Transmission, Distribution & Storage
Materials for Hydrogen Storage
Aug 2003
Publication
Hydrogen storage is a materials science challenge because for all six storage methods currently being investigated materials with either a strong interaction with hydrogen or without any reaction are needed. Besides conventional storage methods i.e. high pressure gas cylinders and liquid hydrogen the physisorption of hydrogen on materials with a high specific surface area hydrogen intercalation in metals and complex hydrides and storage of hy Read More
Effect of Vanadium-alloying on Hydrogen Embrittlement of Austenitic High-nitrogen Steels
Dec 2018
Publication
The effect of hydrogen on tensile behavior and fracture mechanisms of V-alloying and V-free high-nitrogen austenitic steels was evaluated. Two steels with the chemical compositions of Fe-23Cr–17Mn–0.1C–0.6N (0V-HNS) and Fe-19Cr–22Mn–1.5V–0.3C–0.9N (1.5V-HNS) were electrochemically hydrogen-charged in NaCl water-solution for 100 hours. According to X-ray diffraction analysis and TEM researches V-alloying promotes particle strengthening of the 1. Read More
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a h Read More
Techno-economic Feasibility of Road Transport of Hydrogen Using Liquid Organic Hydrogen Carriers
Sep 2020
Publication
The cost of storing and transporting hydrogen have been one of the main challenges for the realization of the hydrogen economy. Liquid organic hydrogen carriers (LOHC) are a promising novel solution to tackle these challenges. In this paper we compare the LOHC concept to compressed gas truck delivery and on-site production of hydrogen via water electrolysis. As a case study we consider transportation of by-product hydrogen from chlor-alkali and chl Read More
TM-doped Mg12O12 Nano-cages for Hydrogen Storage Applications: Theoretical Study
Feb 2022
Publication
DFT calculations at B3LYP/6-31g(dp) with the D3 version of Grimme’s dispersion are performed to investigate the application of TM-encapsulated Mg12O12 nano-cages (TM= Mn Fe and Co) as a hydrogen storage material. The molecular dynamic (MD) calculations are utilized to examine the stability of the considered structures. TD-DFT method reveals that the TM-encapsulation converts the Mg12O12 from an ultraviolet into a visible optical active m Read More
Comarine Derivatives Designed as Carbon Dioxide and Hydrogen Storage
Feb 2022
Publication
The growing of fossil fuel burning leads to increase CO2 and H2 emissions which cause increasing of global warming that has brought big attention. As a result enormous researches have been made to reduce CO2 and H2 build up in the environment. One of the most promising approaches for managing CO2 and H2 gases percentage in the atmosphere is capturing and storage them inside proper materials. Therefore the design of new materials for car Read More
A Probabilistic Framework for the Techno-economic Assessment of Smart Energy Hubs for Electric Vehicle Charging
Apr 2022
Publication
Smart energy hubs (Smart Hubs) equipped with Vehicle-to-Grid (V2G) charging photovoltaic (PV) energy generation and hydrogen storage capabilities are an emerging technology with potential to alleviate the impact of electric vehicles (EV) on the electricity grid. Their operation however is characterised by intermittent PV energy generation as well as uncertainties in EV traffic and driver preference. These uncertainties when combined with the need t Read More
Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study
Apr 2019
Publication
Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and developing an effective strategy to improve resistance to HE are of great concern but challenging. In this work first-principles studies were performed to investigate the HE mechanism and the improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial hydrogen atoms have different site preferences in Al-free and Al-containing au Read More
The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel
Apr 2019
Publication
Hydrogen embrittlement (HE) of metals has remained a mystery in materials science for more than a century. To try to clarify this mystery tensile tests were conducted at room temperature (RT) on a 316 stainless steel (SS) in air and hydrogen of 70 MPa. With an aim to directly observe the effect of hydrogen on ordering of 316 SS during deformation electron diffraction patterns and images were obtained from thin foils made by a focused ion beam from t Read More
The Impact of Hydrogen on Mechanical Properties; A New In Situ Nanoindentation Testing Method
Feb 2019
Publication
We have designed a new method for electrochemical hydrogen charging which allows us to charge very thin coarse-grained specimens from the bottom and perform nanomechanical testing on the top. As the average grain diameter is larger than the thickness of the sample this setup allows us to efficiently evaluate the mechanical properties of multiple single crystals with similar electrochemical conditions. Another important advantage is that the top Read More
Numerical Simulation of Tensile Behavior of Corroded Aluminum Alloy 2024 T3 Considering the Hydrogen Embrittlement
Jan 2018
Publication
