China, People’s Republic
Hydrogen‐Rich Gas Production from Two‐Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite
Jan 2022
Publication
Tao Xu,
Jue Xu and
Yongping Wu
The potential of catalytic pyrolysis of biomass for hydrogen and bio‐oil production has drawn great attention due to the concern of clean energy utilization and decarbonization. In this paper the catalytic pyrolysis of pine sawdust with calcined dolomite was carried out in a novel moving bed reactor with a two‐stage screw feeder. The effects of pyrolysis temperature (700–900 °C) and catalytic temperature (500–800 °C) on pyrolysis performance were investigated in product distribution gas composition and gas properties. The results showed that with the temperature increased pyrolysis gas yield in‐ creased but the yield of solid and liquid products decreased. With the increase in temperature the CO and H2 content increased significantly while the CO2 and CH4 decreased correspondingly. The calcined dolomite can remove the tar by 44% and increased syngas yield by 52.9%. With the increasing catalytic temperature the catalytic effect of calcined dolomite was also enhanced.
Forecasting the Hydrogen Demand in China: A System Dynamics Approach
Jan 2022
Publication
Many countries including China have implemented supporting policies to promote the commercialized application of green hydrogen and hydrogen fuel cells. In this study a system dynamics (SD) model is proposed to study the evolution of hydrogen demand in China from the petroleum refining industry the synthetic ammonia industry and the vehicle market. In the model the impact from the macro-environment hydrogen fuel supply and construction of hydrogen facilities is considered to combine in incentives for supporting policies. To further formulate the competitive relationship in the vehicle market the Lotka–Volterra (LV) approach is adopted. The model is verified using published data from 2003 to 2017. The model is also used to forecast China’s hydrogen demand up to the year of 2030 under three different scenarios. Finally some forward-looking guidance is provided to policy makers according to the forecasting results.
Hydrogen Inhibition Effect of Chitosan and Sodium Phosphate on ZK60 Waste Dust in a Wet Dust Removal System: A Feasible Way to Control Hydrogen Explosion
Dec 2021
Publication
Wet dust removal systems used to control dust in the polishing or grinding process of Mg alloy products are frequently associated with potential hydrogen explosion caused by magnesium-water reaction. For purpose of avoiding hydrogen explosion risks we try to use a combination of chitosan (CS) and sodium phosphate (SP) to inhibit the hydrogen evolution reaction between magnesium alloy waste dust and water. The hydrogen evolution curves and chemical kinetics modeling for ten different mixing ratios demonstrate that 0.4% wt CS + 0.1% wt SP yields the best inhibition efficiency with hydrogen generation rate of almost zero. SEM and EDS analyses indicate that this composite inhibitor can create a uniform smooth tight protective film over the surface of the alloy dust particles. FTIR and XRD analysis of the chemical composition of the surface film show that this protective film contains CS and SP chemically adsorbed on the surface of ZK60 but no detectable Mg(OH)2 suggesting that magnesium-water reaction was totally blocked. Our new method offers a thorough solution to hydrogen explosion by inhibiting the hydrogen generation of magnesium alloy waste dust in a wet dust removal system.
Effect of Plastic Deformation at Room Temperature on Hydrogen Diffusion of Hot-rolled S30408
Sep 2017
Publication
The influence of plastic deformation on hydrogen diffusion is of critical significance for hydrogen embrittlement (HE) studies. In this work thermal desorption spectroscope (TDS) slow strain rate test (SSRT) feritscope transmission electron microscope (TEM) and TDS model are used to establish the relationship between plastic deformation and hydrogen diffusion aiming at unambiguously elucidating the effect of pre-existing traps on hydrogen diffusion of hot-rolled S30408. An effective way is developed to deduce hydrogen apparent diffusivity in this paper. Results indicate apparent diffusivities decrease firstly and then increase with increasing plastic strain at room temperature. Hydrogen diffusion changing with plastic deformation is a complicated process involving multiple factors. It is suggested to be divided into two processes controlled by dislocations and strain-induced martensite respectively and the transformation strain is about 20% demonstrated by experiments.
Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties
May 2020
Publication
The deterioration of the mechanical properties of metal induced by hydrogen absorption threatens the safety of the equipment serviced in hydrogen environments. In this study the hydrogen concentration distribution in 2.25Cr-1Mo-0.25V steel after hydrogen charging was analyzed following the hydrogen permeation and diffusion model. The diffusible hydrogen content in the 1-mm-thick specimen and its influence on the mechanical properties of the material were investigated by glycerol gas collecting test static hydrogen charging tensile test scanning electron microscopy (SEM) test and microhardness test. The results indicate that the content of diffusible hydrogen tends to be the saturation state when the hydrogen charging time reaches 48 h. The simulation results suggest that the hydrogen concentration distribution can be effectively simulated by ABAQUS and the method can be used to analyze the hydrogen concentration in the material with complex structures or containing multiple microstructures. The influence of hydrogen on the mechanical properties is that the elongation of this material is reduced and the diffusible hydrogen will cause a decrease in the fracture toughness of the material and thus hydrogen embrittlement (HE) will occur. Moreover the Young’s modulus E and microhardness are increased due to hydrogen absorption and the variation value is related to the hydrogen concentration introduced into the specimen.
Dependence of Hydrogen Embrittlement on Hydrogen in the Surface Layer in Type 304 Stainless Steel
Sep 2013
Publication
Hydrogen embrittlement (HE) together with the hydrogen transport behaviour in hydrogen-charged type 304 stainless steel was investigated by combined tension and outgassing experiments. The hydrogen release rate and HE of hydrogen-charged 304 specimens increase with the hydrogen pressure for hydrogen-charging (or hydrogen content) and almost no HE is observed below the hydrogen content of 8.5 mass ppm. Baking at 433 K for 48 h can eliminate HE of the hydrogen-charged 304 specimen while removing the surface layer will restore HE which indicates that hydrogen in the surface layer plays the primary role in HE. Scanning electron microscopy (SEM) and scanning tunnel microscopy (STM) observations show that particles attributed to the strain-induced α′ martensite formation break away from the matrix and the small holes form during deformation on the specimen surface. With increasing strain the connection among small holes along {111} slip planes of austenite will cause crack initiation on the surface and then the hydrogen induced crack propagates from the surface to interior.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
IPHE Regulations Codes and Standards Working Group-type IV COPV Round Robin Testing
Oct 2015
Publication
This manuscript presents the results of a multi-lateral international activity intended to understand how to execute a cycle stress test as specified in a chosen standard (GTR SAE ISO EIHP …). The purpose of this work was to establish a harmonized test method protocol to ensure that the same results would be achieved regardless of the testing facility. It was found that accurate temperature measurement of the working fluid is necessary to ensure the test conditions remain within the tolerances specified. Continuous operation is possible with adequate cooling of the working fluid but this becomes more demanding if the cycle frequency increases. Recommendations for future test system design and operation are presented.
3D Quantitative Risk Assessment on a Hydrogen Refuelling Station in Shanghai
Sep 2019
Publication
The number of hydrogen refuelling stations worldwide is growing rapidly in recent years. The first large capacity hydrogen refuelling station in China is under construction. A 3D quantitative risk assessment QRA)is conducted for this station. Hazards associated with hydrogen systems are identified. Leakage frequency of hydrogen equipment are analyzed. Jet flame explosion scenarios and corresponding accident consequences are simulated. Risk acceptance criteria for hydrogen refuelling stations are discussed. The results show that the risk of this refuelling station is acceptable. And the maximum lethality frequency is 6.3*10-6. The area around compressors has the greatest risk. People should be avoided as far as possible from the compressor when the compressor does not need to be maintained. With 3D QRA the visualization of the evaluation results will help stakeholders to observe the hazardous areas of the hydrogen refuelling station at a glance.
Acoustic Emission Characteristics of Used 70 MPa Type IV Hydrogen Storage Tanks During Hydrostatic Burst Tests
Sep 2019
Publication
Currently the periodic inspection of composite tanks is typically achieved via hydrostatic test combined with internal and external visual inspections. Acoustic emission (AE) technology demonstrates a promising non destructive testing method for damage mode identification and damage assessment. This study focuses on AE signals characteristics and evolution behaviours for used 70 MPa Type IV hydrogen storage tanks during hydrostatic burst tests. AE-based tensile tests for epoxy resin specimen and carbon fiber tow were implemented to obtain characteristics of matrix cracking and fiber breakage. Then broadband AE sensors were used to capture AE signals during multi-step loading tests and hydrostatic burst tests. K-means ++ algorithm and wavelet packet transform are performed to cluster AE signals and verify the validity. Combining with tensile tests three clusters are manifested via matrix cracking fiber/matrix debonding and fiber breakage according to amplitude duration counts and absolute energy. The number of three clustering signals increases with the increase of pressure showing accumulated and aggravated damage. The sudden appearance of a large number of fiber breakage signals during hydrostatic burst tests suggests that the composite tank structure is becoming mechanically unstable namely the impending burst failure of the tank.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Effect of Ternary Transition Metal Sulfide FeNi2S4 on Hydrogen Storage Performance of MgH2
Jan 2022
Publication
Hydrogen storage is a key link in hydrogen economy where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety. Thereinto magnesium-based materials (MgH2) are currently deemed as an attractive candidate due to the potentially high hydrogen storage density (7.6 wt%) however the stable thermodynamics and slow kinetics limit the practical application. In this study we design a ternary transition metal sulfide FeNi2S4 with a hollow balloon structure as a catalyst of MgH2 to address the above issues by constructing a MgH2/Mg2NiH4−MgS/Fe system. Notably the dehydrogenation/hydrogenation of MgH2 has been significantly improved due to the synergistic catalysis of active species of Mg2Ni/Mg2NiH4 MgS and Fe originated from the MgH2-FeNi2S4 composite. The hydrogen absorption capacity of the MgH2-FeNi2S4 composite reaches to 4.02 wt% at 373 K for 1 h a sharp contrast to the milled-MgH2 (0.67 wt%). In terms of dehydrogenation process the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH2 and the dehydrogenation activation energy decreases by 95.7 kJ mol–1 compared with the milled-MgH2 (161.2 kJ mol–1). This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH2 material.
