Canada
Simulations of Hydrogen Releases from a Storage Tanks- Dispersion and Consequences of Ignition
Sep 2005
Publication
We present results from hydrogen dispersion simulations from a pressurized reservoir at constant flow rate in the presence and absence of a wall. The dispersion simulations are performed using a commercial finite volume solver. Validation of the approach is discussed. Constant concentration envelopes corresponding to the 2% 4% and 15% hydrogen concentration in air are calculated for a subcritical vertical jet and for an equivalent subcritical horizontal jet from a high pressure reservoir. The consequences of ignition and the resulting overpressure are calculated for subcritical horizontal and vertical hydrogen jets and in the latter case compared to available experimental data.
PRD Hydrogen Release and Dispersion, a Comparison of CFD Results Obtained from Using Ideal and Real Gas Law Properties.
Sep 2005
Publication
In this paper CFD techniques were applied to the simulations of hydrogen release from a 400-bar tank to ambient through a Pressure Relieve Device (PRD) 6 mm (¼”) opening. The numerical simulations using the TOPAZ software developed by Sandia National Laboratory addressed the changes of pressure density and flow rate variations at the leak orifice during release while the PHOENICS software package predicted extents of various hydrogen concentration envelopes as well as the velocities of gas mixture for the dispersion in the domain. The Abel-Noble equation of state (AN-EOS) was incorporated into the CFD model implemented through the TOPAZ and PHOENICS software to accurately predict the real gas properties for hydrogen release and dispersion under high pressures. The numerical results were compared with those obtained from using the ideal gas law and it was found that the ideal gas law overestimates the hydrogen mass release rates by up to 35% during the first 25 seconds of release. Based on the findings the authors recommend that a real gas equation of state be used for CFD predictions of high-pressure PRD releases.
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Vertical Turbulent Buoyant Helium Jet - CFD Modelling and Validation
Sep 2005
Publication
In this paper a vertical turbulent round jet of helium was studied numerically using the PHOENICS software package. The flow was assumed to be steady incompressible and turbulent. The jet discharge Froude number was 14000 and the turbulent Schmidt number was 0.7. The incompressible Reynolds average Navier-Stokes equations and helium transport equation expressed in 2-D axisymmetric domain were applied to model the underlying helium release. The k-e RNG turbulence model was used for the calculations of the corresponding turbulent viscosity diffusivity velocity and concentration fields in the domain. The simulation results are compared with the experimental measurements from the earlier published studies on helium jets in non-buoyant jet region (NBJ) intermediate region (I) and buoyant plume region (BP). The numerical results show that the radial profiles of mean velocity and mean concentration are consistent with the empirical data scaled by the effective diameter and density-ratio dependence. The mean velocity and concentration fields along the axis of the jet agree with the decay laws correlated from the previous experiments. The discrepancy between the numerical and experimental data is within 10% proving that the current CFD model for gas release and dispersion is robust accurate and reliable and that the CFD technique can be used as an alternative to the experiments with similar helium jets. The authors believe that the current CFD model is well validated through this study and can be further extended to predict similar hydrogen releases and dispersion if the model is properly applied with hydrogen properties.
Numerical Investigation of Subsonic Hydrogen Jet Release
Sep 2011
Publication
A buoyant round vertical hydrogen jet is investigated using Large Eddy Simulations at low Mach number (M = 0.3). The influence of the transient concentration fields on the extent of the gas envelope with concentrations within the flammability limits is analyzed and their structure are characterized. The transient flammable region has a complex structure that extends up to 30% beyond the time-averaged flammable volume with high concentration pockets that persist sufficiently long for potential ignition. Safety envelopes devised on the basis of simplified time-averaged simulations would need to include a correction factor that accounts for transient incursions of high flammability concentrations.
