Safety
Freeze of Nozzle & Receptacle During Hydrogen Fueling
Oct 2015
Publication
We conducted a fuelling test with hydrogen gas for a safety evaluation of the nozzle/receptacle at a controlled temperature and humidity. Test results confirmed that the nozzle/receptacle froze under specific conditions. However freezing did not cause apparatus damage nor hydrogen leakage. The nozzle/receptacle is thus able to fuel safely even if the nozzle/receptacle is stuck due to ice. In addition we quantified the water volume that causes freezing.
Performance Tests of Catalysts for the Safe Conversion of Hydrogen Inside the Nuclear Waste Containers in Fukushima Daiichi
Sep 2019
Publication
The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity.
In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education Culture Sports Science and Technology of Japan (MEXT) the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification and is characterized by having a self-healing function of precious metals (Pd Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education Culture Sports Science and Technology of Japan (MEXT) the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification and is characterized by having a self-healing function of precious metals (Pd Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
Update on Regulation Review for HRS Construction and Operations in Japan
Oct 2015
Publication
In 2005 the Japanese High-pressure Gas Safety Act the Fire Service Act and the Building Standards Act were revised to establish the requirements for 35 MPa hydrogen stations. And in 2012-2014 revisions were made to the High-pressure Gas Safety Act and the Fire Service Act to provide the regulatory requirements for 70 MPa hydrogen stations. We conducted a study on materials that may contribute to prepare technical standards concerning the major 4 items 12 additional items and 13 new items which may affect the costs from the point of view of promoting the hydrogen infrastructure.
An Experimental Study on Mechanism of Self-ignition of High-pressure Hydrogen
Oct 2015
Publication
In the present study the self-ignition of high-pressure hydrogen released in atmospheric air through a diaphragm is visualized under various test conditions. The experimental results indicate that the hydrogen that jets through the rupturing diaphragm is mixed with the heated air near the tube wall. The self-ignition event originated from this mixing. The self-ignition was strongly dependent on the strength of an incident shock wave generated at the diaphragm rupture. As a result a cylindrical flame that formed after the self-ignition shows a tendency to become longer as it propagates in the downstream direction. The head velocities of the hydrogen-air mixture and the cylindrical flame are consistent with that of a contact surface calculated from the measured shock speed. A modified self-ignition mechanism is proposed based on the experimental observations.
Steam Condensation Effect in Hydrogen Venting from a BWR Reactor Building
Oct 2015
Publication
In the accident of Fukushima Daiichi nuclear power plants hydrogen was accumulated in the reactor buildings and exploded. To prevent such explosions hydrogen venting from reactor buildings is considered. When the gas mixture is released to a reactor building through a reactor containment together with the hydrogen some amount of steam might also be released. The steam condenses if the building atmosphere is below the saturation temperature and it affects the hydrogen behaviour. In this study the condensation effect to the hydrogen venting is evaluated using CFD analyses by comparing the case where a hydrogen-nitrogen mixture is released and the case where a hydrogen-steam mixture is released.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
A field explosion test of hydrogen-air mixtures
Sep 2005
Publication
This paper shows the experimental results and findings of field explosion tests conducted to obtain fundamental data concerning the explosion of hydrogen-air mixtures. A tent covered with thin plastic sheets was filled with hydrogen/air mixed gas and subsequently ignited by an electric-spark or explosives to induce deflagration and/or detonation. Several experiments with different concentrations and/or volumes of mixture were carried out. The static overpressure of blast waves was measured using piezoelectric pressure sensors. The recorded data show that the shape of the pressure-time histories of the resulting blast waves depends on the difference in the ignition method used. The pictures of the explosion phenomenon (deflagration and/or detonation) were taken by high-speed cameras.
