Safety
Experimental Investigation on the Burning Behavior of Homogenous H2-CO-Air Mixtures in an Obstructed Semi-confined Channel
Sep 2021
Publication
In the current work the combustion behavior of hydrogen-carbon monoxide-air mixtures in semiconfined geometries is investigated in a large horizontal channel facility (dimensions 9 m x 3 m x 0.6 m (L x W x H)) as a part of a joint German nuclear safety project. In the channel with evenly distributed obstacles (blockage ratio 50%) and an open to air ground face homogeneous H2-CO-air mixtures are ignited at one end. The combustion behavior of the mixture is analyzed using the signals of pressure sensors modified thermocouples and ionization probes for flame front detection that are distributed along the channel ceiling. In the experiments various fuel concentrations (cH2 + cCO = 14 to 22 Vol%) with different H2:CO ratios (75:25 50:50 and 25:75) are used and the transition regions for a significant flame acceleration to sonic speed (FA) as well as to a detonation (DDT) are investigated. The conditions for the onset of these transitions are compared with earlier experiments performed in the same facility with H2-air mixtures. The results of this work will help to allow a more realistic estimation of the pressure loads generated by the combustion of H2-CO-air mixtures in obstructed semi-confined geometries.
Risk Assessment of a Gaseous Hydrogen Fueling Station (GHFs)
Sep 2021
Publication
Promoted by national and European investment plans promoting the use of hydrogen as energy carrier the number of Gaseous Hydrogen Fueling Station (or GHFS) has been growing up quite significantly over the past years. Considering the new possible hazards and the related accidents induced by these installations like seen in 2019 in Norway this paper presents a risk assessment of a typical GHFS using the same methodology as the one required in France by the authorities for Seveso facilities. The fact that a hydrogen fueling station could be used by a public not particularly trained to handle hydrogen underlines the importance of this risk assessment. In this article typical components related to GHFS (dispenser high pressure storage compressor low pressure storage) are listed and the hazard potentials linked to these components and the substances involved are identified. Based on these elements and an accidentology a risk analysis has been conducted in order to identify all accidental situations that could occur. The workflow included a detailed risk assessment consisting in modeling the thermal and explosion effects of all hazardous phenomena and in assessing the probability of occurrence for these scenarios. Regarding possible mitigation measures the study was based on an international benchmark for codes and standards made for GFHS. These preliminary outcomes of this study may be useful for any designer and/or owner of a GFHS.
CFD Simulation of Pressure Reduction Inside Large-scale Liquefied Hydrogen Tank
Sep 2021
Publication
Building the international hydrogen supply chain requires the large-scale liquefied hydrogen(LH2) carrier. During shipping LH2 with LH2 Carrier the tank is pressurized by LH2 evaporation due to heat ingress from outside. Before unloading LH2 at the receiving terminal reducing the tank pressure is essential for the safe tank operation. However pressure reduction might cause flashing leading to rapid vaporization of liquefied hydrogen liquid leakage. Moreover it was considered that pressure recovery phenomenon which was not preferred in terms of tank pressure management occurred at the beginning of pressure reduction. Hence the purpose of our research is to clarify the phenomenon inside the cargo tank during pressure reduction. The CFD analysis of the pressure reduction phenomenon was conducted with the VOF based in-house CFD code utilizing the C-CUP scheme combined with the hybrid Level Set and MARS method. In our previous research the pressure reduction experiments with the 30 m³ LH2 tank were simulated and the results showed that the pressure recovery was caused by the boiling delay and the tank pressure followed the saturation pressure after the liquid was fully stirred. In this paper the results were re-evaluated in terms of temperature. While pressure reduction was dominant the temperature of vapor-liquid interface decreased. Once the boiling bubble stirred the interface its temperature reached the saturation temperature after pressure recovery occurred. Moreover it was found that the liquid temperature during pressure reduction could not be measured because of the boiling from the wall of the thermometer. The CFD analysis on pressure reduction of 1250 m³ tank for the LH2 Carrier was also very could occur in the case of the 1250 m³ tank in a certain condition. These results provide new insight into the development of the LH2 carrier.
Siting and Co-location with Hydrogen: What are the Risks?
