China, People’s Republic
Paths to Low-cost Hydrogen Energy at a Scale for Transportation Applications in the USA and China via Liquid-hydrogen Distribution Networks
Dec 2019
Publication
The cost of delivered H2 using the liquid-distribution pathway will approach $4.3–8.0/kg in the USA and 26–52 RMB/kg in China by around 2030 assuming large-scale adoption. Historically hydrogen as an industrial gas and a chemical feedstock has enjoyed a long and successful history. However it has been slow to take off as an energy carrier for transportation despite its benefits in energy diversity security and environmental stewardship. A key reason for this lack of progress is that the cost is currently too high to displace petroleum-based fuels. This paper reviews the prospects for hydrogen as an energy carrier for transportation clarifies the current drivers for cost in the USA and China and shows the potential for a liquid-hydrogen supply chain to reduce the costs of delivered H2. Technical and economic trade-offs between individual steps in the supply chain (viz. production transportation refuelling) are examined and used to show that liquid-H2 (LH2) distribution approaches offer a path to reducing the delivery cost of H2 to the point at which it could be competitive with gasoline and diesel fuel.
Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization
Apr 2022
Publication
Hydrogen and renewable electricity-based microgrid is considered to be a promising way to reduce carbon emissions promote the consumption of renewable energies and improve the sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation model ignores the uncertainties and fluctuations of renewable energies and loads a two-stage energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon optimization to eliminate the adverse effects of their uncertainties and fluctuations. In the first stage the day-ahead optimization is performed based on the predicted outpower of WT and PV the predicted demands of power and hydrogen loads. In the second stage the intra-day optimization is performed based on the actual data to trace the day-ahead operation schemes. Since the intra-day optimization can update the operation scheme based on the latest data of renewable energies and loads the proposed two-stage management model is effective in eliminating the uncertain factors and maintaining the stability of the whole system. Simulations show that the proposed two-stage energy management model is robust and effective in coordinating the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and fluctuations of WT PV and loads. In addition the battery storage can reduce the operation cost alleviate the fluctuations of the exchanged power with the power grid and improve the performance of the energy management model.
Optimized Operation Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Dec 2022
Publication
The cost reduction of hydrogen refueling stations (HRSs) is very important for the popularization of hydrogen vehicles. This paper proposes an optimized operation algorithm based on hydrogen energy demand estimation for on-site hydrogen refueling stations. Firstly the user’s hydrogen demand was estimated based on the simulation of their hydrogenation behavior. Secondly mixed integer linear programming method was used to optimize the operation of the hydrogen refueling station to minimize the unit hydrogen energy cost by using the peak–valley difference of the electricity price. We then used three typical scenario cases to evaluate the optimized operation method. The results show that the optimized operation method proposed in this paper can effectively reduce the rated configuration of electrolyzer and storage tank for HRS and can significantly reduce the unit hydrogen energy cost considering the construction cost compared with the traditional method. Therefore the optimization operation method of a local hydrogen production and hydrogen refueling station proposed in this paper can reduce the cost of a hydrogen refueling station and accelerate the popularization of hydrogen energy vehicles. Finally the scope of application of the proposed optimization method and the influence of the variation of the electricity price curve and the unit cost of the electrolyzer are discussed.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
Safety System Design for Mitigating Risks of Intended Hydrogen Releases from Thermally Activated Pressure Relief Device of Onboard Storage
Sep 2019
Publication
All vehicular high-pressure hydrogen tanks are equipped with thermally-activated pressure relief devices (TPRDs) required by Global Technical Regulation. This safety device significantly reduces the risk of tank catastrophic rupture by venting the hydrogen pressure outside. However the released flammable hydrogen raises additional safety problems. Japan Automobile Research Institute has demonstrated that in the vehicle fire event once the TPRD opens the hydrogen fires will engulf the whole vehicle making it difficult for the drivers and passenger to evacuate from the vehicle. This paper designs a new safety system to solve the evacuation problem. The safety system includes a rotatable pressure relief device with a motor a sensory system that consists of infrared sensors ultrasonic radar and temperature sensors a central control unit and an alarm device. The new design of the pressure relief device allows the system actively adjusting the release direction towards void open space outside the vehicle to minimize the risks of hydrogen fires. The infrared sensors located at the roof of the vehicles collect info inside the vehicle and the ultrasonic radar detect the region outside the vehicle. Temperature sensors tell when to trigger the alarm and set the motor in standby mode and the central control unit determines where to rotate based on the info from the infrared sensors and ultrasonic radars. A control strategy is also proposed to operate the safety system in an appropriate way. The cost-benefit analysis show that the new safety system can significantly reduce the risks of intended hydrogen releases from onboard pressure relief devices with total cost increases by less than 1% of the vehicle cost making it a good cost-effective engineering solution.
Catalytic Effect of MoS2 on Hydrogen Storage Thermodynamics and Kinetics of an As-milled YMg11Ni Alloy
Jul 2017
Publication
In this study YMg11Ni and YMg11Ni + 5 wt% MoS2 (named YMg11Ni–MoS2) alloys were prepared by mechanical milling to examine the effect of adding MoS2 on the hydrogen storage performance of a Y–Mg–Ni-based alloy. The as-cast and milled alloys were tested to identify their structures by X-ray diffraction and transmission electron microscopy. The isothermal hydrogen storage thermodynamics and dynamics were identified through an automatic Sieverts apparatus and the non-isothermal dehydrogenation performance was investigated by thermogravimetry and differential scanning calorimetry. The dehydrogenation activation energy was calculated by both Arrhenius and Kissinger methods. Results revealed that adding MoS2produces a very slight effect on hydrogen storage thermodynamics but causes an obvious reduction in the hydrogen sorption and desorption capacities because of the deadweight of MoS2. The addition of MoS2significantly enhances the dehydrogenation performance of the alloy such as lowering dehydrogenation temperature and enhancing dehydrogenation rate. Specifically the initial desorption temperature of the alloy hydride lowers from 549.8 K to 525.8 K. The time required to desorb hydrogen at 3 wt% H2 is 1106 456 363 and 180 s corresponding to hydrogen desorption temperatures at 593 613 633 and 653 K for the YMg11Ni alloy and 507 208 125 and 86 s at identical conditions for the YMg11Ni–5MoS2 alloy. The dehydrogenation activation energy (Ea) values with and without added MoS2are 85.32 and 98.01 kJ mol−1. Thus a decrease in Ea value by 12.69 kJ mol−1 occurs and is responsible for the amelioration of the hydrogen desorption dynamics by adding a MoS2 catalyst.
Hydrolysis Hydrogen Production Mechanism of Mg10Ni10Ce Alloy Surface Modified by SnO2 Nanotubes in Different Aqueous Systems
May 2020
Publication
(Mg-10wt.%Ni)-10wt.%Ce (Mg10Ni10Ce) was ball-milled with SnO2 nanotubes and Mg10Ni10Ce-xSnO2 (x=0 5 10 and 15wt.%) composites have been prepared. The phase compositions microstructures morphologies and hydrolysis H2 generation performance in different aqueous systems (distilled water tap water and simulated seawater) have been investigated and the corresponding hydrolysis mechanism of Mg10Ni10Ce and Mg10Ni10Ce-SnO2 has been proposed. Adding a small amount of SnO2 nanotubes can significantly enhance the hydrolysis reaction of Mg10Ni10Ce especially the initial hydrolysis kinetics and the final H2 generation yield. Unfortunately the Mg10Ni10Ce-xSnO2 hardly react with distilled water at room temperature. The hydrolysis reaction rate of Mg10Ni10Ce-5SnO2 composite in tap water is still very slow with only 17.3% generation yield after 1 hour at 303 K. Fortunately in simulated seawater (3.5wt.% NaCl solution) the hydrolytic H2 generation behavior of the Mg10Ni10Ce-5SnO2 composite has been greatly improved which can release as high as 468.6 mL/g H2 with about 60.9% generation yield within 30 s at 303 K. The Cl- destroys the passivation layer on Mg-Ni-Ce alloy surface and the added SnO2 nanotubes accelerate the hydrolysis reaction rate and enhance the H2 generation yield. The Mg10Ni10Ce-5SnO2 composite can rapidly generate a large amount of H2 in simulate seawater in a short time which is expected to be applied on portable H2 generators in the future.
Integrated Ni-P-S Nanosheets Array as Superior Electrocatalysts for Hydrogen Generation
Jan 2017
Publication
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems. Here we present the synthesis of integrated Ni-P-S nanosheets array including Ni2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction (HER) in a wide pH range. In alkaline media it can generate current densities of 10 20 and 100 mA cm−2 at low overpotentials of only −101.9 −142.0 and −207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation.
Numerical Simulation of The Laminar Hydrogen Flame In The Presence of a Quenching Mesh
Sep 2009
Publication
Recent studies of J.H. Song et al. and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size.<br/>Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment in particular the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter).<br/>In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically.
Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development
Jan 2022
Publication
As fossil fuels continue to be extracted and used issues such as environmental pollution and energy scarcity are surfacing. For the transportation industry the best way to achieve the goal of “carbon neutrality” is to research efficient power systems and develop new alternative fuels. As the world’s largest product of chemicals ammonia is a new renewable fuel with good combustion energy. It can be used as an alternative fuel to reduce carbon emissions because of its proven production process low production and transportation costs safe storage the absence of carbon-containing compounds in its emissions and its future recyclability. This paper firstly introduces the characteristics of ammonia fuel engine and its problems; then it summarizes the effects of various ammonia-blended fuels on the combustion and emission characteristics of the engine from the combustion problem of ammonia-blended engine; then the fuel storage of ammonia-blended hydrogen is discussed the feasibility of hydrogen production instead of hydrogen storage is introduced.
Direct Ammonia Low-temperature Symmetrical Solid Oxide Fuel Cells with Composite Semiconductor Electrolyte
Jan 2022
Publication
In this work a low-temperature symmetrical solid oxide fuel cell with Ni-NCAL|SDC/NCAL|Ni-NCAL (70 SDC:30 NCAL) configuration was successfully constructed by a simple dry press method. At 500 and 550 ◦C the peak power densities of the cell in ammonia were 501 and 755 mW cm− 2 and in hydrogen were 670 and 895 mW cm− 2 respectively. EIS data showed that the Rp values of the cell in ammonia and hydrogen at 550 ◦C were 0.250 and 0.246 Ω cm− 2 respectively indicating the excellent catalytic activity of the Ni-NCAL electrode toward ammonia decomposition and hydrogen oxidation. The different cell output can be ascribed to additional ammonia decomposition steps compared to hydrogen. The noticeable reaction product on the surface of the Ni foam was detrimental to ammonia decomposition. In summary a symmetrical cell with SDC/NCAL semi-conductor electrolyte and Ni-NCAL electrodes exhibited higher electrochemical performance at low temperature than the results reported to date. Therefore higher electrochemical performance can be expected from this cell configuration with more efficient ammonia decomposition catalysts.
