Safety
Comparison of Two Simplified Models Predictions with Experimental Measurements for Gas Release Within an Enclosure
Sep 2009
Publication
In this work the validity of simplified mathematical models for predicting dispersion of turbulent buoyant jet or plume within a confined volume is evaluated. In the framework of the HYSAFE Network of Excellence CEA performed experimental tests in a full-scale Garage facility in order to reproduce accidental gas leakages into an unventilated residential garage. The effects of release velocities diameters durations mass flow rates and flow regimes on the vertical distribution of the gas concentration are investigated. Experimental data confirm the formation for the release conditions of an almost well-mixed upper layer and a stratified lower layer. The comparison of the measurements and the model predictions shows that a good agreement is obtained for a relatively long-time gas discharge for jet like or plume like flow behaviour.
Real-gas Equations-of-State for the GASFLOW CFD Code
Sep 2011
Publication
GASFLOW is a finite-volume computer code that solves the time-dependent two-phase homogeneous equilibrium model compressible Navier–Stokes equations for multiple gas species with turbulence. The fluid-dynamics algorithm is coupled with conjugate heat and mass transfer models to represent walls floors ceilings and other internal structures to describe complex geometries such as those found in nuclear containments and facilities. Recent applications involve simulations of cryogenic hydrogen tanks at elevated pressures. These applications which often have thermodynamic conditions near the critical point require more accurate real-gas Equations-of-State (EoS) and transport properties than the standard ideal gas EoS and classical kinetic-theory transport properties. This paper describes the rigorous implementation of the generalized real-gas EoS into the GASFLOW CFD code as well as the specific implementation of respective real-gas models (Leachman's NIST hydrogen EoS a modified van der Waals EoS and a modified Nobel-Abel EoS); it also includes a logical testing procedure based upon a numerically exact benchmark problem. An example of GASFLOW simulations is presented for an ideal cryo-compressed hydrogen tank of the type utilized in fuel cell vehicles.
The Possibility of an Accidental Scenario for Marine Transportation of Fuel Cell Vehicle-Hydrogen Releases from TPRD by Radiant Heat From Lower Deck
Oct 2015
Publication
In case fires break out on the lower deck of a car carrier ship or a ferry the fuel cell vehicles (FCVs) parked on the upper deck may be exposed to radiant heat from the lower deck. Assuming that the thermal pressure relief device (TPRD) of an FCV hydrogen cylinder is activated by the radiant heat without the presence of flames hydrogen gas will be released by TPRD to form combustible air-fuel mixtures in the vicinity. To investigate the possibility of this accident scenario the present study investigated the relationship between radiant heat and TPRD activation time and evaluated the possibility of radiant heat causing hydrogen releases by TPRD activation under the condition of deck temperature reaching the spontaneous ignition level of the tires and other automotive parts. It was found: a) the tires as well as polypropylene and other plastic parts underwent spontaneous ignition before TPRD was activated by radiant heat and b) when finally TPRD was activated the hydrogen releases were rapidly burned by the flames of the tires and plastic parts on fire. Consequently it was concluded that the explosion of air-fuel mixtures assumed in the accident scenario does not occur in the real world.
Numerical Investigation of Hydrogen Dispersion into Air
Sep 2009
Publication
Computational fluid dynamics (CFD) is used to numerically solve the sudden release of hydrogen from a high pressure tank (up to 70MPa) into air. High pressure tanks increase the risk of failure of the joints and pipes connected to the tank which results in release of Hydrogen. The supersonic flow caused by high pressure ratio of reservoir to ambient generates a strong Mach disk. A three dimensional in-house code is developed to simulate the flow. High pressure Hydrogen requires a real gas law because it deviates from ideal gas law. Firstly Beattie-Bridgeman and Abel-Noble real gas equation of states are applied to simulate the release of hydrogen in hydrogen. Then Abel-Noble is implied to simulate the release of hydrogen in air. Beattie-Bridgeman has stability problems in the case of hydrogen in air. A transport equation is used to solve the concentration of Hydrogen-air mixture. The code is second order accurate in space and first order in time and uses a modified Van Leer limiter. The fast release of Hydrogen from a small rupture needs a very small mesh therefore parallel computation is applied to overcome memory problems and to decrease the solution time. The high pressure ratio of the reservoir to ambient causes a very fast release which is accurately modelled by the code and all the shocks and Mach disk happening are observed in the results. The results show that the difference between real gas and ideal gas models cannot be ignored.
