Canada
High Pressure Hydrogen Jets in the Presence of a Surface
Sep 2009
Publication
The effect of surfaces on the extent of high pressure vertical and horizontal unignited jets is studied using CFD numerical simulations performed with FLACS Hydrogen and Phoenics. For a constant flow rate release of hydrogen from a 284 bar storage unit through a 8.5 mm orifice located 1 meter from the ground the maximum extent of the flammable cloud is determined as a function of time and compared to a free vertical hydrogen jet under identical release conditions. The results are compared to methane numerical simulations and to the predictions of the Birch correlations for the size of the flammable cloud. We find that the maximum extent of the flammable clouds of free jets obtained using CFD numerical simulations for both hydrogen and methane are in agreement with the Birch predictions. For hydrogen horizontal free jets there is strong buoyancy effect observed towards the end of the flammable cloud thus noticeably reducing its centreline extent. For methane horizontal free jets this effect is not observed. For methane the presence of the ground results in a pronounced increase in the extent of the flammable cloud compared to a free jet. The effects of a surface on vertical jets are also studied.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
Humidity Tolerant Hydrogen-oxygen Recombination Catalysts for Hydrogen Safety Applications
Sep 2017
Publication
Catalytic hydrogen-oxygen recombination is a non-traditional method to limit hydrogen accumulation and prevent combustion in the hydrogen industry. Outside of conventional use in the nuclear power industry this hydrogen safety technology can be applied when traditional hydrogen mitigation methods (i.e. active and natural ventilation) are not appropriate or when a back-up system is required. In many of these cases it is desirable for hydrogen to be removed without the use of power or other services which makes catalytic hydrogen recombination attractive. Instances where catalytic recombination of hydrogen can be utilized as a stand-alone or back-up measure to prevent hydrogen accumulation include radioactive waste storage (hydrogen generated from water radiolysis or material corrosion) battery rooms hydrogen-cooled generators hydrogen equipment enclosures etc.<br/>Water tolerant hydrogen-oxygen recombiner catalysts for non-nuclear applications have been developed at Canadian Nuclear Laboratories (CNL) through a program in which catalyst materials were selected prepared and initially tested in a spinning-basket type reactor to benchmark the catalyst’s performance with respect to hydrogen recombination in dry and humid conditions. Catalysts demonstrating high activity for hydrogen recombination were then selected and tested in trickle-bed and gas phase recombiner systems to determine their performance in more typical deployment conditions. Future plans include testing of selected catalysts after exposure to specific poisons to determine the catalysts’ tolerance for such poisons.
Estimation of Final Hydrogen Temperature From Refueling Parameters
Oct 2015
Publication
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refuelling process. For safety reason the final gas temperature in the hydrogen tank during vehicle refuelling must be maintained under a certain limit e.g. 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank and it serves as function formula to fit experimental temperatures. From the analytical solution the final hydrogen temperature can be expressed as a weighted average form of initial temperature inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refuelling parameters such as initial mass initial pressure refuelling time refuelling mass rate average pressure ramp rate (APRR) final mass final pressure etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refuelling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.