Sep 2021
Publication
The demand for hydrogen has grown more than threefold since 1975 [1] and price is expected to significantly decrease by 2030 [2] concluding in an expected continual increase in demand. HyLaw defined by Hydrogen Europe lays out recommendations for hydrogen applications using identified Legal and Administrative Processes (LAPs) across 18 European countries. Regarding site location HyLaw refers to the land use plan. This defines the production and storage of hydrogen as an industrial activity and therefore regardless of the specific site methods of production or use the hydrogen site must be within a permitted industrial zone or under specific condition commercial areas [3]. Local authorities fire departments and other concerned parties may need to be consulted on site suitability for the project. Risktec explores a range of considerations for siting and layout of hydrogen developments including co-location with other assets for example with renewable energy sources hazardous facilities or public structures. Good practice tools and assessment techniques are presented to mitigate the risks associated with the production storage and use of hydrogen not just the surrounding site and environment but the operatives of the facility.
Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen has the physical and chemical characteristics of being flammable explosive and prone to leakage and its safety is the main issue faced by the promotion of hydrogen as an energy source. The most common scene in vehicle application is the longitudinal wind generated by driving and the original position of hydrogen concentration sensors (HCSs) did not consider the influence of longitudinal wind on the hydrogen leakage trajectory. In this paper the computational fluid dynamics (CFD) software STAR CCM 2021.1 is used to simulate the hydrogen leakage and diffusion trajectories of fuel cell vehicles (FCVs) at five different leakage locations the longitudinal wind speeds of 0 km/h 37.18 km/h and 114 km/h and it is concluded that longitudinal wind prolongs the diffusion time of hydrogen to the headspace and reduces the coverage area of hydrogen in the headspace with a decrease of 81.35%. In order to achieve a good detection effect of fuel cell vehicles within the longitudinal wind scene based on the simulated hydrogen concentration–time matrix the scene clustering method based on vector similarity evaluation was used to reduce the leakage scene set by 33%. Then the layout position of HCSs was optimized according to the proposed multi-scene full coverage response time minimization model and the response time was reduced from 5 s to 1 s.
Risk Management of Energy Communities with Hydrogen Production and Storage Technologies
Jul 2023
Publication
The distributed integration of renewable energy sources plays a central role in the decarbonization of economies. In this regard energy communities arise as a promising entity to coordinate groups of proactive consumers (prosumers) and incentivize investment on clean technologies. However the uncertain nature of renewable energy generation residential loads and trading tariffs pose important challenges both at the operational and economic levels. We study how this management can be directly undertaken by an arbitrageur that making use of an adequate price-based demand response (real-time pricing) system serves as an intermediary with the central electricity market to coordinate different types of prosumers under risk aversion. In particular we consider a sequential futures and spot market where the aggregated shortage or excess of energy within the community can be traded. We aim to study the impact of new hydrogen production and storage technologies on community operation and risk management. These interactions are modeled as a game theoretical setting in the form of a stochastic two-stage bilevel optimization problem which is later reformulated without approximation as a single-level mixed-integer linear problem (MILP). An extensive set of numerical experiments based on real data is performed to study the operation of the energy community under different technical and economical conditions. Results indicate that the optimal involvement in futures and spot markets is highly conditioned by the community’s risk aversion and self-sufficiency levels. Moreover the external hydrogen market has a direct effect on the community’s internal price-tariff system and depending on the market conditions may worsen the utility of individual prosumers.
Development of Dispensing Hardware for Safe Fueling of Heavy Duty Vehicles
Sep 2021
Publication
The development of safe dispensing equipment for the fueling of heavy duty (HD) vehicles is critical to the expansion of this newly and quickly expanding market. This paper discusses the development of a HD dispenser and nozzles assembly (nozzle hose breakaway) for these new larger vehicles where flow rates are more than double compared to light duty (LD) vehicles. This equipment must operate at nominal pressures of 700 bar -40o C gas temperature and average flow rate of 5-10 kg/min at a high throughput commercial hydrogen fueling station without leaking hydrogen. The project surveyed HD vehicle manufacturers station developers and component suppliers to determine the basic specifications of the dispensing equipment and nozzle assembly. The team also examined existing codes and standards to determine necessary changes to accommodate HD components. From this information the team developed a set of specifications which will be used to design the dispensing equipment. In order to meet these goals the team performed computational fluid dynamic pressure modelling and temperature analysis in order to determine the necessary parameters to meet existing safety standards modified for HD fueling. The team also considered user operational and maintenance requirements such as freeze lock which has been an issue which prevents the removal of the nozzle from LD vehicles. The team also performed a failure mode and effects analysis (FMEA) to identify the possible failures in the design. The dispenser and nozzle assembly will be tested separately and then installed on an innovative HD fueling station which will use a HD vehicle simulator to test the entire system.