Flammability Limits and Laminar Flame Speed of Hydrogen–air Mixtures at Sub-atmospheric Pressures
Sep 2011
Publication
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length overall reaction order and activation energy was done from experimental data on laminar burning velocity.
Ignition of H2-NO2/N2O4 Mixtures Under Volumetric Expansion Conditions
Sep 2019
Publication
The competition between chemical energy release rate and volumetric expansion related to shock wave’s dynamics is of primary importance for a number of situations relevant to explosion safety. While studies have been performed on this topic over the years they have been limited to mixtures with monotonous energy release profile. In the present study the ignition of H2-NO2/N2O4 mixtures which exhibit a single-step or a two-step energy release rate profile depending on the equivalence ratio has been investigated under volumetric expansion conditions. The rate of expansion has been calculated using the Taylor-Sedov solution and accounted for using 0-D numerical simulations with time-dependent specific volume. The results were analyzed in terms of a Damkohler number defined as the ratio of the expansion to ignition times. For mixtures with non-monotonous energy release rate profiles two critical Damkohler numbers can be identified one for each of the steps of energy release. It was also shown that the fluid element which is the most likely to ignite corresponds to the one behind a shock propagating at the Chapman-Jouguet velocity. The thermo-chemical dynamics have been analyzed about the critical conditions using energy release rate per reaction rate of production and sensitivity analyses.
Wide Area and Distributed Hydrogen Sensors
Sep 2009
Publication
Recent advances in optical sensors show promise for the development of new wide area monitoring and distributed optical network hydrogen detection systems. Optical hydrogen sensing technologies reviewed here are: 1) open path Raman scattering systems 2) back scattering from chemically treated solid polymer matrix optical fiber sensor cladding; and 3) schlieren and shearing interferometry imaging. Ultrasonic sensors for hydrogen release detection are also reviewed. The development status of these technologies and their demonstrated results in sensor path length low hydrogen concentration detection ability and response times are described and compared to the corresponding status of hydrogen spot sensor network technologies.
Experimental Study of the Spontaneous Ignition of Partly Confined Hydrogen Jets
Sep 2011
Publication
The current study addresses the spontaneous ignition of hydrogen jets released into a confined oxidizer environment experimentally. The experiments are conducted in a shock tube where hydrogen gas is shock-accelerated into oxygen across a perforated plate. The operating conditions and hole dimension of the plate were varied in order to identify different flow field and ignition scenarios. Time resolved Schlieren visualization permitted to reconstruct the gasdynamic evolution of the release and different shock interactions. Time resolved self-luminosity records permitted us to record whether ignition was achieved and also to record the dimension of the turbulent mixing layer. The ignition limits determined experimentally in good agreement with the 1D diffusion ignition model proposed by Maxwell and Radulescu. Nevertheless the experiments demonstrated that the mixing layer is two to three orders of magnitude thicker than predicted by molecular diffusion which can be attributed to the observed mixing layer instabilities and shock-mixing layer interactions which provide a much more intense mixing rate than anticipated from previous and current numerical predictions. These observations further clarify why releases through partly confined geometries are more conducive to jet ignition of the jets.
Simulation of DDT in Hydrogen-Air Behind a Single Obstacle
Sep 2011
Publication
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments and the pressure records indicated that there may have been more. Furthermore local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation. The numerical resolution was 0.5 mm per square cell and further details of the combustion model used are provided in the paper.