A multi-scale modeling approach for simulating the tensile behavior of the corroded aluminum alloy 2024 T3 was developed accounting for both the geometrical features of corrosion damage and the effect of corrosion-induced hydrogen embrittlement (HE). The approach combines two Finite Element (FE) models: a model of a three-dimensional Representative Unit Cell (RUC) representing an exfoliated area and its correspondent hydrogen embrittled Read More
Unusual Hydrogen Implanted Gold with Lattice Contraction at Increased Hydrogen Content
Mar 2021
Publication
The experimental evidence for the contraction of volume of gold implanted with hydrogen at low doses is presented. The contraction of lattice upon the addition of other elements is very rare and extraordinary in the solid-state not only for gold but also for many other solids. To explain the underlying physics the pure kinetic theory of absorption is not adequate and the detailed interaction of hydrogen in the lattice needs to be clarified. Our analysis poin Read More
Dislocation and Twinning Behaviors in High Manganese Steels in Respect to Hydrogen and Aluminum Alloying
Dec 2018
Publication
The dislocation and twinning evolution behaviors in high manganese steels Fe-22Mn-0.6C and Fe-17Mn-1.5Al-0.6C have been investigated under tensile deformation with and without diffusive hydrogen. The notched tensile tests were interrupted once primary cracks were detected using the applied direct current potential drop measurement. In parallel the strain distribution in the vicinity of the crack was characterized by digital image correlation usi Read More
The Effect of Heat Treatments on the Constituent Materials of a Nuclear Reactor Pressure Vessel in Hydrogen Environment
Jul 2016
Publication
A nuclear reactor pressure vessel (NRPV) wall is formed by two layer of different materials: an inner layer of stainless steel (cladding material) and an outer layer of low carbon steel (base material) which is highly susceptible to corrosion related phenomena. A reduction of the mechanical properties of both materials forming the wall would appear due to the action of the harsh environment causing hydrogen embrittlement (HE) related phenomena. As Read More
Influence of Pressure, Temperature and Organic Surface Concentration on Hydrogen Wettability of Caprock; Implications for Hydrogen Geo-storage
Sep 2021
Publication
Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the decarbonization objectives and meeting increasing global energy demand. However successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilizat Read More
Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test
Jun 2017
Publication
The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) whi Read More
Baking Effect on Desorption of Diffusible Hydrogen and Hydrogen Embrittlement on Hot-Stamped Boron Martensitic Steel
Jun 2019
Publication
Recently hot stamping technology has been increasingly used in automotive structural parts with ultrahigh strength to meet the standards of both high fuel efficiency and crashworthiness. However one issue of concern regarding these martensitic steels which are fabricated using a hot stamping procedure is that the steel is highly vulnerable to hydrogen delayed cracking caused by the diffusible hydrogen flow through the surface reaction of the coating in a Read More
Prospecting Stress Formed by Hydrogen or Isotope Diffused in Palladium Alloy Cathode
Oct 2018
Publication
The objective of this project is to take into account the mechanical constraints formed by diffusion of hydrogen or tritium in watertight palladium alloy cathode. To know the origin of these it was necessary to discriminating the damaging effects encountered. Effectively hydrogen and isotope induce deformation embrittlement stress corrosion cracking and cathodic corrosion in different regions of cathode. Palladium can be alloyed with silver o Read More
Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance
Nov 2017
Publication
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e. 50 80 and 100 °C) and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel but simultaneously significantly increased the HE susceptibility of the steel since α′ martensite was induc Read More
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
Apr 2018
Publication
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades such as fully martensitic ste Read More
Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures
Mar 2018
Publication
The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Con Read More
Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures
May 2019
Publication
316L stainless steel is a promising material candidate for a hydrogen containment system. However when in contact with hydrogen the material could be degraded by hydrogen embrittlement (HE). Moreover the mechanism and the effect of HE on 316L stainless steel have not been clearly studied. This study investigated the effect of hydrogen exposure on the impact toughness of 316L stainless steel to understand the relation between hydrogen chargi Read More
Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review
Nov 2022
Publication