The Effect of Polyurethane Sponge Blockage Ratio on Premixed Hydrogen-air Flame Propagation in a Horizontal Tube
Oct 2015
Publication
The effects of sponge blockage ratio on flame structure evolution and flame acceleration were experimentally investigated in an obstructed cross-section tube filled with stoichiometric hydrogen-air mixture. Experimental results show that the mechanisms responsible for flame acceleration can be in terms of the positive feedback of the unburned gas field generated ahead of the flame the area change of the gap between the sponge and the tube and the interaction between the flame and the shear layer appearing at the sponge left top corner. Especially the last one dominates the flame acceleration and causes its speed to be sonic. Then both the second and third contribute to the violent flame acceleration. In addition the unburned gas pockets can be found in both upstream and downstream regions of the sponge. With increasing blockage ratio the unburned gas pockets disappear easier and the flame acceleration is more pronounced. Moreover the sponge tilts more evidently and resultantly the maximum tilt angle increases.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
Simulation Analysis on the Risk of Hydrogen Releases and Combustion in Subsea Tunnels
Oct 2015
Publication
Hydrogen is considered to be a very promising potential energy carrier due to its excellent characteristics such as abundant resources high fuel value clean and renewable. Its safety features greatly influence the potential use. Several safety problems need to be analyzed before using in transportation industry. With the development of the tunnel transportation technology the safe use of hydrogen in tunnels will receive a lot of research attentions. In this article the risk associated with hydrogen release from onboard high-pressure vessels and the induced combustion in tunnels was analyzed using the Partially Averaged Navier–Stokes (PANS) turbulence model. The influences of the tunnel ventilation facilities on the hydrogen flow characteristics and the flammable hydrogen cloud sizes were studied. The tunnel layouts were designed according to the subsea tunnel. And a range of longitudinal ventilation conditions had been considered to investigate the hydrogen releases and the sizes of the flammable hydrogen cloud. Then the hydrogen combustion simulation was carried out after the fixed leaking time. The overpressures induced after the ignition of leaking hydrogen were studied. The influences of ventilation and ignition delay time on the overpressure were also investigated. The main aim was to research the phenomena of hydrogen releases and combustion risk inside subsea tunnels and to lay the foundation of risk assessment methodology developed for hydrogen energy applications on transportation.
Multi-objective Optimal Configurations of a Membrane Reactor for Steam Methane Reforming
Nov 2021
Publication
The combination of traditional reactor and permeable membrane is beneficial to increase the production rate of the target product. How to design a high efficiency and energy saving membrane reactor is one of the key problems to be solved urgently. This paper utilizes finite-time thermodynamics and nonlinear programming to solve the optimal configurations of the membrane reactor of steam methane reforming (MR-SMR) for two optimization objectives that is heat exchange rate minimization and power consumption minimization. The exterior wall temperature and fixed hydrogen production rate are regarded as the control variable and constraint respectively. The results indicate that the hydrogen production rate and heat exchange rate in MR-SMR are increased by 108.58% and 58.42% respectively while the power consumption is reduced by 33.44% compared with those in the traditional reactor under the same condition. Compared with the results in reference reactor (MR-SMR obtained with initial values) the heat exchange rate is reduced by 1.40% by optimizing the exterior wall temperature and the power consumption is reduced by 5.10% by optimizing the exterior wall temperature and molar flow rate of sweep gas. The optimal distributions of exterior wall temperatures in the optimal reactors of minimum heat exchange rate and power consumption have a theoretical guiding significance for the thermal design of the membrane reactors.