Ignition Experiments of Hydrogen Mixtures by Different Methods and Description of the DRDC Test Facilities
Sep 2009
Publication
The paper will present results of hydrogen/oxygen mixtures ignited by using electric sparks electrostatic discharges a heating element and a flame. Measurements of the lower flammability limit (LFL) was done for each ignition method. The hydrogen mixtures of different concentrations were ignited at the bottom of a combustion chamber leading to an upward propagation of the resulting flame. At some level of concentration the combustion was partial due to the limited upward propagation. The complete combustion of the whole mixture was observed at concentration limits higher than the known LFL of 4% vol. for hydrogen in air. The paper will describe the test facilities and the resulting ignition probabilities for different ignition methods.
Modeling of the Flame Acceleration in Flat Layer for Hydrogen-air Mixtures
Sep 2011
Publication
The flame propagation regimes for the stoichiometric hydrogen-air mixtures in an obstructed semiconfined flat layer have been numerically investigated in this paper. Conditions defining fast or sonic propagation regime were established as a function of the main dimensions characterizing the system and the layout of the obstacles. It was found that the major dependencies were the following: the thickness of the layer of H2-air mixture the blockage ratio and the distance between obstacles and the obstacle size. A parametric study was performed to determine the combination of the above variables prone to produce strong combustions. Finally a criterion that separates experiments resulting in slow subsonic from fast sonic propagations regimes was proposed.
Comparison of NFPA and ISO Approaches for Evaluating Separation Distances
Sep 2011
Publication
The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk code and standard development organizations (SDOs) are utilizing risk-informed concepts in developing hydrogen codes and standards. Two SDOs the National Fire Protection Association (NFPA) and the International Organization for Standardization (ISO) through its Technical Committee (TC) 197 on hydrogen technologies have been developing standards for gaseous hydrogen facilities that specify the facilities have certain safety features use equipment made of material suitable for a hydrogen environment and have specified separation distances. Under Department of Energy funding Sandia National Laboratories (SNL) has been supporting efforts by both of these SDOs to develop the separation distances included in their respective standards. Important goals in these efforts are to use a defensible science-based approach to establish these requirements and to the extent possible harmonize the requirements. International harmonization of regulations codes and standards is critical for enabling global market penetration of hydrogen and fuel cell technologies.
Regulations and Research on RC&S for Hydrogen Storage Relevant To Transport and Vehicle Issues with Special Focus on Composite Containments
Sep 2011
Publication
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations codes and standards.<br/>Based on this review origins of different regulations for the storage of hydrogen as dangerous good and as propellant for vehicles will be examined. Both categories started out using steel and sometimes aluminium as cylinder material. With composite materials becoming more common a new problem emerged: vital input for regulations on composite pressure systems was initially derived from decades of experience with steel cylinders. As a result both regulatory fields suffer somewhat from this common basis. Only recent developments regarding requirements for composite cylinders have begun to go more and more separate ways. Thus these differences lead to some shortcomings in regulation with respect to composite storage systems.<br/>In principle in spite of separate development these deficits are in both applications very much the same: there are uncertainties in the prediction of safe service life in retesting procedures of composite cylinders and in their intervals. Hence different aspects of uncertainties and relevant approaches to solutions will be explained.
Study of Potential Leakage on Several Stressed Fittings for Hydrogen Pressures Up To 700 Bar
Sep 2011
Publication
In order to improve risk analyses and influence the design of the future H2 systems an experimental study on “real” leaks qualification and quantification was performed. In H2 energy applications fittings appeared as a significant leakage potential and subsequently explosion and flame hazards. Thus as a part of the “Horizon Hydrogène Energie” French program four kinds of commercial fittings usually employed on H2 systems were tested thanks to a new high pressure test bench – designed setup and operated by INERIS – allowing experiments to be led for H2 pressures until 700 bar. The fittings underwent defined stresses representative of H2 systems lifetime and beyond. The associated leaks – when existing – are characterized in terms of flow rate.