Hydrolysis-Based Hydrogen Generation Investigation of Aluminium System Adding Low-Melting Metals
Mar 2021
Publication
In this age of human civilization there is a need for more efficient cleaner and renewable energy as opposed to that provided by nonrenewable sources such as coal and oil. In this sense hydrogen energy has been proven to be a better choice. In this paper a portable graphite crucible metal smelting furnace was used to prepare ten multi-element aluminum alloy ingots with different components. The microstructure and phase composition of the ingots and reaction products were analyzed by X-ray diffraction (XRD) scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The reaction was carried out in a constant temperature water bath furnace at 60°C and the hydrogen production performance of the multi-element aluminum alloys in different proportions was compared by the drainage gas collection method. The experimental results show that the as-cast microstructure of Al–Ga–In–Sn aluminum alloy is composed of a solid solution of Al and part of Ga and a second phase of In3Sn. After the hydrolysis reaction the products were dried at 150°C and then analyzed by XRD. The products were mainly composed of AlOOH and In3Sn. Alloys with different compositions react at the same hydrolysis temperature and the hydrogen production performance is related to the ratio of low-melting-point metal elements. By comparing two different ratios of Ga–In–Sn (GIS) the hydrogen production capacity and production rate when the ratio is 6:3:1 are generally higher than those when the ratio is 7:2:1. The second phase content affects the hydrogen production performance.
Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing
Mar 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover the formation and growth of primary voids were observed in the BM leading to a superior fracture toughness. In addition the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content.
Progress in Biofuel Production from Gasification
May 2017
Publication
Biofuels from biomass gasification are reviewed here and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production process design and integration and socio-environmental impacts of biofuel generation are discussed with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol bio-ethanol and higher alcohols bio-dimethyl ether Fischer Tropsch fuels bio-methane bio-hydrogen and algae-based fuels is reviewed together with recent technologies catalysts and reactors. Significant thermodynamic studies for each biofuel are also examined. Syngas cleaning is demonstrated to be a critical issue for biofuel production and innovative pathways such as those employed by Choren Industrietechnik Germany and BioMCN the Netherlands are shown to allow efficient methanol generation. The conversion of syngas to FT transportation fuels such as gasoline and diesel over Co or Fe catalysts is reviewed and demonstrated to be a promising option for the future of biofuels. Bio-methane has emerged as a lucrative alternative for conventional transportation fuel with all the advantages of natural gas including a dense distribution trade and supply network. Routes to produce H2 are discussed though critical issues such as storage expensive production routes with low efficiencies remain. Algae-based fuels are in the research and development stage but are shown to have immense potential to become commercially important because of their capability to fix large amounts of CO2 to rapidly grow in many environments and versatile end uses. However suitable process configurations resulting in optimal plant designs are crucial so detailed process integration is a powerful tool to optimize current and develop new processes. LCA and ethical issues are also discussed in brief. It is clear that the use of food crops as opposed to food wastes represents an area fraught with challenges which must be resolved on a case by case basis.
Microbial Fuel Cells: Technologically Advanced Devices and Approach for Sustainable/renewable Energy Development
Dec 2021
Publication
There is a huge quantity of energy needs/demands for multiple developmental and domestic activities in the modern era. And in this context consumption of more non-renewable energy is reported and created many problems or issues (availability of fossil fuel stocks in the future period causes a huge quantity of toxic gases or particles or climatic change effects) at the global level. And only sustainable or renewable fuel development can provide alternate fuel and we report from various biological agents processes including microbial biofuel cell applications for future energy needs only. These will not cause any interference in natural resources or services. Microbial biofuel cells utilize the living cell to produce bioelectricity via bioelectrochemical system. It can drive electricity or other energy generation currents via lived cell interaction. Microbial fuel cells (MFCs) and enzymatic biofuel cells with their advancement in design can improve sustainable bio-energy production by proving an efficient conversion system compared to chemical fuels into electric power. Different types of MFCs operation are reported in wastewater treatment with biogas biohydrogen and other biofuel/energy generation. Later biogas can convert into electric power. Hybrid microbial biofuel cell utility with photochemical reaction is found for electricity generation. Recent research and development in microbial biofuel design and its application will emphasize bioenergy for the future.
Research on Carbide Characteristics and Their Influence on the Properties of Welding Joints for 2.25Cr1Mo0.25V Steel
Feb 2021
Publication
The carbide characteristics of 2.25Cr1Mo0.25V steel have an extremely important influence on the mechanical properties of welding joints. In addition hydrogen resistance behavior is crucial for steel applied in hydrogenation reactors. The carbide morphology was observed by scanning electron microscopy (SEM) and the carbide microstructure was characterized by transmission electron microscopy (TEM). Tensile and impact tests were carried out and the influence of carbides on properties was studied. A hydrogen diffusion test was carried out and the hydrogen brittleness resistance of welding metal and base metal was studied by tensile testing of hydrogenated samples to evaluate the influence of hydrogen on the mechanical properties. The research results show that the strength of the welding metal was slightly higher and the Charpy impact value was significantly lower compared to the base metal. The hydrogen embrittlement resistance of the welding metal was stronger than that of the base metal. The presence of more carbides and inclusions was the main cause of the decreased impact property and hydrogen brittleness resistance of the welding metal. These conclusions have certain reference value for designing and manufacturing hydrogenation reactors. View Full-Text
Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging
Aug 2019
Publication
Herein the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrogen embrittlement than the base metal samples in the same current density. Brittle circumferential cracks located at the HAZ sample surfaces were perpendicular to the loading direction and the crack propagation path indicated that five or more cracks may join together to form a longer crack. The fracture morphologies were found to be a mixture of intergranular and transgranular fractures. Hydrogen blisters were observed on the HAZ sample surfaces after conducting tensile tests at a current density of 40 mA/cm2 leading to a fracture in the elastic deformation stage.
A Fracture Analysis of Ti-10Mo-8V-1Fe-3.5Al Alloy Screws during Assembly
Oct 2016
Publication
Titanium screws have properties that make them ideal for applications that require both a high strength-to-weight ratio and corrosion resistance such as fastener applications for aviation and aerospace. The fracture behavior of Ti-10Mo-8V-1Fe-3.5Al (TB3) alloy screws during assembly was explored. Besides visual examination other experimental techniques used for the investigation are as follows: (1) fracture characteristics and damage morphology via scanning electron microscopy (SEM); (2) chemical constituents via energy dispersive spectroscopy (EDS) and hydrogen concentration testing; (3) metallographic observation; (4) stress durability embrittlement testing; and (5) torsion simulation testing. Results show that the fracture mode of the screws is brittle. There is no obvious relation to hydrogen-induced brittle. The main reason for the fracture of titanium alloy screws is internal defects around which oxygen content is high increasing brittleness. The internal defects of screws result from grain boundary cracking caused by hot forging.
Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminium Hexahydride
Feb 2021
Publication
A systematic study of different ratios of CO CO2 N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2in H2 and CO CO2 N2 in H2 mixture were investigated. Both CO and CO2gas react with the complex hydride forming Al oxy-compounds NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2 the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3% respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2 full degradation was observed whereas after 6 cycles with 10 vol % CO2+ 90 vol % H2 degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2+ 27 vol % H2 + 61.5 vol % N2 the degradation of 94% after 6 cycles was shown. According to these results it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.
Hydrogen Station Technology Development Review Through Patent Analysis
May 2018
Publication
This study is a review of hydrogen station patents using the Derwent Innovation system and also a secondary screening. This was undertaken by the researchers to better understand and identify hydrogen station trends. The review focuses on analyzing the developing trends of patent technologies associated with a hydrogen station. The results of the review indicated that the countries with the major distribution of patents were Japan China the USA and Europe. Japan is leading the developmental trajectory of hydrogen stations. The results of the analysis found the leading developers of these patented technologies are Kobe Steel Nippon Oil Toyota and Honda. Other active patent developers analyzed include Linde Hyundai and Texaco. The review concludes with a suggestion that using a patent analysis methodology is a good starting point to identify evaluate and measure the trend in hydrogen station commercial development.
Hydrogen Trapping Behavior in Vanadium Microalloyed TRIP-Assisted Annealed Martensitic Steel
Jun 2019
Publication
Transformation induced plasticity (TRIP)-assisted annealed martensitic (TAM) steel combines higher tensile strength and elogangtion and has been increasingly used but appears to bemore prone to hydrogen embrittlement (HE). In this paper the hydrogen trapping behavior and HE of TRIP-assisted annealed martensitic steels with different vanadium additions had been investigated by means of hydrogen charging and slow strain rate tensile tests (SSRT) microstructral observartion and thermal desorption mass spectroscope (TDS). Hydrogen charging test results indicates that apparent hydrogen diffusive index Da is 1.94 × 10−7/cm2·s−1 for 0.21 wt.% vanadium steel while the value is 8.05 × 10−7/cm2·s−1 for V-free steel. SSRT results show that the hydrogen induced ductility loss ID is 76.2% for 0.21 wt.%V steel compared with 86.5% for V-free steel. The trapping mechanism of the steel containing different V contents is analyzed by means of TDS and Transmission electron microscope (TEM) observations. It is found out that the steel containing 0.21 wt.%V can create much more traps for hydrogen trapping compared with lower V steel which is due to vanadium carbide (VC) precipitates acting as traps capturing hydrogen atoms.The relationship between hydrogen diffusion and hydrogentrapping mechanism is discussed in details.
Numerical Solution for Thermodynamic Model of Charge-discharge Cycle in Compressed Hydrogen Tank
Mar 2019
Publication
The safety and convenience of hydrogen storage are significant for fuel cell vehicles. Based on mass conservation equation and energy conservation equation two thermodynamic models (single zone model and dual zone model) have been established to study the hydrogen gas temperature and tank wall temperature for compressed hydrogen storage tank. With two models analytical solution and Euler solution for single zone (gas zone) charge-discharge cycle have been compared Matlab/Simulink solution and Euler solution for dual zone (gas zone wall zone) charge-discharge cycle have been compared. Three charge-discharge cycle cases (Case 1 constant inflow temperature; Case 2 variable inflow temperature; Case 3 constant inflow temperature variable outflow temperature) and two compressed hydrogen tanks (Type III 25L Type IV 99L) charge-discharge cycle are studied by Euler method. Results show Euler method can well predict hydrogen temperature and tank wall temperature.