Safety Compliance Verification of Fuel Cell Electric Vehicle Exhaust
Sep 2021
Publication
NREL has been developing compliance verification tools for allowable hydrogen levels prescribed by the Global Technical Regulation Number 13 (GTR-13) for hydrogen fuel cell electric vehicles (FCEVs). As per GTR-13 FCEV exhaust is to remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 and that this requirement is to be verified with an analyzer that has a response time of less than 300 ms. To be enforceable a means to verify regulatory requirements must exist. In response to this need NREL developed a prototype analyzer that meets the GTR metrological requirements for FCEV exhaust analysis. The analyzer was tested on a commercial fuel cell electric vehicle (FCEV) under simulated driving conditions using a chassis dynamometer at the Emissions Research and Measurement Section of Environment and Climate Change Canada and FCEV exhaust was successfully profiled. Although the prototype FCEV Exhaust Analyzer met the metrological requirements of GTR-13 the stability of the hydrogen sensor was adversely impacted by condensed water in the sample gas. FCEV exhaust is at an elevated temperature and nearly saturated with water vapor. Furthermore condensed water is present in the form of droplets. Condensed water in the sample gas collected from FCEV exhaust can accumulate on the hydrogen sensing element which would not only block access of hydrogen to the sensing element but can also permanently damage the sensor electronics. In the past year the design of the gas sampling system was modified to mitigate against the transport of liquid water to the sensing element. Laboratory testing confirmed the effectiveness of the modified sampling system water removal strategy while maintaining the measurement range and response time required by GTR-13. Testing of the upgraded analyzer design on an FCEV operating on a chassis dynamometer is scheduled for the summer of 2021.
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Hydrogen Safety Strategies and Risk Management in Equinor
Sep 2021
Publication
Equinor has in recent years focused on low carbon technologies in addition to conventional oil & gas technologies. Clear strategic directions have been set to demonstrate Equinor’s commitment to longterm value creation that supports the Paris Agreement. This includes acceleration of decarbonization by establishing a well-functioning market for carbon capture transport and storage (CCS) as well as development of competitive hydrogen-based value chains and solutions. The specific properties of hydrogen must be taken into account in order to ensure safe design and operation of hydrogen systems as these properties differ substantially from those of natural gas and other conventional oil & gas products. Development projects need to consider and mitigate the increased possibility of high explosion pressures or detonation if hydrogen releases accumulate in enclosed or congested areas. On the other hand hydrogen’s buoyant properties can be exploited by locating potential leak points in the open to avoid gas accumulation thereby reducing the explosion risk. The purpose of this paper is to introduce Equinor’s hydrogen-based value chain projects and present our approach to ensure safe and effective designs. Safety strategies constitute the basis for Equinor’s safety and risk management. The safety strategies describe the connection between the hazards and risk profiles on one hand and the safety barrier elements and their needed performance on the other as input to safe design. The safety strategies also form the basis for safe operation. Measures to control the risk through practical designs follow from these strategies.
Approaches and Methods to Demonstrate Repurposing of the UK's Local Transmission System (LTS) Pipelines for Transportation of Hydrogen
Sep 2021
Publication
Hydrogen has the potential as an energy solution to contribute to decarbonisation targets as it has the capability to deliver low-carbon energy at the scale required. For this to be realised the suitability of the existing natural gas pipeline networks for transporting hydrogen must be established. The current paper describes a feasibility study that was undertaken to assess the potential for repurposing the UK’s Local Transmission System (LTS) natural gas pipelines for hydrogen service. The analysis focused on SGN’s network which includes 3000 km of LTS pipelines in Scotland and the south of England. The characteristics of the LTS pipelines in terms of materials of construction and operation were first evaluated. This analysis showed that a significant percentage of SGN’s LTS network consists of lower strength grades of steel pipeline that operate at low stresses which are factors conducive to a pipeline’s suitability for hydrogen service. An assessment was also made of where existing approaches in pipeline operation may require modifications for hydrogen. The effects of changes in mechanical properties of steel pipelines on integrity and lifetime as a result of potential hydrogen degradation were demonstrated using fitness-for-purpose analysis. A review of pipeline risk assessment and Land-Use Planning (LUP) zone calculations for hydrogen was undertaken to identify any required changes. Case studies on selected sections of the LTS pipeline were then carried out to illustrate the potential changes to LUP zones. The work concluded with a summary of identified gaps that require addressing to ensure safe pipeline repurposing for hydrogen which cover materials performance inspection risk assessment land use planning and procedures.
