplus electricity can be used to produce the “green hydrogen” which provides zero-emission hydrogen fuels to those fuel cell electric vehicles (FCEVs). In order to charge/refuel multi-energy vehicles we propose a novel scheme of hybrid hydrogen/electricity supply using cryogenic and superconducting technologies. In this scheme the green hydrogen is further liquefied into the high-density and low-pressure liquid hydrogen (LH2) for bulk energy storage and transmission. Taking the advantage of the cryogenic environment of LH2 (20 K) it can also be used as the cryogen to cool down super conducting cables to realize the virtually zero-loss power transmission from 100 % renewable sources to vehicle charging stations. This hybrid LH2/electricity energy pipeline can realize long-distance large-capacity and high efficiency clean energy transmission to fulfil the hybrid energy supply demand for BEVs and FCEVs. For the case of a 100 MW-class hybrid hydrogen/electricity supply station the system principle and energy management strategy are analyzed through 9 different operating sub-modes. The corresponding static and dynamic economic modeling are performed and the economic feasibility of the hybrid hydrogen/electricity supply is verified using life-cycle analysis. Taking an example of wind power capacity 1898 MWh and solar power capacity 1619 MWh per day the dynamic payback period is 15.06 years the profitability index is 1.17 the internal rate of return is 7.956 % and the accumulative NPV is 187.92 M$. The system design and techno-economic analysis can potentially offer a technically/economically superior solution for future multi-energy vehicle charging/refueling systems.
Experimental Investigation of Stress Corrosion on Supercritical CO2 Transportation Pipelines Against Leakage for CCUS Applications
Nov 2022
Publication
Carbon Capture Utilization and Storage (CCUS) is one of the key technologies that will determine how humans address global climate change. For captured CO2 in order to avoid the complications associated with two-phase flow most carbon steel pipelines are operated in the supercritical state on a large scale. A pipeline has clear Stress Corrosion Cracking (SCC) sensitivity under the action of stress and corrosion medium which will generally cause serious consequences. In this study X70 steel was selected to simulate an environment in the process of supercritical CO2 transportation by using high-temperature high-pressure Slow Strain Rate Tensile (SSRT) tests and high-temperature high-pressure electrochemical test devices with different O2 and SO2 contents. Studies have shown that 200 ppm SO2 shows a clear SCC sensitivity tendency which is obvious when the SO2 content reaches 600 ppm. The SCC sensitivity increases with the increase of SO2 concentration but the increase amplitude decreases. With the help of advanced microscopic characterization techniques such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) through the analysis of fracture and side morphology the stress corrosion mechanism of a supercritical CO2 pipeline containing SO2 and O2 impurities was obtained by hydrogen embrittlement fracture characteristics. With the increase of SO2 content the content of Fe element decreases and the corrosion increases demonstrating that SO2 plays a leading role in electrochemical corrosion. This study further strengthens the theoretical basis of stress corrosion of supercritical CO2 pipelines plays an important role in preventing leakage of supercritical CO2 pipelines and will provide guidance for the industrial application of CCUS.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
Study on the Effect of Second Injection Timing on the Engine Performances of a Gasoline/Hydrogen SI Engine with Split Hydrogen Direct Injecting
Oct 2020
Publication
Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore to investigate SHDI deeply a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5 five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD) which was the main factor affecting the engine performances. With SHDI since the HMD is manageable the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105◦ crank angle (CA) before top dead center (BTDC) the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI) the NOX CO and HC emissions with SHDI were reduced by 20% 40% and 72% respectively.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
An Analysis of Renewable Energy Sources for Developing a Sustainable and Low-Carbon Hydrogen Economy in China
Apr 2023
Publication
A significant effort is required to reduce China’s dependency on fossil fuels while also supporting worldwide efforts to reduce climate change and develop hydrogen energy systems. A hydrogen economy must include renewable energy sources (RESs) which can offer a clean and sustainable energy source for producing hydrogen. This study uses an integrated fuzzy AHP–fuzzy TOPSIS method to evaluate and rank renewable energy sources for developing a hydrogen economy in China. This is a novel approach because it can capture the uncertainty and vagueness in the decision-making process and provide a comprehensive and robust evaluation of the alternatives. Moreover it considers multiple criteria and sub-criteria that reflect the environmental economic technical social and political aspects of RESs from the perspective of a hydrogen economy. This study identified five major criteria fifteen sub-criteria and six RES alternatives for hydrogen production. This integrated approach uses fuzzy AHP to evaluate and rank the criteria and sub-criteria and fuzzy TOPSIS to identify the most suitable and feasible RES. The results show that environmental economic and technical criteria are the most important criteria. Solar wind and hydropower are the top three RES alternatives that are most suitable and feasible. Furthermore biomass geo-thermal and tidal energy were ranked lower which might be due to the limitations and challenges in their adoption and performance in the context of the criteria and sub-criteria used for the analysis. This study’s findings add to the literature on guidelines to strategize for renewable energy adoption for the hydrogen economy in China.
Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges
Dec 2022
Publication
It is becoming increasingly important to develop effective combustion technologies for low calorific industrial gases (LCIG) because of the rising energy demand and environmental issues caused by the extensive use of fossil fuels. In this review the prospect of these opportunity fuels in China is discussed. Then the recent fundamental and engineering studies of LCIG combustion are summarized. Specifically the differences between LCIG and traditional fuels in the composition and fundamental combustion characteristics are described. The state-of-the-art combustion strategies for burning LCIG are reviewed including porous media combustion flameless combustion oxy-fuel combustion and dual-fuel combustion. The technical challenges and further development needs for efficient LCIG combustion are also discussed.
Self-Sustaining Control Strategy for Proton-Exchange Membrane Electrolysis Devices Based on Gradient-Disturbance Observation Method
Mar 2023
Publication
This paper proposes a self-sustaining control model for proton-exchange membrane (PEM) electrolysis devices aiming to maintain the temperature of their internal operating environment and thus improve the electrolysis efficiency and hydrogen production rate. Based on the analysis of energy–substance balance and electrochemical reaction characteristics an electrothermal-coupling dynamic model for PEM electrolysis devices was constructed. Considering the influence of the input energy–substance and the output hydrogen and oxygen of PEM electrolysis devices on the whole dynamic equilibrium process the required electrical energy and water molar flow rate are dynamically adjusted so that the temperature of the cathode and the anode is maintained near 338.15 K. The analytical results show that the hydrogen production rate and electrolysis efficiency are increased by 0.275 mol/min and 3.9% respectively by linearly stacking 100 PEM electrolysis devices to form a hydrogen production system with constant cathode and anode operating temperatures around 338.15 K in the self-sustaining controlled mode
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
No more items...