A Numerical Simulation on the Leakage Event of a High-Pressure Hydrogen Dispenser
Dec 2021
Publication
For the sake of the increasing demand of hydrogen fuel cell vehicles there are more concerns on the safety of hydrogen refueling stations. As one of the key pieces of equipment the hydrogen dispenser has drawn attention on this aspect since it involves massive manual operations and may be bothered by a high probability of failure. In this paper a numerical study is conducted to simulate the possible leakage events of the hydrogen dispenser based on a prototype in China whose working pressure is 70 MPa. The leakage accident is analyzed with respect to leakage sizes leak directions and the time to stop the leakage. It is found that due to the large mass flow rate under such high pressure the leak direction and the layout of the components inside the dispenser become insignificant and the ignitable clouds will form inside the dispenser in less than 1 s if there is a leakage of 1% size of the main tube. The ignitable clouds will form near the vent holes outside the dispenser which may dissipate quickly if the leakage is stopped. On the other hand the gas inside the dispenser will remain ignitable for a long time which asks for a design with no possible ignition source inside. The results can be useful in optimizing the design of the dispenser regarding the reaction time and sensitivity requirements of the leakage detector the size and amount of vent holes etc.
Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations
Dec 2021
Publication
The present review focuses on the production of renewable hydrogen through the catalytic steam reforming of bio-oil the liquid product of the fast pyrolysis of biomass. Although in theory the process is capable of producing high yields of hydrogen in practice certain technological issues require radical improvements before its commercialization. Herein we illustrate the fundamental knowledge behind the technology of the steam reforming of bio-oil and critically discuss the major factors influencing the reforming process such as the feedstock composition the reactor design the reaction temperature and pressure the steam to carbon ratio and the hour space velocity. We also emphasize the latest research for the best suited reforming catalysts among the specific groups of noble metal transition metal bimetallic and perovskite type catalysts. The effect of the catalyst preparation method and the technological obstacle of catalytic deactivation due to coke deposition metal sintering metal oxidation and sulfur poisoning are addressed. Finally various novel modified steam reforming techniques which are under development are discussed such as the in-line two-stage pyrolysis and steam reforming the sorption enhanced steam reforming (SESR) and the chemical looping steam reforming (CLSR). Moreover we argue that while the majority of research studies examine hydrogen generation using different model compounds much work must be done to optimally treat the raw or aqueous bio-oil mixtures for efficient practical use. Moreover further research is also required on the reaction mechanisms and kinetics of the process as these have not yet been fully understood.
Experimental Study on Hydrogen/Air Premixed Flame Propagation in Closed Rectangular Channels
Sep 2019
Publication
An experimental study of hydrogen/air premixed flame propagation in a closed rectangular channel with the inhibitions (N2 or CO2) was conducted to investigate the inhibiting effect of N2 and CO2 on the flame properties during its propagation. Both Schlieren system and the pressure sensor were used to capture the evolution of flame shape and pressure changes in the channel. It was found that both N2 and CO2 have considerable inhibiting effect on hydrogen/air premixed flames. Compared with N2 CO2 has more prominent inhibition which has been interpreted from thermal and kinetic standpoints. In all the flames the classic tulip shape was observed. With different inhibitor concentration the flame demonstrated three types of deformation after the classic tulip inversion. A simple theoretical analysis has also been conducted to indicate that the pressure wave generated upon the first flame-wall contact can affect the flame deformation depending on its meeting moment with the flame front. Most importantly the meeting moment is always behind the start of tulip inversion which suggests the non-dominant role of pressure wave on this featured phenomenon.
Numerical Simulation of Homogenous/Inhomogeneous Hydrogen-air Explosion in a Rectangular Channel
Sep 2019
Publication
Hydrogen is one of the promising energy sources in the future because it has the advantages of clean combustion products high efficiency and renewable energy. However hydrogen has the characteristics of low ignition energy wide flammable range (4% -75%) and fast burning flame speed which can cause explosion hazards. Typically the accidental release of hydrogen into confined or semi confined enclosures can often lead to a flammable hydrogen-air mixture with concentration gradients and possible flame acceleration and deflagration-to-detonation transition (DDT). The present study aims to test the capability of our in-house density-based solver ExplosionEngFoam for flame acceleration (FA) and deflagration-to-detonation transition (DDT) in homogenous/inhomogeneous hydrogen-air mixtures. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM and uses the modified Weller et al.’s combustion model taking into account LD and RT instabilities turbulence and non-unity Lewis number etc. Numerical simulations were conducted for both homogeneous and inhomogeneous mixtures in a long enclosed channel with 5.4 m in length and 0.06 m in height. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles by Boeck et al. The flow characteristics such as flame fine structure wave evolution etc. were also discussed.
Voltammetric and Galvanostatic Methods for Measuring Hydrogen Crossover in Fuel Cell
Dec 2021
Publication
Hydrogen crossover rate is an important indicator for characterizing the membrane degradation and failure in proton exchange membrane fuel cell. Several electrochemical methods have been applied to quantify it. But most of established methods are too rough to support follow-up applications. In this paper a systematic and consistent theoretical foundation for electrochemical measurements of hydrogen crossover is established for the first time. Different electrochemical processes occurring throughout the courses of applying potentiostatic or galvanostatic excitations on fuel cell are clarified and the linear current–voltage behavior observed in the steady-state voltammogram is reinterpreted. On this basis we propose a modified galvanostatic charging method with high practicality to achieve accurate electrochemical measurement of hydrogen crossover and the validity of this method is fully verified. This research provides an explicit framework for implementation of galvanostatic charging method and offers deeper insights into the principles of electrochemical methods for measuring hydrogen crossover.
An Ammonia-Hydrogen Energy Roadmap for Carbon Neutrality: Opportunity and Challenges in China
Nov 2021
Publication
China has promised to reach the peak carbon dioxide emission (ca. 10 billion tons) by 2030 and carbon neutrality by 2060. To realize these goals it is necessary to develop hydrogen energy and fuel cell techniques. However the high cost and low intrinsic safety of high-pressure hydrogen storage limit their commercialization. NH3 is high in hydrogen content easily liquefied at low pressure and free of carbon and the technology of NH3 synthesis has been commercialized nationwide. It is worth noting that the production of NH3 in China is about 56 million tons per year accounting for 35% of worldwide production. Hence with the well established infrastructure for NH3 synthesis and transportation and the demand for clean energy in China it is feasible to develop a green and economical energy roadmap viz. “Clean low-pressure NH3 synthesis → Safe and economical NH3 storage and transportation → Carbon-free efficient NH3-H2 utilization” for low-carbon or even carbon-free energy production.<br/>Currently the academic and industrial communities in China are striving to make technological breakthroughs in areas such as photocatalytic water splitting electrocatalytic water splitting mild-condition NH3 synthesis low-temperature NH3 catalytic decomposition and indirect or direct NH3 fuel cells with significant progress.<br/>Taking full advantage of the NH3 synthesis industry and readjusting the industrial structure it is viable to achieve energy saving and emission reduction in NH3 synthesis industry (440 million tons CO2 per year) as well as promote a new energy industry and ensure national energy security. Therefore relevant academic and industrial communities should put effort on mastering the key technologies of “Ammonia-Hydrogen” energy conversion and utilization with complete self-dependent intellectual property. It is envisioned that through the establishment of “Renewable Energy-Ammonia-Hydrogen” circular economy a green technology chain for hydrogen energy industry would pose as a promising pathway to achieve the 2030 and 2060 goals.
Formation and Dissociation Behaviour Studies of Hydrogen Hydrate in the Presence of Tetrahydrofuran by using High Pressure DSC
Mar 2019
Publication
Significant challenges still remain in the development of suitable materials for storing hydrogen for practical applications. Clathrate hydrates as a special inclusion compounds could be tailored by changing the storage pressure and temperature to adapt ambient conditions. In this work the hydrates were adopted to encage hydrogen in tetrahydrofuran (THF) aqueous solution with concentration of 3.0 mol%. The formation and dissociation behaviours were investigated by a high pressure micro-differential scanning calorimeter at the operating pressure of 18 MPa 25 MPa and 34 MPa. Experimental results show that the memory water only affects the hydrate formation behaviour instead of the hydrate dissociation behaviour. The dissociation temperature of the THF-H2 hydrate increases with the increase of the operating pressure and its dissociation equilibrium data can be obtained. The dissociation temperatures of the THF-H2 hydrate are 9.26 ℃ 10.94 ℃ and 12.67 ℃ at the operating pressure of 18 MPa 25 MPa and 34 MPa respectively. It is fundamental for performing the kinetics and microscopic experiments.
Investigating the Hydrogen Storage Capacity of Surfactant Modified Graphene
Mar 2019
Publication
As the depletion of traditional fossil fuels and environmental pollution become a serious problem of human society researchers are actively finding renewable green energy sources. Considered as a clean efficient and renewable alternative Hydrogen energy is considered the most promising energy source. However the safe and efficient storage of hydrogen has become the major problem that hinders its application. To solve this gap this paper proposes to utilize surfactant modified graphene for hydrogen storage. With Hummers method and ultrasonic stripping method this study prepared graphene from graphene oxide with NaBH4. Surfactant sodium dodecylbenzene sulfonate (SDBS) was used as a dispersant during the reduction process to produce the dispersion-stabilized graphene suspensions. The characteristics of the graphene suspensions then were examined by XRD SEM TEM FT-IR Raman XPS TG and N2 adsorption-desorption tests. The hydrogen adsorption properties of the samples were investigated with Langmuir and Freundlich fitting. The results show that the adsorption behavior is consistent with the Freundlich adsorption model and the process is a physical adsorption.
Predicting Radiative Characteristics of Hydrogen and Hythane Jet Fires Using Firefoam
Sep 2013
Publication
A possible consequence of pressurized hydrogen release is an under-expanded jet fire. Knowledge of the flame length radiative heat flux and fraction as well as the effects of variations in ground reflectance is important for safety assessment. The present study applies an open source CFD code FireFOAM to study the radiation characteristics of hydrogen and hydrogen/methane jet fires. For combustion the eddy dissipation concept for multi-component fuels recently developed by the authors in the large eddy simulation (LES) framework is used. The radiative heat is computed with the finite volume discrete ordinates model in conjunction with the weighted-sum-of-gray-gases model for the absorption/emission coefficient. The pseudo-diameter approach is used in which the corresponding parameters are calculated using the correlations of Birch et al. [22]. The predicted flame length and radiant fraction are in good agreement with the measurements of Schefer et al. [2] Studer et al. [3] and Ekoto et al. [6]. In order to account for the effects of variation in ground surface reflectance the emissivity of hydrogen flames was modified following Ekoto et al. [6]. Four cases with different ground reflectance are computed. The predictions show that the ground surface reflectance only has minor effect on the surface emissive power of the hydrogen jet fire. The radiant fractions fluctuate from 0.168 to 0.176 close to the suggested value of 0.16 by Ekoto et al.[6] based on the analysis of their measurements.