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
Optimal Scheduling of Electricity-Hydrogen Coupling Virtual Power Plant Considering Hydrogen Load Response
Mar 2024
Publication
With the rapid development of hydrogen production by water electrolysis the coupling between the electricity-hydrogen system has become closer providing an effective way to consume surplus new energy generation. As a form of centralized management of distributed energy resources virtual power plants can aggregate the integrated energy production and consumption segments in a certain region and participate in electricity market transactions as a single entity to enhance overall revenue. Based on this this paper proposes an optimal scheduling model of an electricity-hydrogen coupling virtual power plant (EHC-VPP) considering hydrogen load response relying on hydrogen to ammonia as a flexibly adjustable load-side resource in the EHC-VPP to enable the VPP to participate in the day-ahead energy market to maximize benefits. In addition this paper also considers the impact of the carbon emission penalty to practice the green development concept of energy saving and emission reduction. To validate the economy of the proposed optimization scheduling method in this paper the optimization scheduling results under three different operation scenarios are compared and analyzed. The results show that considering the hydrogen load response and fully exploiting the flexibility resources of the EHC-VPP can further reduce the system operating cost and improve the overall operating efficiency.
Experimental Validation of Hydrogen Fuel−Cell and Battery−Based Hybrid Drive without DC−−DC for Light Scooter under Two Typical Driving Cycles
Dec 2021
Publication
Faced with key obstacles such as the short driving range long charging time and limited volume allowance of battery−−powered electric light scooters in Asian cities the aim of this study is to present a passive fuel cell/battery hybrid system without DC−−DC to ensure a compact volume and low cost. A novel topology structure of the passive fuel cell/battery power system for the electric light scooter is proposed and the passive power system runs only on hydrogen. The power performance and efficiency of the passive power system are evaluated by a self−developed test bench before installation into the scooters. The results of this study reveal that the characteristics of stable power output quick response and the average efficiency are as high as 88% during the Shanghainese urban driving cycle and 89.5% during the Chinese standard driving cycle. The results pre‐ sent the possibility that this passive fuel cell/battery hybrid powertrain system without DC−DC is practical for commercial scooters.
Estimation of Final Hydrogen Temperature From Refueling Parameters
Oct 2015
Publication
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refuelling process. For safety reason the final gas temperature in the hydrogen tank during vehicle refuelling must be maintained under a certain limit e.g. 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank and it serves as function formula to fit experimental temperatures. From the analytical solution the final hydrogen temperature can be expressed as a weighted average form of initial temperature inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refuelling parameters such as initial mass initial pressure refuelling time refuelling mass rate average pressure ramp rate (APRR) final mass final pressure etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refuelling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.
Study on the Harm Effect of Liquid Hydrogen Release by Consequence Modeling
Sep 2011
Publication
In this paper the accidental release of hydrogen from cryogenic liquid storage tank and the subsequent consequences are studied including hydrogen cold cloud fire ball jet fire flash fire and vapor cloud explosion. The cold effect thermal effects and explosion overpressures from the above consequences are evaluated using IGC and TNO harm criteria. Results show that for instantaneous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>flash fire>cold cloud> fireball. For continuous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>jet fire>flash fire>cold cloud. The vapor cloud explosion is the leading consequence of both instantaneous and continuous releases and may be used for the determination of safety distances of a liquid hydrogen tank. Besides the harm effect distances of liquid hydrogen tank are compared with those of compressed hydrogen storages with equivalent mass. Results show that the liquid hydrogen storage may be safer than 70MPa gaseous storage in case of leak scenario but may be more dangerous than 70MPa storage in case of catastrophic rupture. It is difficult to tell which storage is safer from a consequence perspective. Further investigation need to be made from a standpoint of risk which combined both consequences and the likelihood of scenarios.
Numerical Study on Fast Filling of 70 MPA Hydrogen Vehicle Cylinder
Sep 2011
Publication
There will be significant temperature rise within hydrogen vehicle cylinder during the fast filling process. The temperature rise should be controlled under the temperature limit (85 °C) of the structure material (set by ISO/TS 15869) because it may lead to the failure of the structure. In this paper a 2-dimensional axisymmetric computational fluid dynamics (CFD) model for fast filling of 70 MPa hydrogen vehicle cylinder is presented. The numerical simulations are based on the modified standard k − ɛ turbulence model. In addition both the equation of state for hydrogen gas and the thermodynamic properties are calculated by National Institute of Standards and Technology (NIST) database: REFPROP 7.0. The thermodynamic responses of fast filling with different pressure-rise patterns and filling times within type III cylinder have been analyzed in detail.