Hydrogen Tank Filling Experiments at the JRC-IE Gastef Facility
Sep 2011
Publication
Storage of gases under pressure including hydrogen is a well-known technique. However the use in vehicles of hydrogen at pressures much higher than those applicable in natural gas cars still requires safety and performance studies with respect to the verification of the existing standards and regulations. The JRC-IE has developed a facility GasTeF for carrying out tests on full-scale high pressure vehicle’s tanks for hydrogen or natural gas. Typical tests performed in GasTeF are static permeation measurements of the storage system and hydrogen cycling in which tanks are fast filled and slowly emptied using hydrogen pressurised up to 70 MPa for at least 1000 times according to the requirements of the EU regulation on type-approval of hydrogen-powered motor vehicles. Moreover the temperature evolution of the gas inside and outside the tank is monitored using an ad-hoc designed thermocouples array system. This paper reports the first experimental results on the temperature distribution during hydrogen cycling tests.
Simulation of High-pressure Liquid Hydrogen Releases
Sep 2011
Publication
Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behaviour of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen–air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG).
Ignition and Heat Radiation of Cryogenic Hydrogen Jets
Sep 2011
Publication
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature velocity turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.
Ignition of Flammable Hydrogen & Air Mixtures by Controlled Glancing Impacts in Nuclear Waste Decommissioning
Sep 2013
Publication
Conditions are examined under which mechanical stimuli produced by striking controlled blows can result in sparking and ignition of hydrogen in air mixtures. The investigation principally concerns magnesium thermite reaction as the ignition source and focuses on the conditions and thermomechanical parameters that are involved in determining the probability of ignition. It is concluded that the notion of using the kinetic energy of impact as the main criterion in determining whether an ignition event is likely or not is much less useful than considering the parameters which determine the maximum temperature produced in a mechanical stimuli event. The most influential parameter in determining ignition frequency or probability is the velocity of sliding movement during mechanical stimuli. It is also clear that the kinetic energy of a moving hammer head is of lesser importance than the normal force which is applied during contact. This explains the apparent discrepancy in previous studies between the minimum kinetic energy thought to be necessary to allow thermite sparking and gas ignition to occur with drop weight impacts and glancing blow impacts. In any analysis of the likelihood of mechanical stimuli to cause ignition the maximum surface temperature generated should be determined and considered in relation to the temperatures that would be required to initiate hot surface reactions sufficient to cause sparking and ignition.
Experimental Investigation of Flame and Pressure Dynamics after Spontaneous Ignition in Tube Geometry
Sep 2013
Publication
Spontaneous ignition processes due to high pressure hydrogen releases into air are known phenomena. The sudden expansion of pressurized hydrogen into a pipe filled with ambient air can lead to a spontaneous ignition with a jet fire. This paper presents results of an experimental investigation of the visible flame propagation and pressure measurements in 4 mm extension tubes of up to 1 m length attached to a bulk vessel by a rupture disc. Transparent glass tubes for visual observation and shock wave pressure sensors are used in this study. The effect of the extension tube length on the development of a stable jet fire after a spontaneous ignition is discussed.
Hydrogen Emergency Response Training for First Responders
Sep 2011
Publication
The U.S. Department of Energy supports the implementation of hydrogen fuel cell technologies by providing hydrogen safety and emergency response training to first responders. A collaboration was formed to develop and deliver a one-day course that uses a mobile fuel cell vehicle (FCV) burn prop designed and built by Kidde Fire Trainers. This paper describes the development of the training curriculum including the design and operation of the FCV prop; describes the successful delivery of this course to over 300 participants at three training centers in California; and discusses feedback and observations received on the course. Photographs and video clips of the training sessions will be presented.
No more items...