The Dependence of Fatigue Crack Growth on Hydrogen in Warm-rolled 316 Austenitic Stainless Steel
Sep 2019
Publication
The fatigue crack growth rate of warm-rolled AISI 316 austenitic stainless steel was investigated by controlling rolling strain and temperature in argon and hydrogen gas atmospheres. The fatigue crack growth rates of warm-rolled 316 specimens tested in hydrogen decreased with increasing rolling temperature especially 400 °C. By controlling the deformation temperature and strain the influences of microstructure (including dislocation structure deformation twins and α′ martensite) and its evolution on hydrogen-induced degradation of mechanical properties were separately discussed. Deformation twins deceased and dislocations became more uniform with the increase in rolling temperature inhibiting the formation of dynamic α′ martensite during the crack propagation. In the cold-rolled 316 specimens deformation twins accelerated hydrogen-induced crack growth due to the α′ martensitic transformation at the crack tip. In the warm-rolled specimens the formation of α′ martensite around the crack tip was completely inhibited which greatly reduced the fatigue crack growth rate in hydrogen atmosphere.
Heat Transfer Analysis for Fast Filling of On-board Hydrogen Tank
Mar 2019
Publication
The heat transfer analysis in the filling process of compressed on-board hydrogen storage tank has been the focus of hydrogen storage research. The initial conditions mass flow rate and heat transfer coefficient have certain influence on the hydrogen filling performance. In this paper the effects of mass flow rate and heat transfer coefficient on hydrogen filling performance are mainly studied. A thermodynamic model of the compressed hydrogen storage tank was established by Matlab/Simulink. This 0D model is utilized to predict the hydrogen temperature hydrogen pressure tank wall temperature and SOC (State of Charge) during filling process. Comparing the simulated results with the experimental data the practicability of the model can be verified. The simulated results have certain meaning for improving the hydrogenation parameters in real filling process. And the model has a great significance to the study of hydrogen filling and purification.
Evaluation of Performance Characteristics of a Novel Hydrogen-fuelled Free-piston Engine Generator
Mar 2020
Publication
In this work we present the experimental results obtained from hydrogen fuelled spark-ignited dual piston free-piston engine generator (FPEG) prototype operated in two-stroke and four-stroke mode. The FPEG testing was successfully conducted at 3.7 compression ratio engine speed between 5 Hz and 11 Hz and with different equivalence ratios. The FPEG technical details experimental set-up and operational control are explained in detail. Performance indicators show that both equivalence ratio and engine speed affect the engine operation characteristics. For every set of specified FPEG parameters appropriate range of equivalence ratio is recommended to prevent unwanted disturbance to electric generator operation. Both two-stroke and four-stroke cycle mode were tested and the results showed different combustion characteristics with the two thermodynamic cycles. Four-stroke cycle mode could operate with indicated thermal efficiency gain up to 13.2% compared with the two-stroke cycle.
Development of a Gaseous and Solid-state Hybrid System for Stationary Hydrogen Energy Storage
Jun 2020
Publication
Hydrogen can serve as a carrier to store renewable energy in large scale. However hydrogen storage still remains a challenge in the current stage. It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials. In the present work a gaseous and solid-state (G-S) hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated. A Ti−Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt% was prepared for the G-S hybrid hydrogen storage system. The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H2 m−3 and stores hydrogen under pressure below 5 MPa. It can readily release enough hydrogen at a temperature as low as −15 °C when the FC system is not fully activated and hot water is not available. The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%−95.9% when it is combined with a FC system. This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.
Hydrogen Diffusion Mechanism around a Crack Tip in Type 304L Austenite Stainless Steel Considering the Influence of the Volume Expansion of Strain-Induced Martensite Transformation
Sep 2019
Publication
Strain-induced martensite transformation (SIMT) commonly exists around a crack tip of metastable austenite stainless steels. The influence of the volume expansion of the SIMT on the hydrogen diffusion was investigated by hydrogen diffusion modelling around a crack tip in type 304L austenite stainless steel. The volume expansion changed the tensile stress state into pressure stress state at the crack tip resulting in a large stress gradient along the crack propagation direction. Compared to the analysis without considering the volume expansion effect this volume expansion further accelerated the hydrogen transport from the inner surface to a critical region ahead of the crack tip and further increased the maximum value of the hydrogen concentration at the critical position where the strain-induced martensite fraction approximates to 0.1 indicating that the volume expansion of the SIMT further increased the hydrogen embrittlement susceptibility.
A Host-guest Approach to Fabricate Metallic Cobalt Nanoparticles Embedded in Silk-derived N-doped Carbon Fibers for Efficient Hydrogen Evolution
Feb 2017
Publication
Hydrogen evolution reaction (HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost high abundance and high activities cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the one-dimensional nanostructure the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating the best Co-based electrocatalyst manifests low overpotential (61 mV@10 mA/cm2) HER activity that is comparable with commercial 20% Pt/C and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts.
Self-ignition and Flame Propagation of Pressurized Hydrogen Released Through Tubes
Sep 2019
Publication
The spontaneous ignition of hydrogen released from the high pressure tank into the downstream pipes with different lengths varied from 0.3m to 2.2m has been investigated experimentally. In this study the development of shock wave was recorded by pressure sensors and photoelectric sensors were used to confirm the presence of a flame in the pipe. In addition the development of jet flame was recorded by high-speed camera and IR camera. The results show that the minimal release pressure in different tube when self-ignition of hydrogen occurred could decrease first and then increase with the increase of the aspect of pipe. And the minimum release pressure of hydrogen self-ignition was 3.87MPa. When the flame of self-ignition hydrogen spouted out of the tube Mach disk was observed. The method of CFD was adopted. The development of shock wave at the tube exit was reproduced and structures as barrel shock the reflected shock and the Mach disk are presented. Because of these special structures the flame at the nozzle is briefly extinguished and re-ignited. At the same time the complete development process of the jet flame was recorded including the formation and separation of the spherical flame. The flame structure exhibits three typical levels before the hemispherical flame separation.
A Study on the Influential Factors of Stress Corrosion Cracking in C110 Casing Pipe
Jan 2022
Publication
In this paper we analyze the potential factors affecting the hydrogen sulfide type of stress corrosion cracking in C110 casing pipes. In order to further study these cracking factors the methods of material property testing scanning electron microscopy XRD TEM and 3D ultra-depth-of-field were applied in the experiments. Besides that an HTHP autoclave was independently designed by the laboratory to simulate the actual corrosion environment and the potential factors affecting the stress corrosion cracking of C110 casing pipes were determined. The test results showed that the chemical composition metallographic structure hardness and non-metallic inclusions of the two types of C110 casing pipes were all qualified. In fact there remains a risk of stress corrosion cracking when the two kinds of C110 casing pipes serve under long-term field-working conditions. It is considered in this paper that the precipitates on the material surface stress damage and pitting corrosion are all critical factors affecting the stress corrosion cracking of casing pipes.
Inhibition of Confined Hydrogen Explosion by Inert Gases
Sep 2019
Publication
"This paper is aimed at revealing the inhibiting effects of He Ar N2 and CO2 on confined hydrogen explosion. The flame characteristics under thermo diffusive instability and hydrodynamic instability are analyzed using Lewis number and ratio of density ratio to flame thickness. The inhibiting effects of inert gas on confined hydrogen explosion are evaluated using maximum explosion pressure and maximum pressure rise rate. The inhibiting mechanism is obtained by revealing thermal diffusivity maximum mole fraction and net reaction rate of active radicals. The results demonstrated that the strongest destabilization effect of hydrodynamic instability and thermodiffusive instability occurs when the inert gas is Ar and CO2 respectively. Taking maximum explosion pressure and maximum rate of pressure rise as an indicator the effects of confined hydrogen explosion inhibition from strong to weak are CO2 N2 Ar and He. Laminar burning velocity thermal diffusivity maximum mole fraction and net reaction rate of active radicals continues to decrease in the order of He Ar N2 and CO2. The elementary reactions of generating and consuming active radicals at the highest net reaction rate are mainly consisted of R1 (H+O2=OH+O) R2 (H2+O=OH+H) R3 (H2+OH=H2O+H) and R10 (HO2+H=2OH).
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Ammonia for Power
Sep 2018
Publication
A potential enabler of a low carbon economy is the energy vector hydrogen. However issues associated with hydrogen storage and distribution are currently a barrier for its implementation. Hence other indirect storage media such as ammonia and methanol are currently being considered. Of these ammonia is a carbon free carrier which offers high energy density; higher than compressed air. Hence it is proposed that ammonia with its established transportation network and high flexibility could provide a practical next generation system for energy transportation storage and use for power generation. Therefore this review highlights previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale. The review covers technologies such as ammonia in cycles either for power or CO2 removal fuel cells reciprocating engines gas turbines and propulsion technologies with emphasis on the challenges of using the molecule and current understanding of the fundamental combustion patterns of ammonia blends.
Numerical Study on Combustion and Emission Characteristics of a PFI Gasoline Engine with Hydrogen Direct-Injection
Mar 2019
Publication
In this paper the effects of hydrogen blending radio and EGR rate on combustion and emission characteristics of a PFI gasoline engine with hydrogen direct-injection have been investigated by numerical modelling methods using a new generation of CFD simulation software CONVERGE. Results showed that compared with original engine hydrogen direct-injection PFI gasoline engine had a better performance on combustion characteristics but it also had a disadvantage of increasing NOx emissions. With the increase of hydrogen blending radio combustion duration shortened and CA50 advanced and was closer to TDC. And CO and THC emissions decreased however NOx emission increased. The variations of the combustion and emission characteristics followed by the increase of the EGR rate were exactly the opposite to the change of hydrogen blending radio. Considering both the combustion and emission characteristics using moderate EGR rate (15%~20%) under high hydrogen blending radio (15%~20%) condition can realize the simultaneous improvement of combustion and emission performance.