New Insights into the Electrochemical Behaviour of Porous Carbon Electrodes for Supercapacitors
Aug 2018
Publication
Activated carbons with different surface chemistry and porous textures were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios which form reversibly under cathodic conditions. The influence of the specific surface area narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
Hydrogen Generation from Methanol at Near-room Temperature
Sep 2017
Publication
As a promising hydrogen storage medium methanol has many advantages such as a high hydrogen content (12.5 wt%) and low-cost. However conventional methanol–water reforming methods usually require a high temperature (>200 °C). In this research we successfully designed an effective strategy to fully convert methanol to hydrogen for at least 1900 min (∼32 h) at near-room temperature. The strategy involves two main procedures which are CH3OH →HCOOH → H2 and CH3OH → NADH → H2. HCOOH and the reduced form of nicotinamide adenine dinucleotide (NADH) are simultaneously produced through the dehydrogenation of methanol by the cooperation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Subsequently HCOOH is converted to H2 by a new iridium polymer complex catalyst and an enzyme mimic is used to convert NADH to H2 and nicotinamide adenine dinucleotide (NAD+). NAD+ can then be reconverted to NADH by repeating the dehydrogenation of methanol. This strategy and the catalysts invented in this research can also be applied to hydrogen production from other small organic molecules (e.g. ethanol) or biomass (e.g. glucose) and thus will have a high impact on hydrogen storage and applications.
Electrocatalysts Based on Metal@carbon Core@shell Nanocomposites: An Overview
Aug 2018
Publication
Developing low-cost high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions such as hydrogen evolution reaction oxygen evolution reaction oxygen reduction reaction and CO2 reduction reaction that are important in water splitting fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates and varies with the structures and morphologies of the metal core (elemental composition core size etc.) and carbon shell (doping layer thickness etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results and technical challenges for future research.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
A Dual Zone Thermodynamic Model for Refueling Hydrogen Vehicles
Sep 2017
Publication
With the simple structure and quick refuelling process the compressed hydrogen storage system is currently widely used. However thermal effects during charging-discharging cycle may induce temperature change in storage tank which has significant impact on the performance of hydrogen storage and the safety of hydrogen storage tank. To address this issue we once propose a single zone lumped parameter model to obtain the analytical solution of hydrogen temperature and use the analytical solution to estimate the hydrogen temperature but the effect of the tank wall is ignored. For better description of the heat transfer characteristics of the tank wall a dual zone (hydrogen gas and tank wall) lumped parameter model will be considered for widely representation of the reference (experimental or simulated) data. Now we extend the single zone model to the dual zone model which uses two different temperatures for gas zone and wall zone. The dual zone model contains two coupled differential equations. To solve them and obtain the solution we use the method of decoupling the coupled differential equations and coupling the solutions of the decoupled differential equations. The steps of the method include: (1) Decoupling of coupled differential equations; (2) Solving decoupled differential equations; (3) Coupling of solutions of differential equations; (4) Solving coupled algebraic equations. Herein three cases are taken into consideration: constant inflow/outflow temperature variable inflow/outflow temperature and constant inflow temperature and variable outflow temperature. The corresponding approximate analytical solutions of hydrogen temperature and wall temperature can be obtained. The hydrogen pressure can be calculated from the hydrogen temperature and the hydrogen mass using the equation of state for ideal gas. Besides the two coupled differential equations can also be solved numerically and the simulated solution can also be obtained. This study will help to set up a formula based approach of refuelling protocol for gaseous hydrogen vehicles.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers
Oct 2021
Publication
Hydrogen mixed natural gas for combustion can improve combustion characteristics and reduce carbon emission which has important engineering application value. A casing swirl burner model is adopted to numerically simulate and research the natural gas hydrogen mixing technology for combustion in gas boilers in this paper. Under the condition of conventional air atmosphere and constant air excess coefficient the six working conditions for hydrogen mixing proportion into natural gas are designed to explore the combustion characteristics and the laws of pollution emissions. The temperature distributions composition and emission of combustion flue gas under various working conditions are analyzed and compared. Further investigation is also conducted for the variation laws of NOx and soot generation. The results show that when the boiler heating power is constant hydrogen mixing will increase the combustion temperature accelerate the combustion rate reduce flue gas and CO2 emission increase the generation of water vapor and inhibit the generation of NOx and soot. Under the premise of meeting the fuel interchangeability it is concluded that the optimal hydrogen mixing volume fraction of gas boilers is 24.7%.