Quantitative Imaging of Multi-Component Turbulent Jets
Sep 2011
Publication
The integration of a hydrogen gas storage arrangement in vehicles has not been without its challenges. Gaseous state of hydrogen at ambient temperature combined with the fact that hydrogen is highly flammable results in the requirement of more robust high pressure storage systems that can meet modern safety standards. To develop these new safety standards and to properly predict the phenomena of hydrogen dispersion a better understanding of the resulting flow structures and flammable region from controlled and uncontrolled releases of hydrogen gas must be achieved. With the upper and lower explosive limits of hydrogen known the flammable envelope surrounding the site of a uncontrolled hydrogen release can be found from the concentration field. In this study the subsonic release of hydrogen was emulated using helium as a substitute working fluid. A sharp orifice round turbulent jet is used to emulate releases in which leak geometry is circular. Effects of buoyancy and crossflow were studied over a wide range of Froude numbers. The velocity fields of turbulent jets were characterized using particle image velocimetry (PIV). The mean and fluctuation velocity components were well quantified to show the effect of buoyancy due to the density difference between helium and the surrounding air. In the range of Froude numbers investigated (Fr = 1000 750 500 250 and 50) the increasing effects of buoyancy were seen to be proportional to the reduction of the Fr number. While buoyancy is experienced to have a negligible effect on centerline velocity fluctuations acceleration due to buoyancy in the other hand resulted in a slower decay of time-averaged axial velocity component along the centerline. The obtained results will serve as control reference values for further concentration measurement study and for computational fluid dynamics (CFD) validation.
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Determination of Clearance Distances for Venting of Hydrogen Storage
Sep 2005
Publication
This paper discusses the results of computational fluid dynamics (CFD) modelling of hydrogen releases and dispersion outdoors during venting of hydrogen storage in real environment and geometry of a hydrogen refuelling or energy station for a given flow rate and dimensions of vent stack. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Also thermal effects resulting from potential ignition of flammable hydrogen clouds were assessed using TNO “Yellow Book” recommended approaches. The obtained results were then applied to determine appropriate clearance distances for venting of hydrogen storage for contribution to code development and station design considerations. CFD modelling of hydrogen concentrations and TNO-based modelling of thermal effects have proven to be reliable effective and relatively inexpensive tools to evaluate the effects of hydrogen releases.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives
Dec 2021
Publication
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers organic species such as ethanol that are “available” in agricultural waste in communities around the world. Alternatively organic pollutants present in wastewaters can be used as organic scavengers reducing health and environmental concerns for plants animals and humans. Thus photocatalysis may help reduce the carbon footprint of energy production by generating H2 a friendly energy carrier and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems demonstrating the viability of photocatalysis for “green” hydrogen production.
Effects of Surface on the Flammable Extent of Hydrogen Jets
Sep 2009
Publication
The effect of surfaces on the extent of high pressure horizontal unignited jets of hydrogen and methane is studied using CFD numerical simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm PRD from 100 barg and 700 barg storage units are presented for horizontal hydrogen and methane jets. To quantify the effect of a horizontal surface on the jet the jet exit is positioned at various heights above the ground ranging from 0.1 m to 10 m. Free jet simulations are performed for comparison purposes.
Lagrangian Reaction-Diffusion Model for Predicting the Ignitability of Pressurized Hydrogen Releases
Sep 2009
Publication
Previous experiments demonstrated that the accidental release of high pressure hydrogen into air can lead to the possibility of spontaneous ignition. It is believed that this ignition is due to the heating of the mixing layer between hydrogen and air that is caused by the shock wave driven by the pressurized hydrogen during the release. Currently this problem is poorly understood and not amenable to direct numerical simulation. This is due to the presence of a wide range of scales between the sizes of the blast wave driven and the very thin mixing layer. The present study addresses this fundamental ignition problem and develops a solution framework in order to predict the ignition event for given hydrogen storage pressures and dimension of the release hole. In this problem only the mixing layer between the hydrogen and air is considered. This permits us to use much higher resolution than previous studies. This mixing layer at the jet head is advected as a Lagrangian fluid particle. The key physical processes in the problem are identified to be the mixing of the two gases at the mixing layer the initial heating by the shock wave and a cooling effect due to the expansion of the mixing layer. The results of the simulations indicate that for every storage pressure there exists a critical hole size below which ignition is prevented during the release process. Close inspection of the results indicate that this limit is due to the competition between the heating provided by the shock wave and the cooling due to expansion. Furthermore the results also indicate that the details of the mixing process do not play a significant role to leading order. The limiting ignition criteria were found to be well approximated by the Homogeneous Ignition Model of Cuenot and Poinsot supplemented by a heat loss term due to expansion. Therefore turbulent mixing occurring in reality is not likely to affect the ignition limits derived in the present study. Comparison with existing experiments showed very good agreement.