A Microstructure Informed and Mixed-mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement
Mar 2022
Publication
Hydrogen induced failure under uniaxial tension is simulated in a duplex stainless steel considering microstructural feature of the material. There are three key ingredients in the modelling approach: image processing and finite element representation of the experimentally observed microstructure stress driven hydrogen diffusion and diffusion coupled cohesive zone modelling of fracture considering mixed failure mode. The microstructure used as basis for the modelling work is obtained from specimens cut in the transverse and longitudinal directions. It is found that the microstructure significantly influences hydrogen diffusion and fracture. The austenite phase is polygonal and randomly distributed in the transverse direction where a larger effective hydrogen diffusion coefficient and a lower hydrogen fracture resistance is found compared to the specimen in the longitudinal direction where the austenite phase is slender and laminated. This indicates that the proper design and control of the austenite phase help improve hydrogen resistance of duplex stainless steel. The strength of the interface in the shear direction is found to dominate the fracture mode and initiation site which reveals the importance of considering mixed failure mode and calibrating the hydrogen induced strength reduction in shear.
Optimal Operation of a Microgrid with Hydrogen Storage Based on Deep Reinforcement Learning
Jan 2022
Publication
Microgrid with hydrogen storage is an effective way to integrate renewable energy and reduce carbon emissions. This paper proposes an optimal operation method for a microgrid with hydrogen storage. The electrolyzer efficiency characteristic model is established based on the linear interpolation method. The optimal operation model of microgrid is incorporated with the electrolyzer efficiency characteristic model. The sequential decision-making problem of the optimal operation of microgrid is solved by a deep deterministic policy gradient algorithm. Simulation results show that the proposed method can reduce about 5% of the operation cost of the microgrid compared with traditional algorithms and has a certain generalization capability.
Hydrogen Effects on X80 Pipeline Steel Under High-pressure Natural Gas & Hydrogen Mixtures
Oct 2015
Publication
Blending hydrogen into existing natural gas pipelines has been proposed as a means of increasing the output of renewable energy systems such as large wind farms. X80 pipeline steel is commonly used for transporting natural gas and such steel is subjected to concurrent hydrogen invasion with mechanical loading while being exposed to hydrogen containing environments directly resulting in hydrogen embrittlement (HE). In accordance with American Society for Testing and Materials (ASTM) standards the mechanical properties of X80 pipeline steel have been tested in natural gas/hydrogen mixtures with 0 5.0 10.0 20.0 and 50.0vol% hydrogen at the pressure of 12 MPa. Results indicate that X80 pipeline steel is susceptible to hydrogen-induced embrittlement in natural gas/hydrogen mixtures and the HE susceptibility increases with the hydrogen partial pressure. Additionally the HE susceptibility depends on the textured microstructure caused by hot rolling especially for the notch specimen. The design calculation by the measured fatigue data reveals that the fatigue life of the X80 steel pipeline is dramatically degraded by the added hydrogen.
Catalysis of Oxides in Hydrogen Generation by the Reaction of Al with Water
Sep 2013
Publication
Hydrogen generation by the reaction of pure Al powder in water with the addition of Al(OH)3 γ- Al2O3 α-Al2O3 or TiO2 at mild temperatures was investigated. It was found that the reaction of Al with water is promoted and the reaction induction time decreases greatly by the above hydroxide and oxides. X-ray diffraction analyses revealed that the hydroxide and oxide phases have no any change during the Al-water reaction indicating that they are just as catalysts to assist the reaction of Al with water. A possible mechanism was proposed which shows that hydroxide and oxides could dissociate water molecules and promote the hydration of the passive oxide film on Al particle surfaces.
New China National Standard on Safety of Hydrogen Systems- Keys for Understanding and Use
Sep 2011
Publication
Development of regulations codes and standards on hydrogen safety is a primary ingredient in overcoming barriers to widespread use of hydrogen energy. Key points of the new China National Standard Essential safety requirements for hydrogen systems metal hydrogen compatibility and risk control of flammability and explosion are discussed. Features of the new standard such as safety requirements for slush hydrogen systems and solid state hydrogen storage systems and introductions for hydrogen production by renewable energy are analyzed in this paper.
Risk Analysis on Mobile Hydrogen Refueling Stations in the World Expo Shanghai
Sep 2013
Publication
During the World Expo Shanghai there were one hundred fuel-cell sight-seeing cars in operation at the Expo Site. The sight-seeing cars were not allowed to drive out of the Expo Site and the stationary hydrogen refuelling station was not permitted to build at the Expo Site for the sake of safety. A flexible solution to refuel the cars was the application of mobile hydrogen refuelling stations. To better understand the hazards and risks associated with the mobile hydrogen refueling stations a risk analysis was preformed to improve the safety of the operations. The risks to the station personnel and to the public were discussed separately. Results show that the stationary risks of the mobile stations to the personnel and refueling customers are lower than the risk acceptance criteria over an order of magnitude so occupational risks and risks to customers are completely acceptable. The third party risks can be acceptable as long as the appropriate mitigation measures are implemented especially well designed parking area and operation time. Leak from boosters is the main risk contributor to the stationary risks because of its highest failure rates according to the generic data and its worst harm effects based on the consequence evaluations. As for the road risks of the mobile stations they can be acceptable as long as the appropriate mitigation measures are implemented especially well-designed moving path and transportation time.
Effect of the Position and the Area of the Vent on the Hydrogen Dispersion in a Naturally Ventilated Cubiod Space with One Vent on the Side Wall
Dec 2021
Publication
The design of ventilation system has implications for the safety of life and property and the development of regulations and standards in the space with the hydrogen storage equipment. The impact of both the position and the area of a single vent on the dispersion of hydrogen in a cuboid space (with dimensions L x W x H ¼ 2.90 0.74 1.22 m) is investigated with Computational Fluid Dynamics (CFD) in this study. Nine positions of the vent were compared for the leakage taking place at the floor to understand the gas dispersion. It was shown a cloud of 1% mole fraction has been formed near the ceiling of the space in less than 40 s for different positions of the vent which can activate hydrogen sensors. The models show that the hydrogen is removed more effectively when the vent is closer to the leakage position in the horizontal direction. The study demonstrates that the vent height of 1.00 m is safer for the particular scenario considered. The area of the vent has little effect on the hydrogen concentration for all vent positions when the area of the vent is less than 0.045 m2 and the height of the vent is less than 0.61 m.
Hydrogen‐Rich Gas Production from Two‐Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite
Jan 2022
Publication
Tao Xu,
Jue Xu and
Yongping Wu
The potential of catalytic pyrolysis of biomass for hydrogen and bio‐oil production has drawn great attention due to the concern of clean energy utilization and decarbonization. In this paper the catalytic pyrolysis of pine sawdust with calcined dolomite was carried out in a novel moving bed reactor with a two‐stage screw feeder. The effects of pyrolysis temperature (700–900 °C) and catalytic temperature (500–800 °C) on pyrolysis performance were investigated in product distribution gas composition and gas properties. The results showed that with the temperature increased pyrolysis gas yield in‐ creased but the yield of solid and liquid products decreased. With the increase in temperature the CO and H2 content increased significantly while the CO2 and CH4 decreased correspondingly. The calcined dolomite can remove the tar by 44% and increased syngas yield by 52.9%. With the increasing catalytic temperature the catalytic effect of calcined dolomite was also enhanced.
Forecasting the Hydrogen Demand in China: A System Dynamics Approach
Jan 2022
Publication
Many countries including China have implemented supporting policies to promote the commercialized application of green hydrogen and hydrogen fuel cells. In this study a system dynamics (SD) model is proposed to study the evolution of hydrogen demand in China from the petroleum refining industry the synthetic ammonia industry and the vehicle market. In the model the impact from the macro-environment hydrogen fuel supply and construction of hydrogen facilities is considered to combine in incentives for supporting policies. To further formulate the competitive relationship in the vehicle market the Lotka–Volterra (LV) approach is adopted. The model is verified using published data from 2003 to 2017. The model is also used to forecast China’s hydrogen demand up to the year of 2030 under three different scenarios. Finally some forward-looking guidance is provided to policy makers according to the forecasting results.
Hydrogen Inhibition Effect of Chitosan and Sodium Phosphate on ZK60 Waste Dust in a Wet Dust Removal System: A Feasible Way to Control Hydrogen Explosion
Dec 2021
Publication
Wet dust removal systems used to control dust in the polishing or grinding process of Mg alloy products are frequently associated with potential hydrogen explosion caused by magnesium-water reaction. For purpose of avoiding hydrogen explosion risks we try to use a combination of chitosan (CS) and sodium phosphate (SP) to inhibit the hydrogen evolution reaction between magnesium alloy waste dust and water. The hydrogen evolution curves and chemical kinetics modeling for ten different mixing ratios demonstrate that 0.4% wt CS + 0.1% wt SP yields the best inhibition efficiency with hydrogen generation rate of almost zero. SEM and EDS analyses indicate that this composite inhibitor can create a uniform smooth tight protective film over the surface of the alloy dust particles. FTIR and XRD analysis of the chemical composition of the surface film show that this protective film contains CS and SP chemically adsorbed on the surface of ZK60 but no detectable Mg(OH)2 suggesting that magnesium-water reaction was totally blocked. Our new method offers a thorough solution to hydrogen explosion by inhibiting the hydrogen generation of magnesium alloy waste dust in a wet dust removal system.
Effect of Plastic Deformation at Room Temperature on Hydrogen Diffusion of Hot-rolled S30408
Sep 2017
Publication
The influence of plastic deformation on hydrogen diffusion is of critical significance for hydrogen embrittlement (HE) studies. In this work thermal desorption spectroscope (TDS) slow strain rate test (SSRT) feritscope transmission electron microscope (TEM) and TDS model are used to establish the relationship between plastic deformation and hydrogen diffusion aiming at unambiguously elucidating the effect of pre-existing traps on hydrogen diffusion of hot-rolled S30408. An effective way is developed to deduce hydrogen apparent diffusivity in this paper. Results indicate apparent diffusivities decrease firstly and then increase with increasing plastic strain at room temperature. Hydrogen diffusion changing with plastic deformation is a complicated process involving multiple factors. It is suggested to be divided into two processes controlled by dislocations and strain-induced martensite respectively and the transformation strain is about 20% demonstrated by experiments.
Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties
May 2020
Publication
The deterioration of the mechanical properties of metal induced by hydrogen absorption threatens the safety of the equipment serviced in hydrogen environments. In this study the hydrogen concentration distribution in 2.25Cr-1Mo-0.25V steel after hydrogen charging was analyzed following the hydrogen permeation and diffusion model. The diffusible hydrogen content in the 1-mm-thick specimen and its influence on the mechanical properties of the material were investigated by glycerol gas collecting test static hydrogen charging tensile test scanning electron microscopy (SEM) test and microhardness test. The results indicate that the content of diffusible hydrogen tends to be the saturation state when the hydrogen charging time reaches 48 h. The simulation results suggest that the hydrogen concentration distribution can be effectively simulated by ABAQUS and the method can be used to analyze the hydrogen concentration in the material with complex structures or containing multiple microstructures. The influence of hydrogen on the mechanical properties is that the elongation of this material is reduced and the diffusible hydrogen will cause a decrease in the fracture toughness of the material and thus hydrogen embrittlement (HE) will occur. Moreover the Young’s modulus E and microhardness are increased due to hydrogen absorption and the variation value is related to the hydrogen concentration introduced into the specimen.
Dependence of Hydrogen Embrittlement on Hydrogen in the Surface Layer in Type 304 Stainless Steel
Sep 2013
Publication
Hydrogen embrittlement (HE) together with the hydrogen transport behaviour in hydrogen-charged type 304 stainless steel was investigated by combined tension and outgassing experiments. The hydrogen release rate and HE of hydrogen-charged 304 specimens increase with the hydrogen pressure for hydrogen-charging (or hydrogen content) and almost no HE is observed below the hydrogen content of 8.5 mass ppm. Baking at 433 K for 48 h can eliminate HE of the hydrogen-charged 304 specimen while removing the surface layer will restore HE which indicates that hydrogen in the surface layer plays the primary role in HE. Scanning electron microscopy (SEM) and scanning tunnel microscopy (STM) observations show that particles attributed to the strain-induced α′ martensite formation break away from the matrix and the small holes form during deformation on the specimen surface. With increasing strain the connection among small holes along {111} slip planes of austenite will cause crack initiation on the surface and then the hydrogen induced crack propagates from the surface to interior.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
IPHE Regulations Codes and Standards Working Group-type IV COPV Round Robin Testing
Oct 2015
Publication
This manuscript presents the results of a multi-lateral international activity intended to understand how to execute a cycle stress test as specified in a chosen standard (GTR SAE ISO EIHP …). The purpose of this work was to establish a harmonized test method protocol to ensure that the same results would be achieved regardless of the testing facility. It was found that accurate temperature measurement of the working fluid is necessary to ensure the test conditions remain within the tolerances specified. Continuous operation is possible with adequate cooling of the working fluid but this becomes more demanding if the cycle frequency increases. Recommendations for future test system design and operation are presented.
3D Quantitative Risk Assessment on a Hydrogen Refuelling Station in Shanghai
Sep 2019
Publication
The number of hydrogen refuelling stations worldwide is growing rapidly in recent years. The first large capacity hydrogen refuelling station in China is under construction. A 3D quantitative risk assessment QRA)is conducted for this station. Hazards associated with hydrogen systems are identified. Leakage frequency of hydrogen equipment are analyzed. Jet flame explosion scenarios and corresponding accident consequences are simulated. Risk acceptance criteria for hydrogen refuelling stations are discussed. The results show that the risk of this refuelling station is acceptable. And the maximum lethality frequency is 6.3*10-6. The area around compressors has the greatest risk. People should be avoided as far as possible from the compressor when the compressor does not need to be maintained. With 3D QRA the visualization of the evaluation results will help stakeholders to observe the hazardous areas of the hydrogen refuelling station at a glance.
Acoustic Emission Characteristics of Used 70 MPa Type IV Hydrogen Storage Tanks During Hydrostatic Burst Tests
Sep 2019
Publication
Currently the periodic inspection of composite tanks is typically achieved via hydrostatic test combined with internal and external visual inspections. Acoustic emission (AE) technology demonstrates a promising non destructive testing method for damage mode identification and damage assessment. This study focuses on AE signals characteristics and evolution behaviours for used 70 MPa Type IV hydrogen storage tanks during hydrostatic burst tests. AE-based tensile tests for epoxy resin specimen and carbon fiber tow were implemented to obtain characteristics of matrix cracking and fiber breakage. Then broadband AE sensors were used to capture AE signals during multi-step loading tests and hydrostatic burst tests. K-means ++ algorithm and wavelet packet transform are performed to cluster AE signals and verify the validity. Combining with tensile tests three clusters are manifested via matrix cracking fiber/matrix debonding and fiber breakage according to amplitude duration counts and absolute energy. The number of three clustering signals increases with the increase of pressure showing accumulated and aggravated damage. The sudden appearance of a large number of fiber breakage signals during hydrostatic burst tests suggests that the composite tank structure is becoming mechanically unstable namely the impending burst failure of the tank.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Effect of Ternary Transition Metal Sulfide FeNi2S4 on Hydrogen Storage Performance of MgH2
Jan 2022
Publication
Hydrogen storage is a key link in hydrogen economy where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety. Thereinto magnesium-based materials (MgH2) are currently deemed as an attractive candidate due to the potentially high hydrogen storage density (7.6 wt%) however the stable thermodynamics and slow kinetics limit the practical application. In this study we design a ternary transition metal sulfide FeNi2S4 with a hollow balloon structure as a catalyst of MgH2 to address the above issues by constructing a MgH2/Mg2NiH4−MgS/Fe system. Notably the dehydrogenation/hydrogenation of MgH2 has been significantly improved due to the synergistic catalysis of active species of Mg2Ni/Mg2NiH4 MgS and Fe originated from the MgH2-FeNi2S4 composite. The hydrogen absorption capacity of the MgH2-FeNi2S4 composite reaches to 4.02 wt% at 373 K for 1 h a sharp contrast to the milled-MgH2 (0.67 wt%). In terms of dehydrogenation process the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH2 and the dehydrogenation activation energy decreases by 95.7 kJ mol–1 compared with the milled-MgH2 (161.2 kJ mol–1). This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH2 material.
The Effect of Polyurethane Sponge Blockage Ratio on Premixed Hydrogen-air Flame Propagation in a Horizontal Tube
Oct 2015
Publication
The effects of sponge blockage ratio on flame structure evolution and flame acceleration were experimentally investigated in an obstructed cross-section tube filled with stoichiometric hydrogen-air mixture. Experimental results show that the mechanisms responsible for flame acceleration can be in terms of the positive feedback of the unburned gas field generated ahead of the flame the area change of the gap between the sponge and the tube and the interaction between the flame and the shear layer appearing at the sponge left top corner. Especially the last one dominates the flame acceleration and causes its speed to be sonic. Then both the second and third contribute to the violent flame acceleration. In addition the unburned gas pockets can be found in both upstream and downstream regions of the sponge. With increasing blockage ratio the unburned gas pockets disappear easier and the flame acceleration is more pronounced. Moreover the sponge tilts more evidently and resultantly the maximum tilt angle increases.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
Simulation Analysis on the Risk of Hydrogen Releases and Combustion in Subsea Tunnels
Oct 2015
Publication
Hydrogen is considered to be a very promising potential energy carrier due to its excellent characteristics such as abundant resources high fuel value clean and renewable. Its safety features greatly influence the potential use. Several safety problems need to be analyzed before using in transportation industry. With the development of the tunnel transportation technology the safe use of hydrogen in tunnels will receive a lot of research attentions. In this article the risk associated with hydrogen release from onboard high-pressure vessels and the induced combustion in tunnels was analyzed using the Partially Averaged Navier–Stokes (PANS) turbulence model. The influences of the tunnel ventilation facilities on the hydrogen flow characteristics and the flammable hydrogen cloud sizes were studied. The tunnel layouts were designed according to the subsea tunnel. And a range of longitudinal ventilation conditions had been considered to investigate the hydrogen releases and the sizes of the flammable hydrogen cloud. Then the hydrogen combustion simulation was carried out after the fixed leaking time. The overpressures induced after the ignition of leaking hydrogen were studied. The influences of ventilation and ignition delay time on the overpressure were also investigated. The main aim was to research the phenomena of hydrogen releases and combustion risk inside subsea tunnels and to lay the foundation of risk assessment methodology developed for hydrogen energy applications on transportation.
Multi-objective Optimal Configurations of a Membrane Reactor for Steam Methane Reforming
Nov 2021
Publication
The combination of traditional reactor and permeable membrane is beneficial to increase the production rate of the target product. How to design a high efficiency and energy saving membrane reactor is one of the key problems to be solved urgently. This paper utilizes finite-time thermodynamics and nonlinear programming to solve the optimal configurations of the membrane reactor of steam methane reforming (MR-SMR) for two optimization objectives that is heat exchange rate minimization and power consumption minimization. The exterior wall temperature and fixed hydrogen production rate are regarded as the control variable and constraint respectively. The results indicate that the hydrogen production rate and heat exchange rate in MR-SMR are increased by 108.58% and 58.42% respectively while the power consumption is reduced by 33.44% compared with those in the traditional reactor under the same condition. Compared with the results in reference reactor (MR-SMR obtained with initial values) the heat exchange rate is reduced by 1.40% by optimizing the exterior wall temperature and the power consumption is reduced by 5.10% by optimizing the exterior wall temperature and molar flow rate of sweep gas. The optimal distributions of exterior wall temperatures in the optimal reactors of minimum heat exchange rate and power consumption have a theoretical guiding significance for the thermal design of the membrane reactors.
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
Optimal Scheduling of Electricity-Hydrogen Coupling Virtual Power Plant Considering Hydrogen Load Response
Mar 2024
Publication
With the rapid development of hydrogen production by water electrolysis the coupling between the electricity-hydrogen system has become closer providing an effective way to consume surplus new energy generation. As a form of centralized management of distributed energy resources virtual power plants can aggregate the integrated energy production and consumption segments in a certain region and participate in electricity market transactions as a single entity to enhance overall revenue. Based on this this paper proposes an optimal scheduling model of an electricity-hydrogen coupling virtual power plant (EHC-VPP) considering hydrogen load response relying on hydrogen to ammonia as a flexibly adjustable load-side resource in the EHC-VPP to enable the VPP to participate in the day-ahead energy market to maximize benefits. In addition this paper also considers the impact of the carbon emission penalty to practice the green development concept of energy saving and emission reduction. To validate the economy of the proposed optimization scheduling method in this paper the optimization scheduling results under three different operation scenarios are compared and analyzed. The results show that considering the hydrogen load response and fully exploiting the flexibility resources of the EHC-VPP can further reduce the system operating cost and improve the overall operating efficiency.
