United Arab Emirates
Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates
Jan 2023
Publication
In this study a green hydrogen system was studied to provide electricity for an office building in the Sharjah emirate in the United Arab Emirates. Using a solar PV a fuel cell a diesel generator and battery energy storage; a hybrid green hydrogen energy system was compared to a standard hybrid system (Solar PV a diesel generator and battery energy storage). The results show that both systems adequately provided the power needed for the load of the office building. The cost of the energy for both the basic and green hydrogen energy systems was 0.305 USD/kWh and 0.313 USD/kWh respectively. The cost of the energy for both systems is very similar even though the capital cost of the green hydrogen energy system was the highest value; however the replacement and operational costs of the basic system were higher in comparison to the green hydrogen energy system. Moreover the impact of the basic system in terms of the carbon footprint was more significant when compared with the green hydrogen system. The reduction in carbon dioxide was a 4.6 ratio when compared with the basic system.
PEMFC Poly-Generation Systems: Developments, Merits, and Challenges
Oct 2021
Publication
Significant research efforts are directed towards finding new ways to reduce the cost increase efficiency and decrease the environmental impact of power-generation systems. The poly-generation concept is a promising strategy that enables the development of a sustainable power system. Over the past few years the Proton Exchange Membrane Fuel Cell-based Poly-Generation Systems (PEMFC-PGSs) have received accelerated developments due to the low-temperature operation high efficiency and low environmental impact. This paper provides a comprehensive review of the main PEMFC-PGSs including Combined Heat and Power (CHP) co-generation systems Combined Cooling and Power (CCP) co-generation systems Combined Cooling Heat and Power (CCHP) tri-generation systems and Combined Water and Power (CWP) co-generation systems. First the main technologies used in PEMFC-PGSs such as those related to hydrogen production energy storage and Waste Heat Recovery (WHR) etc. are detailed. Then the research progresses on the economic energy and environmental performance of the different PEMFC-PGSs are presented. Also the recent commercialization activities on these systems are highlighted focusing on the leading countries in this field. Furthermore the remaining economic and technical obstacles of these systems along with the future research directions to mitigate them are discussed. The review reveals the potential of the PEMFC-PGS in securing a sustainable future of the power systems. However many economic and technical issues particularly those related to high cost and degradation rate still need to be addressed before unlocking the full benefits of such systems.
Review of Hydrogen-Gasoline SI Dual Fuel Engines: Engine Performance and Emission
Mar 2023
Publication
Rapid depletion of conventional fossil fuels and increasing environmental concern are demanding an urgent carry out for research to find an alternate fuel which meets the fuel demand with minimum environmental impacts. Hydrogen is considered as one of the important fuel in the near future which meets the above alarming problems. Hydrogen–gasoline dual fuel engines use hydrogen as primary fuel and gasoline as secondary fuel. In this review paper the combustion performance emission and cyclic variation characteristics of a hydrogen–gasoline dual fuel engine have been critically analyzed. According to scientific literature hydrogen–gasoline dual fuel engines have a good thermal efficiency at low and partial loads but the performance deteriorates at high loads. Hydrogen direct injection with gasoline port fuel injection is the optimum configuration for dual fuel engine operating on hydrogen and gasoline. This configuration shows superior result in mitigating the abnormal combustion but experiences high NOx emission. Employing EGR showed a maximum reduction of 77.8% of NOx emission with a EGR flowrate of 18% further increment in flowrate leads to combustion instability. An overview on hydrogen production and carbon footprint related with hydrogen production is also included. This review paper aims to provide comprehensive findings from past works associated with hydrogen–gasoline dual fuel approach in a spark ignition engine
Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions
Jul 2022
Publication
Rapidly declining costs of renewable energy technologies have made solar and wind the cheapest sources of energy in many parts of the world. This has been seen primarily as enabling the rapid decarbonization of the electricity sector but low-cost low-carbon energy can have a great secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas. In this study we consider by way of an exemplary carbon capture and utilization cycle based on mature technologies the energy requirements of the “industrial carbon cycle” an emerging paradigm in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels and we assess the impact of declining renewable energy costs on overall economics of these processes. In our exemplary process CO2 is captured from a cement production facility via an amine scrubbing process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane using electrolysis to produce methanol. We show that solar heat and electricity generation costs currently realized in the Middle East lead to a large reduction in the cost of this process relative to baseline assumptions found in published literature and extrapolation of current energy price trends into the near future would bring costs down to the level of current fossil-fuel-based processes.