Numerical Simulation of Hydrogen Explosion Tests with a Barrier Wall for Blast Mitigation
Sep 2005
Publication
We have investigated hydrogen explosion risk and its mitigation focusing on compact hydrogen refuelling stations in urban areas. In this study numerical analyses were performed of hydrogen blast propagation and the structural behaviour of barrier walls. Parametric numerical simulations of explosions were carried out to discover effective shapes for blast-mitigating barrier walls. The explosive source was a prismatic 5.27 m3 volume that contained 30% hydrogen and 70% air. A reinforced concrete wall 2 m tall by 10 m wide and 0.15 m thick was set 2 or 4 m away from the front surface of the source. The source was ignited at the bottom centre by a spark for the deflagration case and 10 g of C-4 high explosive for two detonation cases. Each of the tests measured overpressures on the surfaces of the wall and on the ground displacements of the wall and strains of the rebar inside the wall. The blast simulations were carried out with an in-house CFD code based on the compressive Euler equation. The initial energy estimated from the volume of hydrogen was a time-dependent function for the deflagration and was released instantaneously for the detonations. The simulated overpressures were in good agreement with test results for all three test cases. DIANA a finite element analysis code released by TNO was used for the structural simulations of the barrier wall. The overpressures obtained by the blast simulations were used as external forces. The analyses simulated the displacements well but not the rebar strains. The many shrinkage cracks that were observed on the walls some of which penetrated the wall could make it difficult to simulate the local behaviour of a wall with high accuracy and could cause strain gages to provide low-accuracy data. A parametric study of the blast simulation was conducted with several cross-sectional shapes of barrier wall. A T-shape and a Y-shape were found to be more effective in mitigating the blast.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Mixing of Dense or Light Gases with Turbulent Air- a Fast-Running Model for Lumped Parameter Codes
Sep 2005
Publication
The release of gases heavier than air like propane at ground level or lighter than air like hydrogen close to a ceiling can both lead to fire and explosion hazards that must be carefully considered in safety analyses. Even if the simulation of accident scenarios in complex installations and long transients often appears feasible only using lumped parameter computer codes the phenomenon of denser or lighter gas dispersion is not implicitly accounted by these kind of tools. In the aim to set up an ad hoc model to be used in the computer code ECART fluid-dynamic simulations by the commercial FLUENT 6.0 CFD code are used. The reference geometry is related to cavities having variable depth (2 to 4 m) inside long tunnels filled with a gas heavier or lighter than air (propane or hydrogen). Three different geometrical configurations with a cavity width of 3 6 and 9 m are considered imposing different horizontal air stream velocities ranging from 1 to 5 m/s. A stably-stratified flow region is observed inside the cavity during gas shearing. In particular it is found that the density gradient tends to inhibit turbulent mixing thus reducing the dispersion rate. The obtained data are correlated in terms of main dimensionless groups by means of a least squares method. In particular the Sherwood number is correlated as a function of Reynolds a density ratio modified Froude numbers and in terms of the geometrical parameter obtained as a ratio between the depth of the air-dense gas interface and the length of the cavity. This correlation is implemented in the ECART code to add the possibility to simulate large installations during complex transients lasting many hours with reasonable computation time. An example of application to a typical case is presented.
Phenomena of Dispersion and Explosion of High Pressurized Hydrogen
Sep 2005
Publication
To make “Hydrogen vehicles and refuelling station systems” fit for public use research on hydrogen safety and designing mitigative measures are significant. For compact storage it is planned to store under high pressure (40MPa) at the refuelling stations so that the safety for the handling of high-pressurized hydrogen is essential. This paper describes the experimental investigation on the hypothetical dispersion and explosion of high-pressurized hydrogen gas which leaks through a large scale break in piping and blows down to atmosphere. At first we investigated time history of distribution of gas concentration in order to comprehend the behaviour of the dispersion of high-pressurized hydrogen gas before explosion experiments. The explosion experiments were carried out with changing the time of ignition after the start of dispersion. Hydrogen gas with the initial pressure of 40MPa was released through a nozzle of 10mm diameter. Through these experiments it was clarified that the explosion power depends not only on the concentration and volume of hydrogen/air pre-mixture but also on the turbulence characteristics before ignition. To clarify the explosion mechanism the numerical computer simulation about the same experimental conditions was performed. The initial conditions such as hydrogen distribution and turbulent characteristics were given by the results of the atmospheric diffusion simulation. By the verification of these experiments the results of CFD were fully improved.
Testing of Hydrogen Safety Sensors in Service Simulated Conditions
Sep 2005
Publication
Reliable and effective sensors for the accurate detection of hydrogen concentrations in air are essential for the safe operation of fuel cells hydrogen fuelled systems (e.g. vehicles) and hydrogen production distribution and storage facilities. The present paper describes the activity on-going at JRC for the establishment of a facility that can be used for testing and validating the performance of hydrogen sensors under a range of conditions representative of those to be encountered in service. Potential aspects to be investigated in relation to the sensors performances are the influence of temperature humidity and pressure (simulating variations in altitude) the sensitivity to target gas and the cross sensitivity to other gases/vapours the reaction and recovery time and the sensors’ lifetime. The facility set up at JRC for the execution of these tests is described including the program for its commissioning. The results of a preliminary test are presented and discussed as an example.