Experimental Validation of Hydrogen Fuel−Cell and Battery−Based Hybrid Drive without DC−−DC for Light Scooter under Two Typical Driving Cycles
Dec 2021
Publication
Faced with key obstacles such as the short driving range long charging time and limited volume allowance of battery−−powered electric light scooters in Asian cities the aim of this study is to present a passive fuel cell/battery hybrid system without DC−−DC to ensure a compact volume and low cost. A novel topology structure of the passive fuel cell/battery power system for the electric light scooter is proposed and the passive power system runs only on hydrogen. The power performance and efficiency of the passive power system are evaluated by a self−developed test bench before installation into the scooters. The results of this study reveal that the characteristics of stable power output quick response and the average efficiency are as high as 88% during the Shanghainese urban driving cycle and 89.5% during the Chinese standard driving cycle. The results pre‐ sent the possibility that this passive fuel cell/battery hybrid powertrain system without DC−DC is practical for commercial scooters.
Estimation of Final Hydrogen Temperature From Refueling Parameters
Oct 2015
Publication
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refuelling process. For safety reason the final gas temperature in the hydrogen tank during vehicle refuelling must be maintained under a certain limit e.g. 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank and it serves as function formula to fit experimental temperatures. From the analytical solution the final hydrogen temperature can be expressed as a weighted average form of initial temperature inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refuelling parameters such as initial mass initial pressure refuelling time refuelling mass rate average pressure ramp rate (APRR) final mass final pressure etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refuelling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.
Study on the Harm Effect of Liquid Hydrogen Release by Consequence Modeling
Sep 2011
Publication
In this paper the accidental release of hydrogen from cryogenic liquid storage tank and the subsequent consequences are studied including hydrogen cold cloud fire ball jet fire flash fire and vapor cloud explosion. The cold effect thermal effects and explosion overpressures from the above consequences are evaluated using IGC and TNO harm criteria. Results show that for instantaneous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>flash fire>cold cloud> fireball. For continuous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>jet fire>flash fire>cold cloud. The vapor cloud explosion is the leading consequence of both instantaneous and continuous releases and may be used for the determination of safety distances of a liquid hydrogen tank. Besides the harm effect distances of liquid hydrogen tank are compared with those of compressed hydrogen storages with equivalent mass. Results show that the liquid hydrogen storage may be safer than 70MPa gaseous storage in case of leak scenario but may be more dangerous than 70MPa storage in case of catastrophic rupture. It is difficult to tell which storage is safer from a consequence perspective. Further investigation need to be made from a standpoint of risk which combined both consequences and the likelihood of scenarios.
Numerical Study on Fast Filling of 70 MPA Hydrogen Vehicle Cylinder
Sep 2011
Publication
There will be significant temperature rise within hydrogen vehicle cylinder during the fast filling process. The temperature rise should be controlled under the temperature limit (85 °C) of the structure material (set by ISO/TS 15869) because it may lead to the failure of the structure. In this paper a 2-dimensional axisymmetric computational fluid dynamics (CFD) model for fast filling of 70 MPa hydrogen vehicle cylinder is presented. The numerical simulations are based on the modified standard k − ɛ turbulence model. In addition both the equation of state for hydrogen gas and the thermodynamic properties are calculated by National Institute of Standards and Technology (NIST) database: REFPROP 7.0. The thermodynamic responses of fast filling with different pressure-rise patterns and filling times within type III cylinder have been analyzed in detail.
New Insights into the Electrochemical Behaviour of Porous Carbon Electrodes for Supercapacitors
Aug 2018
Publication
Activated carbons with different surface chemistry and porous textures were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios which form reversibly under cathodic conditions. The influence of the specific surface area narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
Hydrogen Generation from Methanol at Near-room Temperature
Sep 2017
Publication
As a promising hydrogen storage medium methanol has many advantages such as a high hydrogen content (12.5 wt%) and low-cost. However conventional methanol–water reforming methods usually require a high temperature (>200 °C). In this research we successfully designed an effective strategy to fully convert methanol to hydrogen for at least 1900 min (∼32 h) at near-room temperature. The strategy involves two main procedures which are CH3OH →HCOOH → H2 and CH3OH → NADH → H2. HCOOH and the reduced form of nicotinamide adenine dinucleotide (NADH) are simultaneously produced through the dehydrogenation of methanol by the cooperation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Subsequently HCOOH is converted to H2 by a new iridium polymer complex catalyst and an enzyme mimic is used to convert NADH to H2 and nicotinamide adenine dinucleotide (NAD+). NAD+ can then be reconverted to NADH by repeating the dehydrogenation of methanol. This strategy and the catalysts invented in this research can also be applied to hydrogen production from other small organic molecules (e.g. ethanol) or biomass (e.g. glucose) and thus will have a high impact on hydrogen storage and applications.
Electrocatalysts Based on Metal@carbon Core@shell Nanocomposites: An Overview
Aug 2018
Publication
Developing low-cost high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions such as hydrogen evolution reaction oxygen evolution reaction oxygen reduction reaction and CO2 reduction reaction that are important in water splitting fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates and varies with the structures and morphologies of the metal core (elemental composition core size etc.) and carbon shell (doping layer thickness etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results and technical challenges for future research.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
A Dual Zone Thermodynamic Model for Refueling Hydrogen Vehicles
Sep 2017
Publication
With the simple structure and quick refuelling process the compressed hydrogen storage system is currently widely used. However thermal effects during charging-discharging cycle may induce temperature change in storage tank which has significant impact on the performance of hydrogen storage and the safety of hydrogen storage tank. To address this issue we once propose a single zone lumped parameter model to obtain the analytical solution of hydrogen temperature and use the analytical solution to estimate the hydrogen temperature but the effect of the tank wall is ignored. For better description of the heat transfer characteristics of the tank wall a dual zone (hydrogen gas and tank wall) lumped parameter model will be considered for widely representation of the reference (experimental or simulated) data. Now we extend the single zone model to the dual zone model which uses two different temperatures for gas zone and wall zone. The dual zone model contains two coupled differential equations. To solve them and obtain the solution we use the method of decoupling the coupled differential equations and coupling the solutions of the decoupled differential equations. The steps of the method include: (1) Decoupling of coupled differential equations; (2) Solving decoupled differential equations; (3) Coupling of solutions of differential equations; (4) Solving coupled algebraic equations. Herein three cases are taken into consideration: constant inflow/outflow temperature variable inflow/outflow temperature and constant inflow temperature and variable outflow temperature. The corresponding approximate analytical solutions of hydrogen temperature and wall temperature can be obtained. The hydrogen pressure can be calculated from the hydrogen temperature and the hydrogen mass using the equation of state for ideal gas. Besides the two coupled differential equations can also be solved numerically and the simulated solution can also be obtained. This study will help to set up a formula based approach of refuelling protocol for gaseous hydrogen vehicles.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers
Oct 2021
Publication
Hydrogen mixed natural gas for combustion can improve combustion characteristics and reduce carbon emission which has important engineering application value. A casing swirl burner model is adopted to numerically simulate and research the natural gas hydrogen mixing technology for combustion in gas boilers in this paper. Under the condition of conventional air atmosphere and constant air excess coefficient the six working conditions for hydrogen mixing proportion into natural gas are designed to explore the combustion characteristics and the laws of pollution emissions. The temperature distributions composition and emission of combustion flue gas under various working conditions are analyzed and compared. Further investigation is also conducted for the variation laws of NOx and soot generation. The results show that when the boiler heating power is constant hydrogen mixing will increase the combustion temperature accelerate the combustion rate reduce flue gas and CO2 emission increase the generation of water vapor and inhibit the generation of NOx and soot. Under the premise of meeting the fuel interchangeability it is concluded that the optimal hydrogen mixing volume fraction of gas boilers is 24.7%.
Study of Fire Risk and Accidents Emergency Disposal Technology System of Hydrogen Fuel Vehicles
Sep 2017
Publication
As the energy crisis and environment pollution growing severely the hydrogen fuel motor vehicle has got more and more attention many automobile companies and research institutions invest significant R&D resources to research and develop the hydrogen fuel vehicles. With the development of the hydrogen fuel cell vehicles and hydrogen fuel motor vehicles the hydrogen had more to more extensive application. According to the categories of the hydrogen fuel vehicles the characteristics of hydrogen fuel vehicle fire risk and accidents are analyzed in this paper. As for hydrogen fuel cell vehicles the function of its key components such as the fuel cell the high-pressure storage tank is presented firstly. Then based on the low density fast diffusion and flammable of hydrogen the probable scenarios of accident such as fuel leak jet flame are analyzed and the fire risk of the key components and the whole vehicle is evaluated. Finally the development trend of the emergency warning system of hydrogen fuel cell vehicles is analyzed and some recommendations are proposed referring to the detection pre-warning and control technologies used in the industrial sites. Aiming at the hydrogen car structure characteristics and the fire accident modes and accidents evolution rules the emergency disposal technology system for hydrogen fuel motor vehicles is put forward.
Improvement of Low Temperature Activity and Stability of Ni Catalysts with Addition of Pt for Hydrogen Production Via Steam Reforming of Ethylene Glycol
Nov 2018
Publication
Hydrogen production by steam reforming of ethylene glycol (EG) at 300 °C was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C—C bond rupture and water gas shift reactions; and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
An Investigation of Gaseous Hydrogen Storage Characterizations of Mg–Y–Ni–Cu Alloys Synthesized by Melt Spinning
Aug 2018
Publication
Melt spinning was successfully utilized to prepare Mg25−xYxNi9Cu (x = 0 1 3 5 7) alloys producing nanocrystalline and amorphous structures with improved hydrogenation and dehydrogenation performances. The influence of spinning rate on hydrogenation and dehydrogenation thermodynamics and kinetics was studied in detail. XRD and TEM were utilized to characterize the alloy structures. Hydrogenation and dehydrogenation performances were investigated by Sievert apparatus DSC and TGA connected to a H2 detector. Dehydrogenation activation energies were estimated using both Arrhenius and Kissinger methods. Results show that melt spinning significantly decreases thermodynamic parameters (ΔH and ΔS) and ameliorates desorption kinetics. Dehydrogenation activation energy markedly lowers with increase in spinning rate and is the real driver of amelioration of dehydrogenation kinetics caused by increasing Y content.