Development of Technical Regulations for Fuel Cell Motorcycles in Japan—Hydrogen Safety
Jul 2019
Publication
Hydrogen fuel cell vehicles are expected to play an important role in the future and thus have improved significantly over the past years. Hydrogen fuel cell motorcycles with a small container for compressed hydrogen gas have been developed in Japan along with related regulations. As a result national regulations have been established in Japan after discussions with Japanese motorcycle companies stakeholders and experts. The concept of Japanese regulations was proposed internationally and a new international regulation on hydrogen-fueled motorcycles incorporating compressed hydrogen storage systems based on this concept are also established as United Nations Regulation No. 146. In this paper several technical regulations on hydrogen safety specific to fuel cell motorcycles incorporating compressed hydrogen storage systems are summarized. The unique characteristics of these motorcycles e.g. small body light weight and tendency to overturn easily are considered in these regulations.
Safety Assessment of Hydrogen Jet Fire Scenarios within Semi-Confined Spaces
Jan 2023
Publication
Hydrogen fuel cell vehicle (HFCV) technology poses great promise as an alternative to significantly reduce the environmental impact of the transport sector’s emissions. However hydrogen fuel cell technology is relatively new therefore confirmation of the reliability and safety analysis is still required particularly for fire scenarios within confined spaces such as tunnels. This study applied the computational fluid dynamics (CFD) simulations in conjunction with probabilistic calculation methods to determine the associated thermal risk of a hydrogen jet fire in a tunnel and its dependency on scenarios with different tunnel slopes longitudinal and transverse ventilation velocities and fire positions. A large-scale model of 102 m in which the effects of outlined parameter variations on the severity of the fire incident were analysed. It is found that both tunnel ventilation techniques and slope were critical for the effective ejection of accumulated heat. With ventilation playing a primary role in the ejection of heat and gas and slope ensuring the stability of the ejected heat probabilities of thermal burns were found to be reduced by up to approximately 35% with a strong suggestion of critical combinations to further reduce the dangers of hydrogen tunnel fires.
Numerical Simulation of Hydrogen Leakage from Fuel Cell Vehicle in an Outdoor Parking Garage
Aug 2021
Publication
It is significant to assess the hydrogen safety of fuel cell vehicles (FCVs) in parking garages with a rapidly increased number of FCVs. In the present work a Flame Acceleration Simulator (FLACS) a computational fluid dynamics (CFD) module using finite element calculation was utilized to predict the dispersion process of flammable hydrogen clouds which was performed by hydrogen leakage from a fuel cell vehicle in an outdoor parking garage. The effect of leakage diameter (2 mm 3 mm and 4 mm) and parking configurations (vertical and parallel parking) on the formation of flammable clouds with a range of 4–75% by volume was considered. The emission was assumed to be directed downwards from a Thermally Activated Pressure Relief Device (TPRD) of a 70 MPa storage tank. The results show that the 0.7 m parking space stipulated by the current regulations is less than the safety space of fuel cell vehicles. Compared with a vertical parking configuration it is safer to park FCVs in parallel. It was also shown that release through a large TPRD orifice should be avoided as the proportion of the larger hydrogen concentration in the whole flammable domain is prone to more accidental severe consequences such as overpressure.
Combustion Regimes of Hydrogen-air-steam Mixtures
Sep 2021
Publication
In the case of a severe nuclear power plant accident hydrogen gas formation may occur from the core degradation and cooling water evaporation and subsequent oxidation of zircaloy. These phenomena increase the risk of hazardous combustion events in the reactor especially when combined with an ignition source. If not handled carefully these types of accidents can cause severe damage to the reactor building with potential radioactive effects on the environment. Although hydrogen-air combustion has been investigated before hydrogen-air-steam mixtures remain unstudied under reactor-like conditions. Thus this study investigated such mixtures’ combustion regimes. A closed tube of 318 liters (7.65m tall and 0.23m inner diameter) measures the flame speed flame propagation and shock wave behaviors for 11-15 %vol hydrogen mixtures combined with 0 20 or 30 %vol steam and air. Thus both the effect of steam and hydrogen content was investigated and compared. The experimental setup combined photomultiplier tubes pressure sensors and shock detectors to give a full view of the different combustion regimes. A number of obstacles changed the in-chamber turbulence during flame propagation to provide further reactor-like environments. This changed turbulence affected the combustion regimes and enhanced the flame speed for some cases. The results showed varying combustion behaviors depending on the water vapor concentration where a higher concentration meant a lower flame speed reduced pressure load and sometimes combustion extinction. At 0 %vol steam dilution the flame speed remained supersonic for all H2 concentrations while at 30 %vol steam dilution the flame speed remained subsonic for all H2 concentrations. Thus with high levels of steam dilution the risk for shock waves leading to potential reactor building destruction decreases."