Risk Assessment for Hydrogen Codes and Standards
Sep 2005
Publication
The development and promulgation of codes and standards are essential to establish a market-receptive environment for commercial hydrogen-based products and systems. The focus of the U.S. Department of Energy (DOE) is to conduct the research and development (R&D) needed to strengthen the scientific basis for technical requirements incorporated in national and international standards codes and regulations. In the U.S. the DOE and its industry partners have formed a Codes and Standards Tech Team (CSTT) to help guide the R&D. The CSTT has adopted an R&D Roadmap to achieve a substantial and verified database of the properties and behaviour of hydrogen and the performance characteristics of emerging hydrogen technology applications sufficient to enable the development of effective codes and standards for these applications. However to develop a more structured approach to the R&D described above the CSTT conducted a workshop on Risk Assessment for Hydrogen Codes and Standards in March 2005. The purpose of the workshop was to attain a consensus among invited experts on the protocols and data needed to address the development of risk-informed standards codes and regulations for hydrogen used as an energy carrier by consumers. Participants at the workshop identified and assessed requirements methodologies and applicability of risk assessment (RA) tools to develop a framework to conduct RA activities to address for example hydrogen fuel distribution delivery on-site storage and dispensing and hydrogen vehicle servicing and parking. The CSTT was particularly interested in obtaining the advice of RA experts and representatives of standards and model code developing organizations and industry on how data generated by R&D can be turned into information that is suitable for hydrogen codes and standards development. The paper reports on the results of the workshop and the RA activities that the DOE’s program on hydrogen safety codes and standards will undertake. These RA activities will help structure a comprehensive R&D effort that the DOE and its industry partners are undertaking to obtain the data and conduct the analysis and testing needed to establish a scientific and technical basis for hydrogen standards codes and regulations.
Numerical Modelling of Hydrogen Release, Mixture and Dispersion in Atmosphere.
Sep 2005
Publication
The method of the numerical solution of a three-dimensional problem of atmospheric release dispersion and explosion of gaseous admixtures is presented. It can be equally applied for gases of different densities including hydrogen. The system of simplified Navie-Stocks equations received by truncation of viscous members (Euler equations with source members) is used to obtain a numerical solution. The algorithm is based on explicit finite-difference Godunov scheme of arbitrary parameters breakup disintegration. To verify the developed model and computer system comparisons of numerical calculations with the published experimental data on the dispersion of methane and hydrocarbons explosions have been carried out. Computational experiments on evaporation and dispersion of spilled liquid hydrogen and released gaseous hydrogen at different wind speeds have been conducted. The largest mass concentrations of hydrogen between the bottom and top limits of flame propagation and cloud borders have been determined. The problem of the explosion of a hydrogen-air cloud of the complex form generated by large-scale spillage of liquid hydrogen and instant release of gaseous hydrogen has been numerically solved at low wind speed. Shock-wave loadings affecting the buildings located on a distance of 52 m from a hydrogen release place have been shown.
Characterization of Materials in Pressurized Hydrogen Under Cyclic Loading at Service Conditions in Hydrogen Powered Engines
Sep 2005
Publication
A new testing device for cyclic loading of specimens with a novel shape design is presented. The device was applied for investigations of fatigue of metallic specimens under pressurized hydrogen up to 300 bar at temperatures up to 200 °C. Main advantage of the specimen design is the very small amount of medium here hydrogen used for testing. This allows experiments with hazardous substances at lower safety level. Additionally no gasket for the load transmission is required. Woehler curves which show the influence of hydrogen on the fatigue behaviour of austenitic steel specimens at relevant service conditions in hydrogen powered engines are presented. Material and test conditions are in agreement with the cooperating industry.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
Safety Distances- Definition and Values
Sep 2005
Publication
In order to facilitate the introduction of a new technology as it is the utilization of hydrogen as an energy carrier development of safety codes and standards besides the conduction of demonstrative projects becomes a very important action to be realized. Useful tools of work could be the existing gaseous fuel codes (natural gas and propane) regulating the stationary and automotive applications. Some safety codes have been updated to include hydrogen but they have been based on criteria and/or data applicable for large industrial facilities making the realization of public hydrogen infrastructures prohibitive in terms of space. In order to solve the above mentioned problems others questions come out: how these safety distances have been defined? Which hazard events have been taken as reference for calculation? Is it possible to reduce the safety distances through an appropriate design of systems and components or through the predisposition of adequate mitigation measures? This paper presents an analysis of the definitions of “safety distances” and “hazardous locations” as well as a synoptic analysis of the different values in force in several States for hydrogen and natural gas. The above mentioned synoptic table will highlight the lacks and so some fields that need to be investigated in order to produce a suitable hydrogen standard.