Numerical Investigation of Hydrogen Dispersion into Air
Sep 2009
Publication
Computational fluid dynamics (CFD) is used to numerically solve the sudden release of hydrogen from a high pressure tank (up to 70MPa) into air. High pressure tanks increase the risk of failure of the joints and pipes connected to the tank which results in release of Hydrogen. The supersonic flow caused by high pressure ratio of reservoir to ambient generates a strong Mach disk. A three dimensional in-house code is developed to simulate the flow. High pressure Hydrogen requires a real gas law because it deviates from ideal gas law. Firstly Beattie-Bridgeman and Abel-Noble real gas equation of states are applied to simulate the release of hydrogen in hydrogen. Then Abel-Noble is implied to simulate the release of hydrogen in air. Beattie-Bridgeman has stability problems in the case of hydrogen in air. A transport equation is used to solve the concentration of Hydrogen-air mixture. The code is second order accurate in space and first order in time and uses a modified Van Leer limiter. The fast release of Hydrogen from a small rupture needs a very small mesh therefore parallel computation is applied to overcome memory problems and to decrease the solution time. The high pressure ratio of the reservoir to ambient causes a very fast release which is accurately modelled by the code and all the shocks and Mach disk happening are observed in the results. The results show that the difference between real gas and ideal gas models cannot be ignored.
Shock Initiated Ignition for Hydrogen Mixtures of Different Concentrations
Sep 2011
Publication
The scenario of ignition of fuels by the passage of shock waves is relevant from the perspective of safety primarily because shock ignition potentially plays an important role in deflagration to detonation transition. Even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into combustible mixture is difficult because of the singular nature of the initial conditions. Indeed initially as the shock starts moving away from the contact surface the region filled with shocked reactive mixture does not exist. In the current work the formulation is transformed using time and length over time as the independent variables. This transformation yields a finite domain from t = 0. In this paper the complete spatial and temporal ignition evolution of hydrogen combustible mixtures of different concentrations is studied numerically. Integration of the governing equations is performed using an Essentially Non-Oscillatory (ENO) algorithm in space and Runge-Kutta in time while the chemistry is modeled by a three-step chain-branching mechanism which appropriately mimics hydrogen combustion.
Experimental Results and Comparison with Simulated Data of a Low Pressure Hydrogen Jet
Sep 2011
Publication
Experiments with a hydrogen jet were performed at two different pressures 96 psig (6.6 bars) and 237 psig (16.3 bars). The hydrogen leak was generated at two different hole sizes 1/16 inch (1.6 mm) and 1/32 inch (0.79 mm). The flammable shape of the plume was characterised by numerous measurements of the hydrogen concentration inside of the jet. The effect of the nearby horizontal surface on the shape of the plume was measured and compared with results of CFD numerical simulations. The paper will present results and an interpretation on the nature of the plume shape.
Sizing and Operation of a Pure Renewable Energy Based Electric System through Hydrogen
Nov 2021
Publication
Today in order to reduce the increase of the carbon dioxide emissions a large number of renewable energy resources (RES) are already implemented. Considering both the intermittency and uncertainty of the RES the energy storage system (ESS) is still needed for balancing and stabilizing the power system. Among different existing categories of ESS the hydrogen storage systems (HSS) have the highest energy density and are crucial for the RES integration. In addition RES are located in faraway regions and are often transmitted to the terminal consumption center through HVDC (high voltage direct current) due to its lower power loss. In this paper we present a power supply system that achieves low-carbon emissions through combined HSS and HVDC technology. First the combined HSS and the HVDC model are established. Secondly the rule-based strategy for operating the HSS microgrid is presented. Then an operating strategy for a typical network i.e. the pure RES generation station-HVDC transmission-microgrids is demonstrated. Finally the best sizing capacities for all components are found by the genetic algorithm. The results prove the efficiency of the presented sizing approach for a pure RES electric system.