Hydrogen future depends on large-scale storage which can be provided by geological formations (such as caverns aquifers and depleted oil and gas reservoirs) to handle demand and supply changes a typical hysteresis of most renewable energy sources. Amongst them depleted natural gas reservoirs are the most cost-effective and secure solutions due to their wide geographic distribution proven surface facilities and less ambiguous site evaluation. Read More
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on t Read More
Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels
Dec 2019
Publication
Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to h Read More
The Role of the Testing Rate on Small Punch Tests for the Estimation of Fracture Toughness in Hydrogen Embrittlement
Dec 2020
Publication
In this paper different techniques to test notched Small Punch (SPT) samples in fracture conditions in aggressive environments are studied based on the comparison of the micromechanisms at different rates. Pre-embrittled samples subsequently tested in air at rates conventionally employed (0.01 and 0.002 mm/s) are compared to embrittled ones tested in environment at the same rates (0.01 and 0.002 mm/s) and at a very slow rate (5E-5 mm/s). A se Read More
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations Read More
Hydrogen Storage Behavior of Nanocrystalline and Amorphous Mg–Ni–Cu–La Alloys
Sep 2020
Publication
Alloying and structural modification are two effective ways to enhance the hydrogen storage kinetics and decrease the thermal stability of Mg and Mg-based alloys. In order to enhance the characteristics of Mg2Ni-type alloys Cu and La were added to an Mg2Ni-type alloy and the sample alloys (Mg24Ni10Cu2)100−xLax (x = 0 5 10 15 20) were prepared by melt spinning. The influences of La content and spinning rate on the gaseous and e Read More
Features of the Hydrogen-Assisted Cracking Mechanism in the Low-Carbon Steel at Ex- and In-situ Hydrogen Charging
Dec 2018
Publication
Hydrogen embrittlement has been intensively studied in the past. However its governing mechanism is still under debate. Particularly the details of the formation of specific cleavage-like or quasi-cleavage fracture surfaces related to hydrogen embrittled steels are unclear yet. Recently it has been found that the fracture surface of the hydrogen charged and tensile tested low-carbon steel exhibits quasi-cleavage facets having specific smoothly curved s Read More
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact i Read More
Innovation Insights Brief - Five Steps to Energy Storage
Jan 2020
Publication
As the global electricity systems are shaped by decentralisation digitalisation and decarbonisation the World Energy Council’s Innovation Insights Briefs explore the new frontiers in energy transitions and the challenges of keeping pace with fast moving developments. We use leadership interviews to map the state of play and case studies across the whole energy landscape and build a broader and deeper picture of new developments within and beyond Read More
Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo
Sep 2017
Publication
This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD) hydrogen embrittlement (HE) or at the micro-level hydrogen-assisted micro-damage (HAMD) thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen ef Read More
Microalloyed Steels through History until 2018: Review of Chemical Composition, Processing and Hydrogen Service
May 2018
Publication
Microalloyed steels have evolved in terms of their chemical composition processing and metallurgical characteristics since the beginning of the 20th century in the function of fabrication costs and mechanical properties required to obtain high-performance materials needed to accommodate for the growing demands of gas and hydrocarbons transport. As a result of this microalloyed steels present a good combination of high strength and ductility obtai Read More
Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging
Aug 2019
Publication
Herein the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrog Read More
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the adde Read More
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal Read More
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological doma Read More
Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels
May 2018
Publication
In the present study the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and unc Read More
Hydrogen Assisted Crack Initiation and Propagation in Nickel-cobalt Heat Resistant Superalloys
Aug 2019
Publication
It has been investigated the Ni-Co alloys (obtained from powder 0.1...0.3 mm under hot gaseous (in argon) isostatic pressure (up to 300 MPa) (Ni60Co15Cr8W8Al2Mo3) (Firth Rixon Metal Ltd Sheffield) and deformed (obtained by vacuum induced remealting) materials (Ni62Cr14Co10Mo5Nb3Al3Ti3) for gaseous turbine discs. Investigation has performed in the range of temperature 25…800°С and hydrogen pressure up to 70 MPa. By the 3D vis Read More
Hydrogen Embrittlement in Super Duplex Stainless Steels
Nov 2019
Publication