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
Multistage Risk Analysis and Safety Study of a Hydrogen Energy Station
Sep 2017
Publication
China has plenty of renewable energy like wind power and solar energy especially in the northwest part of the country. Due to the volatile and intermittent characters of the green powers high penetration level of renewable resources could arise grid stabilization problem. Therefore electricity storage is considered as a solution and hydrogen energy storage is proposed. Instead of storing the electricity directly it converts electricity into hydrogen and the energy in hydrogen will be released as needed from gas to electricity and heat. The transformed green power can be fed to the power grid and heat supply network. State Grid Corporation of China carried out its first hydrogen demonstration project. In the demonstration project an alkaline electrolyzer and a PEM hydrogen fuel cell stack are decided as the hydrogen producer and consumer respectively. Hydrogen safety issue is always of significant importance to secure the property. In order to develop a dedicated safety analysis method for hydrogen energy storage system in power industry the risk analysis for the power-to-gas-topower&heat facility was made. The hazard and operability (HAZOP) study and the failure mode and effects analysis (FMEA) are performed sequentially to the installation to identify the most problematic parts of the system in view of hydrogen safety and possible failure modes and consequences. At the third step the typical hydrogen leak accident scenarios are simulated by using computational fluid dynamics (CFD) computer code. The resulted pressure loads of the possibly ignited hydrogen-air mixture in the facility container are estimated conservatively. Important safeguards and mitigation measures are proposed based on the three-stage risk and safety studies.
Study of the Co-production of Butanol and Hydrogen by Immobilizing Clostridium Acetobutylicum CICC8012
Mar 2019
Publication
Three kinds of carrier materials activated carbon bagasse and brick were used as immobilizing carriers during fermentation by Clostridium acetobutylicum CICC8012. Compared with cell suspended fermentation enhanced fermentation performance was achieved during immobilizing cell fermentation with shorter fermentation time required. During the experiments hydrogen and butanol appear to be competitive events. The best fermentation performance of butanol was obtained in the case of bagasse as immobilizing carrier (5.804g/L of butanol production 0.22g/g of yield and 0.44g/L/h of productivity) while the hydrogen yield was just 1.41 mol/mol. The highest hydrogen productivity (402mL/L/h) and yield (1.808mol/mol glucose) could be obtained in the case of brick as immobilizing carrier while the butanol yield was 0.18 g/g. The highest hydrogen concentration of 66.76 % was obtained in the case of activated carbon as immobilizing carrier.
Review of Renewable Energy-based Hydrogen Production Processes for Sustainable Energy Innovation
Dec 2019
Publication
In this review we primarily analyze the hydrogen production technologies based on water and biomass including the economic technological and environmental impacts of different types of hydrogen production technologies based on these materials and comprehensively compare them. Our analyses indicate that all renewable energy-based approaches for hydrogen production are more environmentally friendly than fossil-based hydrogen generation approaches. However the technical ease and economic efficiency of hydrogen production from renewable sources of energy needs to be further improved in order to be applied on a large scale. Compared with other renewable energy-based methods hydrogen production via biomass electrolysis has several advantages including the ease of directly using raw biomass. Furthermore its environmental impact is smaller than other approaches. Moreover using a noble metal catalyst-free anode for this approach can ensure a considerably low power consumption which makes it a promising candidate for clean and efficient hydrogen production in the future.
Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel
Dec 2022
Publication
In this work first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength toughness and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property deterioration under a hydrogen atmosphere hydrogen embrittlement (HE) of HSLA steel attracts attention. However due to the small size of hydrogen atoms the mechanism of HE is challenging to observe directly by current experimental methods. To understand the HE mechanism at an atomic level DFT methods were applied to simulate the effects of alloying elements doping in bcc-Fe bulk structure and grain boundary structure. Furthermore the potential application of DFT to provide theoretical advice for HSLA steel design is discussed.
Earth Abundant Spinel for Hydrogen Production in a Chemical Looping Scheme at 550°C
Jun 2020
Publication
Operating chemical looping process at mid-temperatures (550-750 oC) presents exciting potential for the stable production of hydrogen. However the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals the high cost of these noble metal containing materials significantly hindered their scalable application. In the current work we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production rate at the average rate of ∼0.62 mmol.g-1.min-1 and a hydrogen yield of ∼9.29 mmol.g-1 with satisfactory stability over 20 cycles at 550 oC. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials enabling their potential for industrial applications.
Investigation of Praseodymium and Samarium Co-doped Ceria as an Anode Catalyst for DIR-SOFC Fueled by Biogas
Aug 2020
Publication
The Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Anionic Structural Effect in Liquid–liquid Separation of Phenol from Model Oil by Choline Carboxylate Ionic Liquid
Feb 2019
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favorable bubble detachment behavior. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
Continuous Synthesis of Few-layer MoS2 with Highly Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
As one of the most promising alternative fuels hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2 small Tafel slope (53.6 mV dec-1) and prominent durability which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices it’s suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.
The Effect of Tube Internal Geometry on the Propensity to Spontaneous Ignition in Pressurized Hydrogen Release
Sep 2013
Publication
Spontaneous ignition of compressed hydrogen release through a length of tube with different internal geometries is numerically investigated using our previously developed model. Four types of internal geometries are considered: local contraction local enlargement abrupt contraction and abrupt enlargement. The presence of internal geometries was found to significantly increase the propensity to spontaneous ignition. Shock reflections from the surfaces of the internal geometries and the subsequent shock interactions further increase the temperature of the combustible mixture at the contact region. The presence of the internal geometry stimulates turbulence enhanced mixing between the shock-heated air and the escaping hydrogen resulting in the formation of more flammable mixture. It was also found that forward-facing vertical planes are more likely to cause spontaneous ignition by producing the highest heating to the flammable mixture than backward-facing vertical planes.
Comparison of Numerical and Algebraic Models of Low and High Pressure Hydrogen Jet Flows with Ideal and Real Gas Models
Sep 2013
Publication
Hydrogen transportation systems require very high pressure hydrogen storage containers to enable sufficient vehicle range for practical use. Current proposed designs have pressures up to 70 MPa with leakage due to damage or deterioration at such high pressures a great safety concern. Accurate models are needed to predict the flammability envelopes around such leaks which rapidly vary with time. This paper compares CFD predictions of jet flows for low pressure jets with predictions using the integral turbulent buoyant jet model. The results show that the CFD model predicts less entrainment and that the turbulent Schmidt number should be smaller with 0.55 giving better results. Then CFD predictions for very high pressure flows are compared with analytical models for choked flows that generate underexpanded jets into the ambient to evaluate the effects of the model assumptions and the effects of real exit geometries. Real gas effects are shown to accelerate the blowdown process and that real flow effects in the CFD model slow the flow rate and increase the exit temperature.
Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers
Apr 2022
Publication
Hydrogen energy is a clean zero-carbon long-term storage flexible and efficient secondary energy. Accelerating the development of the hydrogen energy industry is a strategic choice to cope with global climate change achieve the goal of carbon neutrality and realize high-quality economic and social development. This study aimed to analyze the economic impact of introducing valueadded services to the hydrogen energy market on hydrogen energy suppliers. Considering the network effect of value-added services this study used a two-stage game model to quantitatively analyze the revenue of hydrogen energy suppliers under different scenarios and provided the optimal decision. The results revealed that (1) the revenue of a hydrogen energy supplier increases only if the intrinsic value of value-added services exceeds a certain threshold; (2) the revenue of hydrogen energy suppliers is influenced by a combination of four key factors: the intrinsic value of value-added services network effects user scale and the sales strategies of rivals; (3) the model developed in this paper can provide optimal decisions for hydrogen energy suppliers to improve their economic efficiency and bring more economic investment to hydrogen energy market in the future.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Comparisons of Hazard Distances and Accident Durations Between Hydrogen Vehicles and CNG Vehicles
Sep 2017
Publication
For the emerging hydrogen-powered vehicles the safety concern is one of the most important barriers for their further development and commercialization. The safety of commercial natural gas vehicles has been well accepted and the total number of natural gas vehicles operating worldwide was approximately 23 million by November 2016. Hydrogen vehicles would be more acceptable for the general public if their safety is comparable to that of commercialized CNG vehicles. A comparison study is conducted to reveal the differences of hazard distances and accident durations between hydrogen vehicles and CNG vehicles during a representative accident in an open environment. The tank blowdown time for hydrogen and CNG are calculated separately to compare the accident durations. CFD simulations for real world situations are performed to study the hazard distances from impinging jet fires under vehicle. Results show that the release duration for CNG vehicle is over two times longer than that for hydrogen vehicle indicating that CNG vehicle jet fire accident is more timeconsuming and firefighters have to wait a longer time before they can safely approach the vehicle. For both hydrogen vehicle and CNG vehicle the longest hazard distance near the ground occur about 1 to 4 seconds after the initiation of the thermally-activated pressure relief devices. Afterwards the flames will shrink and the hazard distances will decrease. For firefighters with bunker gear they must stand 6 m and 14 m away from the hydrogen vehicle and CNG vehicle respectively. For general public a perimeter of 12 m and 29 m should be set around the accident scene for hydrogen vehicle and CNG vehicle respectively.
Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels
Mar 2020
Publication
Medium Mn steels have been considered as the next-generation materials for use in the automotive industry due to their excellent strength and ductility balance. To reduce the total weight and improve the safety of vehicles medium Mn steels look forward to a highly promising future. However hydrogen-induced delayed cracking is a concern for the use of high strength steels. This work is focused on the service characteristics of two kinds of medium Mn steels under different relative humidity conditions (40% 60% 80% and 100%). Under normal relative humidity (about 40%) at 25 °C the hydrogen concentration in steel is 0.4 ppm. When exposed to higher relative humidity the hydrogen concentration in steel increases slowly and reaches a stable value about 0.8 ppm. In slow strain rate tensile tests under different relative humidity conditions the tensile strength changed the hydrogen concentration increased and the elongation decreased as well thereby increasing the hydrogen embrittlement sensitivity. In other words the smaller the tensile rate applied the greater the hydrogen embrittlement sensitivity. In constant load tests under different relative humidity conditions the threshold value of the delayed cracking of M7B (‘M’ referring to Mn ‘7’ meaning the content of Mn ‘B’ denoting batch annealing) steel maintains a steady value of 0.82 σb (tensile strength). The threshold value of the delayed cracking of M10B significantly changed along with relative humidity. When relative humidity increased from 60% to 80% the threshold dropped sharply from 0.63 σb to 0.52 σb. We define 80% relative humidity as the ‘threshold humidity’ for M10B.
Validation of Two-Layer Model for Underexpanded Hydrogen Jets
Sep 2019
Publication
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity the present work indicates that the two-layer model is a promising tool for fast accurate predictions of the flow fields of underexpanded hydrogen jets.
No more items...