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Prospects of Fuel Cell Combined Heat and Power Systems
Aug 2020
Publication
Combined heat and power (CHP) in a single and integrated device is concurrent or synchronized production of many sources of usable power typically electric as well as thermal. Integrating combined heat and power systems in today’s energy market will address energy scarcity global warming as well as energy-saving problems. This review highlights the system design for fuel cell CHP technologies. Key among the components discussed was the type of fuel cell stack capable of generating the maximum performance of the entire system. The type of fuel processor used was also noted to influence the systemic performance coupled with its longevity. Other components equally discussed was the power electronics. The thermal and water management was also noted to have an effect on the overall efficiency of the system. Carbon dioxide emission reduction reduction of electricity cost and grid independence were some notable advantages associated with fueling cell combined heat and power systems. Despite these merits the high initial capital cost is a key factor impeding its commercialization. It is therefore imperative that future research activities are geared towards the development of novel and cheap materials for the development of the fuel cell which will transcend into a total reduction of the entire system. Similarly robust systemic designs should equally be an active research direction. Other types of fuel aside hydrogen should equally be explored. Proper risk assessment strategies and documentation will similarly expand and accelerate the commercialization of this novel technology. Finally public sensitization of the technology will also make its acceptance and possible competition with existing forms of energy generation feasible. The work in summary showed that proton exchange membrane fuel cell (PEM fuel cell) operated at a lower temperature-oriented cogeneration has good efficiency and is very reliable. The critical issue pertaining to these systems has to do with the complication associated with water treatment. This implies that the balance of the plant would be significantly affected; likewise the purity of the gas is crucial in the performance of the system. An alternative to these systems is the PEM fuel cell systems operated at higher temperatures.
Optimized Design and Control of an Off Grid solar PV/hydrogen Fuel Cell Power System for Green Buildings
Sep 2017
Publication
Modelling simulation optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction low emissions and low cost of energy. The goal is to manage the energy consumption of the building reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system 73% is produced from the solar PV 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable economically viable and environmentally friendly: High renewable fraction (66.1%) low levelized cost of energy (92 $/MWh) and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Additive Manufacturing for Proton Exchange Membrane (PEM) Hydrogen Technologies: Merits, Challenges, and Prospects
Jul 2023
Publication
With the growing demand for green technologies hydrogen energy devices such as Proton Exchange Membrane (PEM) fuel cells and water electrolysers have received accelerated developments. However the materials and manufacturing cost of these technologies are still relatively expensive which impedes their widespread commercialization. Additive Manufacturing (AM) commonly termed 3D Printing (3DP) with its advanced capabilities could be a potential pathway to solve the fabrication challenges of PEM parts. Herein in this paper the research studies on the novel AM fabrication methods of PEM components are thoroughly reviewed and analysed. The key performance properties such as corrosion and hydrogen embrittlement resistance of the additively manufactured materials in the PEM working environment are discussed to emphasise their reliability for the PEM systems. Additionally the major challenges and required future developments of AM technologies to unlock their full potential for PEM fabrication are identified. This paper provides insights from the latest research developments on the significance of advanced manufacturing technologies in developing sustainable energy systems to address the global energy challenges and climate change effects.
Techno-economic Analysis of Green-H2@Scale Production
Sep 2023
Publication
The International Energy Agency (IEA) established the "H2 Implementing Agreement (HIA)" to promote H2 transition in various economic sectors. Today less than one percent of the world's H2 production is “Green”. Lack of regulations high production costs and inadequate infrastructure are significant impediments. The U.S. Department of Energy set a "111-target" which translates into $1/kg-H2 in the next decade. Many countries in the Middle East and North Africa (MENA) region have announced ambitious plans to produce green H2. Through techno-economic metrics and the impact of economies of scale this study investigates H2@Scale production. H2 Production Analysis and the System Advisor Model developed by the U.S. Department of Energy were used for analysis. The results demonstrate a significant decrease in the levelized cost of H2 (LCOH) when the production volume is scaled up. It was determined that the key cost drivers are capital cost energy installed balance of the plant and mechanical and electrical subsystems. The studied location is found promising for scaled production and developing its commodity status. The findings could serve as a benchmark for key stakeholders investors policymakers and the developer of relevant strategies in the infrastructure and H2 value chain.
Biohydrogen Production from Biomass Sources: Metabolic Pathways and Economic Analysis
Sep 2021
Publication
The commercialization of hydrogen as a fuel faces severe technological economic and environmental challenges. As a method to overcome these challenges microalgal biohydrogen production has become the subject of growing research interest. Microalgal biohydrogen can be produced through different metabolic routes the economic considerations of which are largely missing from recent reviews. Thus this review briefly explains the techniques and economics associated with enhancing microalgae-based biohydrogen production. The cost of producing biohydrogen has been estimated to be between $10 GJ-1 and $20 GJ−1 which is not competitive with gasoline ($0.33 GJ−1 ). Even though direct biophotolysis has a sunlight conversion efficiency of over 80% its productivity is sensitive to oxygen and sunlight availability. While the electrochemical processes produce the highest biohydrogen (>90%) fermentation and photobiological processes are more environmentally sustainable. Studies have revealed that the cost of producing biohydrogen is quite high ranging between $2.13 kg−1 and 7.24 kg−1 via direct biophotolysis $1.42kg−1 through indirect biophotolysis and between $7.54 kg−1 and 7.61 kg−1 via fermentation. Therefore low-cost hydrogen production technologies need to be developed to ensure long-term sustainability which requires the optimization of critical experimental parameters microalgal metabolic engineering and genetic modification.