Alloy and Composition Dependence of Hydrogen Embrittlement Susceptibility in High-strength Steel Fasteners
Jun 2017
Publication
High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility which increases significantly above 1200 MPa and is characterized by a ductile--brittle transition. For a given concentration of hydrogen and at equal strength the critical strength above which the ductile–brittle transition begins can vary due to second-order effects of chemistry tempering temperature and sub-microstructure. Additionally non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa non-conforming quality is often the root cause of real-life failures.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Fire Protection Strategy for Compressed Hydrogen-Powered Vehicles
Sep 2007
Publication
Virtually all major automotive companies are currently developing hydrogen-powered vehicles. The vast majority of them employ compressed hydrogen tanks and components as a means of storing the fuel onboard. Compressed hydrogen vehicle fuel systems are designed in the same way as compressed natural gas vehicles (NGV) i.e. the high pressure (up to 70 MPa) fuel is always contained within the system under all conditions with the exception of vehicular fire. In the event of a vehicle fire the fuel system is protected using a non-reclosing thermally activated pressure relief device (PRD) which safely vents the contents. Hydrogen fuel system PRDs are presently qualified to the performance requirements specified in draft hydrogen standards such ANSI/CSA HPRD 1 and EIHP Rev. 12b. They are also qualified with individual fuel tank designs in accordance with the engulfing bonfire requirements in various published/draft tank standards such as CSA B51 Part 2 JARI S001 SAE TIR J2579 ANSI/CSA HGV 2 ISO DIS 15869.2 and EIHP Rev. 12b. Since 2000 there have been over 20 documented NGV tank failures in service 11 of which have been attributed to vehicle fires. This paper will examine whether currently proposed hydrogen performance standards and installation requirements offer suitable fuel system protection in the event of vehicular fires. A number of alternative fire protection strategies will be discussed including:
- The requirement of an engulfing and/or localized fire test for individual tanks fuel systems and complete vehicles;
- The advantages/disadvantages of point source- surface area- and/or fuse-based PRDs
- The use of thermal insulating coatings/blankets for fire protection resulting in the NONventing of the fuel
- The specification of appropriate fuel system installation requirements to mitigate the effect of vehicular fires.
Numerical Investigation of Hydrogen Release from Varying Diameter Exit
Sep 2011
Publication
Computational fluid dynamics is used to simulate the release of high pressure Hydrogen from a reservoir with an exit of increasing diameter. Abel-Noble real gas equation of state is used to accurately simulate this high pressure release. Parallel processing based on Message Passing Interface for domain decomposition is employed to decrease the solution time. The release exit boundary is increased in time to simulate a scenario when the exit area increases during the release. All nodes and elements are moved accordingly at each time step to maintain the quality of the mesh. Different speeds of increasing diameter are investigated to see the impact on this unsteady flow.
Development of Uniform Harm Criteria for Use in Quantitative Risk Analysis of the Hydrogen Infrastructure
Sep 2009
Publication
This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities or facility and equipment damage due to high air temperatures radiant heat fluxes or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects impact from fragments generated by the explosion the collapse of buildings and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident evaluated from deterministic models to a probability of harm to people structures or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards.
Application of Risk Assessment Approach on a Hydrogen Station
Sep 2013
Publication
An accident modelling approach is used to assess the safety of a hydrogen station as part of a ground transportation network. The method incorporates prevention barriers associated to human factors management and organizational failures in a risk assessment framework. Failure probabilities of these barriers and end-states events are predicted using Fault Tree Analysis and Event Tree Analysis respectively. Results from the case study considered revealed the capability of the proposed method in estimating the likelihood of various outcomes as well as predicting the future probability. In addition the scheme offers opportunity to provide dynamic adjustment by updating the failure probability with actual plant data. Results from the analysis can be used to plan maintenance and management of change as required by the plant condition.
Evaluation of Hydrogen, Propane and Methane-air Detonations Instability and Detonability
Sep 2013
Publication
In this paper the detonation propensity of different compositions of mixtures of hydrogen propane and methane with air has been evaluated over a wide range of compositions. We supplement the conventional calculations of the induction delay with calculations of the characteristic acceleration parameter recently suggested by Radulescu Sharpeand Bradley(RSB) to characterize the instability of detonations. While it is well established that the ignition delay provides a good measure for detonability the RSB acceleration or its non-dimensionalform provides a further discriminant between mixtures with similar ignition delays. The present assessment of detonability reveals that while a stoichiometric mixture of hydrogen-air has an ignition delay one and two orders of magnitude shorter than respectively propane and methane hydrogen also has a parameter smaller by respectively one and two orders of magnitude. Its smaller propensity for instability is reflected by an RSB acceleration parameter similar to the two hydrocarbons. The predictions however indicate that lean hydrogen mixtures are likely to be much more unstable than stoichiometric ones. The relation between the parameter and potential to amplify an unstable transverse wave structure has been further determined through numerical simulation of decaying reactive Taylor-Sedov blast waves. Using a simplified two-step model calibrated for these fuels we show that methane mixtures develop cellular structures more readily than propane and hydrogen when observed on similar induction time scales. Future work should be devoted towards a quantitative inclusion of the RSB parameter in assessing the detonability of a given mixture.