In super duplex stainless steels (SDSSs) both austenite and ferrite are susceptible to hydrogen embrittlement however there is a lack of understanding into the effect of hydrogen in each phase. In this study in neutron diffraction was applied on hydrogen-charged (H-charged) samples to investigate the hydrogen embrittlement behaviour in super duplex stainless steels. The result reveals that austenite maintains good plasticity during tensile testing whilst a l Read More
Investigation of the Hydrogen Embrittlement Susceptibility of T24 Boiler Tubing in the Context of Stress Corrosion Cracking of its Welds
Dec 2018
Publication
For the membrane and spiral walls of the new USC boilers the advanced T24 material was developed. In 2010 however extensive T24 tube weld cracking during the commissioning phase of several newly built boilers was observed. As the dominant root cause Hydrogen Induced - Stress Corrosion Cracking was reported. An investigation into the interaction of the T24 material with hydrogen was launched in order to compare its hydrogen embrittlement su Read More
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in Read More
Tracking Hydrogen Embrittlement Using Short Fatigue Crack Behavior of Metals
Dec 2018
Publication
Understanding hydrogen embrittlement phenomenon that leads to deterioration of mechanical properties of metallic components is vital for applications involving hydrogen environment. Among these understanding the influence of hydrogen on the fatigue behaviour of metals is of great interest. Total fatigue life of a material can be divided into fatigue crack initiation and fatigue crack growth phase. While fatigue crack initiation can be linked with the pr Read More
Hydrogen Embrittlement in Pipelines Transporting Sour Hydrocarbons
Sep 2017
Publication
Lamination-like defects in pipeline steels can be of both metallurgical and operational origin. In pipelines transporting hydrocarbon usually such defects are not a big challenge since they do not propagate under operating conditions. Nonetheless in presence of a corrosion phenomenon and sour gas (H2S) it is possible to observe blisters and cracks which may propagate in the steel. The observed damage mechanisms is Hydrogen Embrittlement and in sp Read More
Reversible Hydrogen Storage Using Nanocomposites
Jul 2020
Publication
In the field of energy storage recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several carbonaceous nanovariants like carbon nanotubes (CNTs) fullerenes and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-org Read More
Adaptation of Hydrogen Transport Models at the Polycrystal Scale and Application to the U-bend Test
Dec 2018
Publication
Hydrogen transport and trapping equations are implemented in a FE software using User Subroutines and the obtained tool is applied to get the diffusion fields in a metallic sheet submitted to a U-Bend test. Based on a submodelling process mechanical and diffusion fields have been computed at the polycrystal scale from which statistical evaluation of the risk of failure of the sample has been estimated.
Critical Review of Models for H2-permeation Through Polymers with Focus on the Differential Pressure Method
May 2021
Publication
To reduce loss of hydrogen in storage vessels with high energy-to-weight-ratio new materials especially polymers have to be developed as barrier materials. Very established methods for characterization of barrier materials with permeation measurements are the time-lag and flow rate method along with the differential pressure method which resembles the nature of hydrogen vessel systems very well. Long measurement durations are necessary to gai Read More
Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications
Nov 2021
Publication
Global demand for data and data access has spurred the rapid growth of the data center industry. To meet demands data centers must provide uninterrupted service even during the loss of primary power. Service providers seeking ways to eliminate their carbon footprint are increasingly looking to clean and sustainable energy solutions such as hydrogen technologies as alternatives to traditional backup generators. In this viewpoint a survey of the curr Read More
Hydrogen vs. Battery in the Long-term Operation. A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids
Apr 2020
Publication
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time the use of renewable energy sources is pursued to address decarbonization targets but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing at the same time the security and reliability of the microgrids. Locally dist Read More
Prospects of Enhancing the Understanding of Material-hydrogen Interaction by Novel In-situ and In-operando Methods
Jan 2022
Publication
A main scientific and technical challenge facing the implementation of new and sustainable energy sources is the development and improvement of materials and components. In order to provide commercial viability of these applications an intensive research in material-hydrogen (H) interaction is required. This work provides an overview of recently developed in-situ and in-operando H-charging methods and their applicability to investigate Read More
No more items...