Condensed Phase Explosions Involving Liquid Hydrogen
Sep 2021
Publication
Liquid hydrogen may have an important role in the storage and transportation of hydrogen energy. It may also provide the best option for some users of hydrogen energy notably the aviation sector. In the 1960’s liquid hydrogen spillages in open uncongested conditions sometimes produced violent condensed phase explosions as well as the familiar gas phase flash and sustained pool fire. Testing showed that burning mixtures of LH2 and solid oxygen/nitrogen readily transitioned to detonation for oxygen concentrations in the solid phase at or above 50%. Such explosive events have been observed in more recent research work on LH2 spillage and the pressure effects could be significant in some accident scenarios. There is a need to understand how solids are produced following spillage and what factors determine the level of oxygen enrichment. This paper describes the physical processes involved in the accumulation of solids during a horizontal discharge at ground level based on observations made in a recent HSE test that led to a condensed phase explosion. Areas where solids accumulated but remained in intimate contact with LH2 are identified. The paper also includes a thermodynamic and fluid mechanical analysis of the condensation process that includes the calculation of densities of mixtures of LH2 and air in different proportions. When the difference in flow speed between air and underlying LH2 is low a stable condensation layer can develop above the liquid where the temperature is just under the initial condensation point of air allowing sustained oxygen enrichment of condensate.
Using Multicriteria Decision Making to Evaluate the Risk of Hydrogen Energy Storage and Transportation in Cities
Jan 2023
Publication
Hydrogen is an environmentally friendly source of renewable energy. Energy generation from hydrogen has not yet been widely commercialized due to issues related to risk management in its storage and transportation. In this paper the authors propose a hybrid multiple-criteria decision-making (MCDM)-based method to manage the risks involved in the storage and transportation of hydrogen (RSTH). First we identified the key points of the RSTH by examining the relevant literature and soliciting the opinions of experts and used this to build a prototype of its decision structure. Second we developed a hybrid MCDM approach called the D-ANP that combined the decision-making trial and evaluation laboratory (DEMENTEL) with the analytic network process (ANP) to obtain the weight of each point of risk. Third we used fuzzy evaluation to assess the level of the RSTH for Beijing China where energy generation using hydrogen is rapidly advancing. The results showed that the skills of the personnel constituted the most important risk-related factor and environmental volatility and the effectiveness of feedback were root factors. These three factors had an important impact on other factors influencing the risk of energy generation from hydrogen. Training and technical assistance can be used to mitigate the risks arising due to differences in the skills of personnel. An appropriate logistics network and segmented transportation for energy derived from hydrogen should be implemented to reduce environmental volatility and integrated supply chain management can help make the relevant feedback more effective.
Numerical Modeling of a Moderate Hydrogen Leakage in a Typical Two-vented Fuel Cell Configuration
Sep 2021
Publication
Numerical results are presented from two direct numerical simulations (DNS) where a moderate hydrogen leakage is modeled in a typical two-vented fuel cell configuration. The study mimics one of the experimental investigations carried out on the 1 m3 enclosure with a leak flow rate of 10.4 Nl.min−1 [1]. The injection dimensionless Richardson number is at the order of unity and thus characterizes a plume flow which becomes turbulent due to gravitational accelerations. Two large exterior regions are added to the computational domain to model correctly the exchange between the in/out flows at both vents and the outer environment. Two meshes are used in this study; a first consisting of 250 million cells while the second has 2 billion cells to ensure the fine DNS resolution at the level of Kolmogorov and Batchelor length scales. The high performance computation (HPC) platform TRUST is employed where the computational domain is distributed up to 5.104 central processing unit (CPU) cores. A detailed description of the flow structure and the hydrogen dispersion is provided where the sharp effect of the cross-flow on the plume is analyzed. Comparisons versus the experimental measurements show a very good agreement where both the bi-layer Linden regime and the maximal concentration in the top homogeneous layer are correctly reproduced by the DNS. This result is extremely important and breaks the limitations shown previously with statistical RANS approaches and LES models. This study can be considered as a good candidate for any further improvements of the theoretical industrial plume models in general and for the estimation of the non-constant entrainment coefficient in particular.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using Multi-Relevance Machine Learning
Oct 2021
Publication
Hydrogen energy vehicles are being increasingly widely used. To ensure the safety of hydrogenation stations research into the detection of hydrogen leaks is required. Offline analysis using data machine learning is achieved using Spark SQL and Spark MLlib technology. In this study to determine the safety status of a hydrogen refueling station we used multiple algorithm models to perform calculation and analysis: a multi-source data association prediction algorithm a random gradient descent algorithm a deep neural network optimization algorithm and other algorithm models. We successfully analyzed the data including the potential relationships internal relationships and operation laws between the data to detect the safety statuses of hydrogen refueling stations.
No more items...