Numerical Investigation of a Vertical Surface on the Flammable Extent of Hydrogen and Methane Vertical Jets
Sep 2011
Publication
The effect of vertical surface on the extent of high pressure unignited jets of both hydrogen and methane is studied using computer fluid dynamics simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm round leak orifice from 100 barg 250 barg 400 barg 550 barg and 700 barg compressed gas systems are presented for vertical jets. To quantify the effect of the surface on the jet the jet exit is positioned at various distances from the surface ranging from 0.029 m to 12 m. Free jets simulations are performed for comparison purposes.
Validation Testing In Support Of Hydrogen Codes and Standards Developments
Sep 2011
Publication
New codes and standards are being developed to facilitate the safe deployment of emerging hydrogen technologies. Hydrogen markets will benefit from standards that address the specific properties of hydrogen hydrogen effects on strength of materials and hydrogen compressed gas storage at pressures up to 70 MPa. The need for validation of new hydrogen requirements has been identified by codes and standards technical committees. The US Department of Energy (DOE) office of Energy Efficiency and Renewable Energy (EERE) has tasked the National Renewable Energy Laboratory (NREL) with the role of supporting hydrogen codes and standards research and development needs. NREL has provided validation test support to several new standards development efforts including pressure testing of 70 MPa on board vehicle storage systems flaw testing of stationary hydrogen tanks fill protocols for hydrogen fuel dispensing and hydrogen compatibility testing for hydrogen pressure relief devices (HPRD’s). Validation test results are presented for these four specific standards development needs.
CFD Simulations of the Effect of Ventilation on Hydrogen Release Behavior and Combustion in an Underground Mining Environment
Sep 2013
Publication
CFD simulations investigating the effect of ventilation airflow on hydrogen release behaviour in an underground mining tunnel were performed using FLACS hydrogen. Both dispersion and combustion scenarios of a hydrogen release coming from a severed distribution pipeline were investigated. Effects on the hydrogen dispersion such as ventilation strength and the mechanism of air flow supply (a pull or push fan) and mine opening surface roughness surface cavities and obstructions were explored. Results showing the effect of changing the position of the leak adding a cavity on the ceiling of the tunnel and changing the roughness of the walls are given. Overpressure sensitivity to the ignition delay was also considered. From the results for the varied ventilation regimes and spatial scenarios it is difficult to identify the optimal ventilation strategy giving the safest conditions for hydrogen distribution and refuelling in an underground mine.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Implementation of Large Scale Shadowgraphy in Hydrogen Safety Phenomena
Sep 2013
Publication
We have implemented a portable large-scale shadowgraph system for use in flow visualization relating to hydrogen safety. Previous large-scale shadowgraph and schlieren implementations have often been limited to background- oriented techniques which are subject to noise. The system built is based on a large-scale shadowgraph technique developed by Settles which allows for high-quality visualization. We have applied the shadowgraph system to complex phenomena and current issues in hydrogen safety including DDT in long channels jet releases and unconfined deflagrations. Shadowgrams taken are compared to a Z-schlieren system. This shadowgraph system allows analysis of these phenomena at longer length scales.