Study of Fire Risk and Accidents Emergency Disposal Technology System of Hydrogen Fuel Vehicles
Sep 2017
Publication
As the energy crisis and environment pollution growing severely the hydrogen fuel motor vehicle has got more and more attention many automobile companies and research institutions invest significant R&D resources to research and develop the hydrogen fuel vehicles. With the development of the hydrogen fuel cell vehicles and hydrogen fuel motor vehicles the hydrogen had more to more extensive application. According to the categories of the hydrogen fuel vehicles the characteristics of hydrogen fuel vehicle fire risk and accidents are analyzed in this paper. As for hydrogen fuel cell vehicles the function of its key components such as the fuel cell the high-pressure storage tank is presented firstly. Then based on the low density fast diffusion and flammable of hydrogen the probable scenarios of accident such as fuel leak jet flame are analyzed and the fire risk of the key components and the whole vehicle is evaluated. Finally the development trend of the emergency warning system of hydrogen fuel cell vehicles is analyzed and some recommendations are proposed referring to the detection pre-warning and control technologies used in the industrial sites. Aiming at the hydrogen car structure characteristics and the fire accident modes and accidents evolution rules the emergency disposal technology system for hydrogen fuel motor vehicles is put forward.
Improvement of Low Temperature Activity and Stability of Ni Catalysts with Addition of Pt for Hydrogen Production Via Steam Reforming of Ethylene Glycol
Nov 2018
Publication
Hydrogen production by steam reforming of ethylene glycol (EG) at 300 °C was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C—C bond rupture and water gas shift reactions; and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
An Investigation of Gaseous Hydrogen Storage Characterizations of Mg–Y–Ni–Cu Alloys Synthesized by Melt Spinning
Aug 2018
Publication
Melt spinning was successfully utilized to prepare Mg25−xYxNi9Cu (x = 0 1 3 5 7) alloys producing nanocrystalline and amorphous structures with improved hydrogenation and dehydrogenation performances. The influence of spinning rate on hydrogenation and dehydrogenation thermodynamics and kinetics was studied in detail. XRD and TEM were utilized to characterize the alloy structures. Hydrogenation and dehydrogenation performances were investigated by Sievert apparatus DSC and TGA connected to a H2 detector. Dehydrogenation activation energies were estimated using both Arrhenius and Kissinger methods. Results show that melt spinning significantly decreases thermodynamic parameters (ΔH and ΔS) and ameliorates desorption kinetics. Dehydrogenation activation energy markedly lowers with increase in spinning rate and is the real driver of amelioration of dehydrogenation kinetics caused by increasing Y content.
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
Multistage Risk Analysis and Safety Study of a Hydrogen Energy Station
Sep 2017
Publication
China has plenty of renewable energy like wind power and solar energy especially in the northwest part of the country. Due to the volatile and intermittent characters of the green powers high penetration level of renewable resources could arise grid stabilization problem. Therefore electricity storage is considered as a solution and hydrogen energy storage is proposed. Instead of storing the electricity directly it converts electricity into hydrogen and the energy in hydrogen will be released as needed from gas to electricity and heat. The transformed green power can be fed to the power grid and heat supply network. State Grid Corporation of China carried out its first hydrogen demonstration project. In the demonstration project an alkaline electrolyzer and a PEM hydrogen fuel cell stack are decided as the hydrogen producer and consumer respectively. Hydrogen safety issue is always of significant importance to secure the property. In order to develop a dedicated safety analysis method for hydrogen energy storage system in power industry the risk analysis for the power-to-gas-topower&heat facility was made. The hazard and operability (HAZOP) study and the failure mode and effects analysis (FMEA) are performed sequentially to the installation to identify the most problematic parts of the system in view of hydrogen safety and possible failure modes and consequences. At the third step the typical hydrogen leak accident scenarios are simulated by using computational fluid dynamics (CFD) computer code. The resulted pressure loads of the possibly ignited hydrogen-air mixture in the facility container are estimated conservatively. Important safeguards and mitigation measures are proposed based on the three-stage risk and safety studies.