Canadian Hydrogen Safety Program.
Sep 2005
Publication
This paper discusses the rationale structure and contents of the Canadian Hydrogen Safety Program developed by the Codes & Standards Working Group of the Canadian Transportation Fuel Cell Alliance consisting of representatives from industry academia government and regulators. The overall program objective is to facilitate acceptance of the products services and systems of the Canadian Hydrogen Industry by the Canadian Hydrogen Stakeholder Community to facilitate trade ensure fair insurance policies and rates ensure effective and efficient regulatory approval procedures and to ensure that the interests of the general public are accommodated. The Program consists of four projects including Comparative Quantitative Risk Assessment of Hydrogen and Compressed Natural Gas (CNG) Refuelling Stations; Computational Fluid Dynamics (CFD) Modelling Validation Calibration and Enhancement; Enhancement of Frequency and Probability Analysis and Consequence Analysis of Key Component Failures of Hydrogen Systems; and Fuel Cell Oxidant Outlet Hydrogen Sensor Project. The Program projects are tightly linked with the content of the IEA Task 19 Hydrogen Safety. The Program also includes extensive (destructive and non-destructive) testing of hydrogen components.
Simulation of Flame Acceleration and DDT in H2-air Mixture with a Flux Limiter Centred Method
Sep 2005
Publication
Flame acceleration and deflagration to detonation transition (DDT) is simulated with a numerical code based on a flux limiter centred method for hyperbolic differential equations. The energy source term is calculated by a Riemann solver for the in homogeneous Euler equations for the turbulent combustion and a two-step reaction model for hydrogen-air. The transport equations are filtered for large eddy simulation (LES) and the sub filter turbulence is modelled by a transport equation for the the turbulent kinetic energy. The flame tracking is handled by the G-equation for turbulent flames. Numerical results are compared to pressure histories from physical experiments. These experiments are performed in a closed circular 4m long tube with inner diameter of 0.107m. The tube is filled with hydrogen-air mixture at 1atm which is at rest when ignited. The ignition is located at one end of the tube. The tube is fitted with an obstruction with circular opening 1m down the tube from the ignition point. The obstruction has a blockage ratio of 0.92 and a thickness of 0.01m. The obstruction creates high pressures in the ignition end of the tube and very high gas velocities in and behind the obstruction opening. The flame experiences a detonation to deflagration transition (DDT) in the super sonic jet created by the obstruction. Pressure build-up in the ignition end of the tube is simulated with some discrepancies. The DDT in the supersonic jet is simulated but the position of the DDT is strongly dependent on the simulated pressure in the ignition end.
On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales
Sep 2005
Publication
The large eddy simulation (LES) model developed at the University of Ulster has been applied to simulate releases of 5.11 m3 liquefied hydrogen (LH2) in open atmosphere and gaseous hydrogen (GH2) in 20-m3 closed vessel. The simulations of a spill of liquefied hydrogen confirmed the advantage of LES application to reproduce experimentally observed eddy structure of hydrogen-air cloud. The inclination angle of simulated cloud is close to experimentally reported 300. The processes of two phase hydrogen release and heat transfer were simplified by inflow of gaseous hydrogen with temperature 20 K equal to boiling point. It is shown that difference in inflow conditions geometry and grid resolution affects simulation results. It is suggested that phenomenon of air condensationevaporation in the cloud in temperature range 20-90 K should be accounted for in future. The simulations reproduced well experimental data on GH2 release and transport in 20-m3 vessel during 250 min including a phenomenon of hydrogen concentration growth at the bottom of the vessel. Higher experimental hydrogen concentration at the bottom is assumed to be due to non-uniformity of temperature of vessel walls generating additional convection. The comparison of convective and diffusion terms in Navie-Stokes equations has revealed that a value of convective term is more than order of magnitude prevail over a value of turbulent diffusion term. It is assumed that the hydrogen transport to the bottom of the vessel is driven by the remaining chaotic flow velocities superimposed on stratified hydrogen concentration field. Further experiments and simulations with higher accuracy have to be performed to confirm this phenomenon. It has been demonstrated that hydrogen-air mixture became stratified in about 1 min after release was completed. However one-dimensional models are seen not capable to reproduce slow transport of hydrogen during long period of time characteristic for scenarios such as leakage in a garage.
No more items...