Analysis of CO2 Emissions Reduction on the Future Hydrogen Supply Chain Network for Dubai Buses
Apr 2023
Publication
There is an impetus to decarbonize transportation sector and mitigate climate change. This study examines the effect of adopting hydrogen (H2) as a fuel for Dubai Buses at different penetration scales on carbon dioxide (CO2) emissions reduction. A H2 supply-chain system dynamics model is developed to conduct life cycle cost and environmental analysis and evaluate the efficacy of different carbon prices and subsidies. Gray green and mixed H2 production scenarios were considered. The results show that gray hydrogen reduces 7.1 million tons of CO2 which is half of green hydrogen buses. Replacing diesel fleet at end of lifetime with mixed hydrogen bus fleet was the optimal approach to promote green hydrogen at pump reaching $4/kg in a decade. This gradual transition reduces 62% of the well-to-wheel CO2 emissions of the new bus fleet and creates mass for economies of scale as carbon prices and subsidies cannot promote green hydrogen alone.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
Green Hydrogen Production Plants: A Techno-economic Review
Aug 2024
Publication
Green hydrogen stands as a promising clean energy carrier with potential net-zero greenhouse gas emissions. However different system-level configurations for green hydrogen production yield different levels of efficiency cost and maturity necessitating a comprehensive assessment. This review evaluates the components of hydrogen production plants from technical and economic perspectives. The study examines six renewable energy sources—solar photovoltaics solar thermal wind biomass hydro and geothermal—alongside three types of electrolyzers (alkaline proton exchange membrane and solid oxide electrolyzer cells) and five hydrogen storage methods (compressed hydrogen liquid hydrogen metal hydrides ammonia and liquid organic hydrogen carriers). A comprehensive assessment of 90 potential system configurations is conducted across five key performance indicators: the overall system cost efficiency emissions production scale and technological maturity. The most cost-effective configurations involve solar photovoltaics or wind turbines combined with alkaline electrolyzers and compressed hydrogen storage. For enhanced system efficiency geothermal sources or biomass paired with solid oxide electrolyzer cells utilizing waste heat show significant promise. The top technologically mature systems feature combinations of solar photovoltaics wind turbines geothermal or hydroelectric power with alkaline electrolyzers using compressed hydrogen or ammonia storage. The highest hydrogen production scales are observed in systems with solar PV wind or hydro power paired with alkaline or PEM electrolyzers and ammonia storage. Configurations using hydro geothermal wind or solar thermal energy sources paired with alkaline electrolyzers and compressed hydrogen or liquid organic hydrogen carriers yield the lowest life cycle GHG emissions. These insights provide valuable decision-making tools for researchers business developers and policymakers guiding the optimization of system efficiency and the reduction of system costs.
Utilization of Hydrogen and Methane as Energy Carriers with Exhaust Gas Recirculation for Sustainable Diesel Engines
May 2024
Publication
Hydrogen and methane as secondary fuels in diesel engines can be promising solutions to meet energy demand. The current study investigated the effect of the specialty gases of different compositions on diesel engine performance and exhaust gases. Four gases with various compositions of exhaust gas recirculation (Carbon monoxide Carbon dioxide and Nitrogen) and fuels (Hydrogen and Methane) were used at various mass flow rates of 10 20 and 25 LPM (liter per minute) and various engine speeds of 2000 2500 3000 and 3500 rpm (revolutions per minute). The procured results revealed that adding specialty gases improved brake thermal efficiency and power. Similarly the brake-specific fuel consumption was also massively retarded compared to diesel due to the influence of the hydrogen and methane composition. However the fuel with the higher nitrogen reported less BTE (brake thermal efficiency) and comparatively higher exhaust gas temperature owing to the higher presence of nitrogen in their composition. Regarding emissions including exhaust gas recirculation dropped the formation of pollutants efficiently compared to diesel. Among various fuels Case 1 (30 % H2 5 % CH4 5 CO2 and 60 % CO) reported the lowest emission of NOx and Case 2 (25 % H2 5 % CH4 5 CO2 30 % CO and 35 % N2) of CO and CO2 emissions. Generally specialty gases with a variable composition of exhaust gas recirculation gases can be a promising sustainable replacement for existing fossil fuels.
No more items...