Comparative Assessment of Blue Hydrogen from Steam Methane Reforming, Autothermal Reforming, and Natural Gas Decomposition Technologies for Natural Gas-producing Regions
Jan 2022
Publication
Interest in blue hydrogen production technologies is growing. Some researchers have evaluated the environmental and/or economic feasibility of producing blue hydrogen but a holistic assessment is still needed. Many aspects of hydrogen production have not been investigated. There is very limited information in the literature on the impact of plant size on production and the extent of carbon capture on the cost and life cycle greenhouse gas (GHG) emissions of blue hydrogen production through various production pathways. Detailed uncertainty and sensitivity analyses have not been included in most of the earlier studies. This study conducts a holistic comparative cost and life cycle GHG emissions’ footprint assessment of three natural gas-based blue hydrogen production technologies – steam methane reforming (SMR) autothermal reforming (ATR) and natural gas decomposition (NGD) to address these research gaps. A hydrogen production plant capacity of 607 tonnes per day was considered. For SMR based on the percentage of carbon capture and capture points we considered two scenarios SMR-52% (indicates 52% carbon capture) and SMR-85% (indicates 85% carbon capture). A scale factor was developed for each technology to understand the hydrogen production cost with a change in production plant size. Hydrogen cost is 1.22 1.23 2.12 1.69 2.36 1.66 and 2.55 $/kg H2 for SMR ATR NGD SMR-52% SMR-85% ATR with carbon capture and sequestration (ATR-CCS) and NGD with carbon capture and sequestration (NGD-CCS) respectively. The results indicate that when uncertainty is considered SMR-52% and ATR are economically preferable to NGD and SMR-85%. SMR-52% could outperform ATR-CCS when the natural gas price decreases and the rate of return increases. SMR-85% is the least attractive pathway; however it could outperform NGD economically when CO2 transportation cost and natural gas price decrease. Hydrogen storage cost significantly impacts the hydrogen production cost. SMR-52% SMR-85% ATR-CCS and NGD-CCS have scale factors of 0.67 0.68 0.54 and 0.65 respectively. The hydrogen cost variation with capacity shows that operating SMR-52% and ATR-CCS above hydrogen capacity of 200 tonnes/day is economically attractive. Blue hydrogen from autothermal reforming has the lowest life cycle GHG emissions of 3.91 kgCO2eq/kg H2 followed by blue hydrogen from NGD (4.54 kgCO2eq/kg H2) SMR-85% (6.66 kgCO2eq/kg H2) and SMR-52% (8.20 kgCO2eq/kg H2). The findings of this study are useful for decision-making at various levels.
Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways
Jul 2016
Publication
Power-to-gas is a promising option for storing interment renewables nuclear baseload power and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways” including Power to Hydrogen Power to Natural Gas End-users Power to Renewable Content in Petroleum Fuel Power to Power Seasonal Energy Storage to Electricity Power to Zero Emission Transportation Power to Seasonal Storage for Transportation Power to Micro grid Power to Renewable Natural Gas (RNG) to Pipeline (“Methanation”) and Power to Renewable Natural Gas (RNG) to Seasonal Storage. In order to compare the different pathways the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems
Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Dec 2022
Publication
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage transmission and distribution and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day which will use an 8 MW offshore turbine system off the coast of Nova Scotia Canada as the main power source. The P2A system consists of a reverse osmosis system a proton exchange membrane (PEM) electrolyser a hydrogen storage tank a nitrogen generator a set of compressors and heat exchangers an autothermal Haber-Bosch reactor and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios which is larger than the traditional fossil-fuel based ammonia production when using the grid in provinces like Nova Scotia even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne−1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system reducing the reliance on the electricity grid increasing service life and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.
Recovery Through Reform: Advancing a Hydrogen Economy While Minimizing Fossil Fuel Subsidies
Feb 2021
Publication
This brief explores recent momentum on hydrogen and evaluates potential implications for subsidies for fossil fuel-based hydrogen given the government's commitments on fossil fuel subsidies.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
- Ensure that any subsidies for hydrogen are in line with the government’s commitments to phase out inefficient fossil fuel subsidies by 2025 and meet net-zero by 2050.
- Thoroughly evaluate the potential efficiency of subsidies for hydrogen against robust social environmental and economic criteria. • Improve transparency by publicly reporting on direct spending and tax expenditures for hydrogen production.
- Follow international best practices being set by Canada’s peers. For example Germany and Spain have laid out hydrogen strategies prioritizing green hydrogen.
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
No more items...