CFD Based Simulation of Hydrogen Release Through Elliptical Orifices
Sep 2013
Publication
Computational Fluid Dynamics (CFD) is applied to investigate the near exit jet behavior of high pressure hydrogen release into quiescent ambient air through different types of orifices. The size and geometry of the release hole can affect the possibility of auto-ignition. Therefore the effect of release geometry on the behavior and development of hydrogen jet issuing from non-axisymmetric (elliptical) and expanding orifices is investigated and compared with their equivalent circular orifices. A three-dimensional in-house code is developed using the MPI library for parallel computing to simulate the flow based on an inviscid approximation. Convection dominates viscous effects in strongly underexpanded supersonic jets in the vicinity of release exit justifying the use of the Euler equations. The transport (advection) equation is applied to calculate the concentration of hydrogen-air mixture. The Abel-Nobel equation of state is used because high pressure hydrogen flow deviates from the ideal gas assumption. This work effort is conducted to fulfill two objectives. First two types of circular and elliptic orifices with the same cross sectional area are simulated and the flow behavior of each case is studied and compared during the initial stage of release. Second the comparative study between expanding circular exit and its fixed counterpart is carried out. This evaluation is conducted for different sizes of nozzle with different aspect ratios.
A Dual Zone Thermodynamic Model for Refueling Hydrogen Vehicles
Sep 2017
Publication
With the simple structure and quick refuelling process the compressed hydrogen storage system is currently widely used. However thermal effects during charging-discharging cycle may induce temperature change in storage tank which has significant impact on the performance of hydrogen storage and the safety of hydrogen storage tank. To address this issue we once propose a single zone lumped parameter model to obtain the analytical solution of hydrogen temperature and use the analytical solution to estimate the hydrogen temperature but the effect of the tank wall is ignored. For better description of the heat transfer characteristics of the tank wall a dual zone (hydrogen gas and tank wall) lumped parameter model will be considered for widely representation of the reference (experimental or simulated) data. Now we extend the single zone model to the dual zone model which uses two different temperatures for gas zone and wall zone. The dual zone model contains two coupled differential equations. To solve them and obtain the solution we use the method of decoupling the coupled differential equations and coupling the solutions of the decoupled differential equations. The steps of the method include: (1) Decoupling of coupled differential equations; (2) Solving decoupled differential equations; (3) Coupling of solutions of differential equations; (4) Solving coupled algebraic equations. Herein three cases are taken into consideration: constant inflow/outflow temperature variable inflow/outflow temperature and constant inflow temperature and variable outflow temperature. The corresponding approximate analytical solutions of hydrogen temperature and wall temperature can be obtained. The hydrogen pressure can be calculated from the hydrogen temperature and the hydrogen mass using the equation of state for ideal gas. Besides the two coupled differential equations can also be solved numerically and the simulated solution can also be obtained. This study will help to set up a formula based approach of refuelling protocol for gaseous hydrogen vehicles.
Large Eddy Simulations of Asymmetric Turbulent Hydrogen Jets Issuing from Realistic Pipe Geometries
Sep 2017
Publication
In the current study a Large Eddy Simulation strategy is applied to model the dispersion of compressible turbulent hydrogen jets issuing from realistic pipe geometries. The work is novel as it explores the effect of jet densities and Reynolds numbers on vertical buoyant jets as they emerge from the outer wall of a pipe through a round orifice perpendicular to the mean flow within the pipe. An efficient Godunov solver is used and coupled with Adaptive Mesh Refinement to provide high resolution solutions only in areas of interest. The numerical results are validated against physical experiments of air and helium which allows a degree of confidence in analysing the data obtained for hydrogen releases. The results show that the jets investigated are always asymmetric. Thus significant discrepancies exist when applying conventional round jet assumptions to determine statistical properties associated with gas leaks from pipelines.
No more items...