Study of the Co-production of Butanol and Hydrogen by Immobilizing Clostridium Acetobutylicum CICC8012
Mar 2019
Publication
Three kinds of carrier materials activated carbon bagasse and brick were used as immobilizing carriers during fermentation by Clostridium acetobutylicum CICC8012. Compared with cell suspended fermentation enhanced fermentation performance was achieved during immobilizing cell fermentation with shorter fermentation time required. During the experiments hydrogen and butanol appear to be competitive events. The best fermentation performance of butanol was obtained in the case of bagasse as immobilizing carrier (5.804g/L of butanol production 0.22g/g of yield and 0.44g/L/h of productivity) while the hydrogen yield was just 1.41 mol/mol. The highest hydrogen productivity (402mL/L/h) and yield (1.808mol/mol glucose) could be obtained in the case of brick as immobilizing carrier while the butanol yield was 0.18 g/g. The highest hydrogen concentration of 66.76 % was obtained in the case of activated carbon as immobilizing carrier.
Review of Renewable Energy-based Hydrogen Production Processes for Sustainable Energy Innovation
Dec 2019
Publication
In this review we primarily analyze the hydrogen production technologies based on water and biomass including the economic technological and environmental impacts of different types of hydrogen production technologies based on these materials and comprehensively compare them. Our analyses indicate that all renewable energy-based approaches for hydrogen production are more environmentally friendly than fossil-based hydrogen generation approaches. However the technical ease and economic efficiency of hydrogen production from renewable sources of energy needs to be further improved in order to be applied on a large scale. Compared with other renewable energy-based methods hydrogen production via biomass electrolysis has several advantages including the ease of directly using raw biomass. Furthermore its environmental impact is smaller than other approaches. Moreover using a noble metal catalyst-free anode for this approach can ensure a considerably low power consumption which makes it a promising candidate for clean and efficient hydrogen production in the future.
Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel
Dec 2022
Publication
In this work first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength toughness and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property deterioration under a hydrogen atmosphere hydrogen embrittlement (HE) of HSLA steel attracts attention. However due to the small size of hydrogen atoms the mechanism of HE is challenging to observe directly by current experimental methods. To understand the HE mechanism at an atomic level DFT methods were applied to simulate the effects of alloying elements doping in bcc-Fe bulk structure and grain boundary structure. Furthermore the potential application of DFT to provide theoretical advice for HSLA steel design is discussed.
Earth Abundant Spinel for Hydrogen Production in a Chemical Looping Scheme at 550°C
Jun 2020
Publication
Operating chemical looping process at mid-temperatures (550-750 oC) presents exciting potential for the stable production of hydrogen. However the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals the high cost of these noble metal containing materials significantly hindered their scalable application. In the current work we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production rate at the average rate of ∼0.62 mmol.g-1.min-1 and a hydrogen yield of ∼9.29 mmol.g-1 with satisfactory stability over 20 cycles at 550 oC. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials enabling their potential for industrial applications.
Investigation of Praseodymium and Samarium Co-doped Ceria as an Anode Catalyst for DIR-SOFC Fueled by Biogas
Aug 2020
Publication
The Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Anionic Structural Effect in Liquid–liquid Separation of Phenol from Model Oil by Choline Carboxylate Ionic Liquid
Feb 2019
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favorable bubble detachment behavior. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
Continuous Synthesis of Few-layer MoS2 with Highly Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
As one of the most promising alternative fuels hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2 small Tafel slope (53.6 mV dec-1) and prominent durability which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices it’s suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.
The Effect of Tube Internal Geometry on the Propensity to Spontaneous Ignition in Pressurized Hydrogen Release
Sep 2013
Publication
Spontaneous ignition of compressed hydrogen release through a length of tube with different internal geometries is numerically investigated using our previously developed model. Four types of internal geometries are considered: local contraction local enlargement abrupt contraction and abrupt enlargement. The presence of internal geometries was found to significantly increase the propensity to spontaneous ignition. Shock reflections from the surfaces of the internal geometries and the subsequent shock interactions further increase the temperature of the combustible mixture at the contact region. The presence of the internal geometry stimulates turbulence enhanced mixing between the shock-heated air and the escaping hydrogen resulting in the formation of more flammable mixture. It was also found that forward-facing vertical planes are more likely to cause spontaneous ignition by producing the highest heating to the flammable mixture than backward-facing vertical planes.
Comparison of Numerical and Algebraic Models of Low and High Pressure Hydrogen Jet Flows with Ideal and Real Gas Models
Sep 2013
Publication
Hydrogen transportation systems require very high pressure hydrogen storage containers to enable sufficient vehicle range for practical use. Current proposed designs have pressures up to 70 MPa with leakage due to damage or deterioration at such high pressures a great safety concern. Accurate models are needed to predict the flammability envelopes around such leaks which rapidly vary with time. This paper compares CFD predictions of jet flows for low pressure jets with predictions using the integral turbulent buoyant jet model. The results show that the CFD model predicts less entrainment and that the turbulent Schmidt number should be smaller with 0.55 giving better results. Then CFD predictions for very high pressure flows are compared with analytical models for choked flows that generate underexpanded jets into the ambient to evaluate the effects of the model assumptions and the effects of real exit geometries. Real gas effects are shown to accelerate the blowdown process and that real flow effects in the CFD model slow the flow rate and increase the exit temperature.
Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers
Apr 2022
Publication
Hydrogen energy is a clean zero-carbon long-term storage flexible and efficient secondary energy. Accelerating the development of the hydrogen energy industry is a strategic choice to cope with global climate change achieve the goal of carbon neutrality and realize high-quality economic and social development. This study aimed to analyze the economic impact of introducing valueadded services to the hydrogen energy market on hydrogen energy suppliers. Considering the network effect of value-added services this study used a two-stage game model to quantitatively analyze the revenue of hydrogen energy suppliers under different scenarios and provided the optimal decision. The results revealed that (1) the revenue of a hydrogen energy supplier increases only if the intrinsic value of value-added services exceeds a certain threshold; (2) the revenue of hydrogen energy suppliers is influenced by a combination of four key factors: the intrinsic value of value-added services network effects user scale and the sales strategies of rivals; (3) the model developed in this paper can provide optimal decisions for hydrogen energy suppliers to improve their economic efficiency and bring more economic investment to hydrogen energy market in the future.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Comparisons of Hazard Distances and Accident Durations Between Hydrogen Vehicles and CNG Vehicles
Sep 2017
Publication
For the emerging hydrogen-powered vehicles the safety concern is one of the most important barriers for their further development and commercialization. The safety of commercial natural gas vehicles has been well accepted and the total number of natural gas vehicles operating worldwide was approximately 23 million by November 2016. Hydrogen vehicles would be more acceptable for the general public if their safety is comparable to that of commercialized CNG vehicles. A comparison study is conducted to reveal the differences of hazard distances and accident durations between hydrogen vehicles and CNG vehicles during a representative accident in an open environment. The tank blowdown time for hydrogen and CNG are calculated separately to compare the accident durations. CFD simulations for real world situations are performed to study the hazard distances from impinging jet fires under vehicle. Results show that the release duration for CNG vehicle is over two times longer than that for hydrogen vehicle indicating that CNG vehicle jet fire accident is more timeconsuming and firefighters have to wait a longer time before they can safely approach the vehicle. For both hydrogen vehicle and CNG vehicle the longest hazard distance near the ground occur about 1 to 4 seconds after the initiation of the thermally-activated pressure relief devices. Afterwards the flames will shrink and the hazard distances will decrease. For firefighters with bunker gear they must stand 6 m and 14 m away from the hydrogen vehicle and CNG vehicle respectively. For general public a perimeter of 12 m and 29 m should be set around the accident scene for hydrogen vehicle and CNG vehicle respectively.
Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels
Mar 2020
Publication
Medium Mn steels have been considered as the next-generation materials for use in the automotive industry due to their excellent strength and ductility balance. To reduce the total weight and improve the safety of vehicles medium Mn steels look forward to a highly promising future. However hydrogen-induced delayed cracking is a concern for the use of high strength steels. This work is focused on the service characteristics of two kinds of medium Mn steels under different relative humidity conditions (40% 60% 80% and 100%). Under normal relative humidity (about 40%) at 25 °C the hydrogen concentration in steel is 0.4 ppm. When exposed to higher relative humidity the hydrogen concentration in steel increases slowly and reaches a stable value about 0.8 ppm. In slow strain rate tensile tests under different relative humidity conditions the tensile strength changed the hydrogen concentration increased and the elongation decreased as well thereby increasing the hydrogen embrittlement sensitivity. In other words the smaller the tensile rate applied the greater the hydrogen embrittlement sensitivity. In constant load tests under different relative humidity conditions the threshold value of the delayed cracking of M7B (‘M’ referring to Mn ‘7’ meaning the content of Mn ‘B’ denoting batch annealing) steel maintains a steady value of 0.82 σb (tensile strength). The threshold value of the delayed cracking of M10B significantly changed along with relative humidity. When relative humidity increased from 60% to 80% the threshold dropped sharply from 0.63 σb to 0.52 σb. We define 80% relative humidity as the ‘threshold humidity’ for M10B.
Validation of Two-Layer Model for Underexpanded Hydrogen Jets
Sep 2019
Publication
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity the present work indicates that the two-layer model is a promising tool for fast accurate predictions of the flow fields of underexpanded hydrogen jets.
No more items...