Regulations, Codes & Standards (RCS)
Development of a Hydrogen Supplement for use with IGEM/SR/25
Nov 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
Preparation of Gas Standards for Quality Assurance of Hydrogen Fuel
May 2022
Publication
This study has developed traceable standards for evaluating impurities in hydrogen fuel according to ISO 14687. Impurities in raw H2 including sub mmol/mol levels of CO CO2 and CH4 were analyzed using multiple detectors while avoiding contamination. The gravimetric standards prepared included mixtures of the following nominal concentrations: 1 2 3e5 8e11 17e23 and 47e65 mmol/mol for CO2 CH4 and CO O2 N2 Ar and He respectively. The expanded uncertainty ranges were 0.8% for Ar N2 and He 1% for CH4 and CO and 2% for CO2 and O2. These standards were stable while that for CO varied by only 0.5% during a time span of three years. The prepared standards are useful for evaluating the compliance of H2 fuel in service stations with ISO 14687 quality requirements.
Trace Level Analysis of Reactive ISO 14687 Impurities in Hydrogen Fuel Using Laser-based Spectroscopic Detection Methods
Oct 2020
Publication
Hydrogen fuelled vehicles can play a key role in the decarbonisation of transport and reducing emissions. To ensure the durability of fuel cells a specification has been developed (ISO 14687) setting upper limits to the amount fraction of a series of impurities. Demonstrating conformity with this standard requires demonstrating by measurement that the actual levels of the impurities are below the thresholds. Currently the industry is unable to do so for measurement standards and sensitive dedicated analytical methods are lacking. In this work we report on the development of such measurement standards and methods for four reactive components: formaldehyde formic acid hydrogen chloride and hydrogen fluoride. The primary measurement standard is based on permeation and the analytical methods on highly sensitive and selective laser-based spectroscopic techniques. Relative expanded uncertainties at the ISO 14687 threshold level in hydrogen of 4% (formaldehyde) 8% (formic acid) 5% (hydrogen chloride) and 8% (hydrogen fluoride) have been achieved.
Fuel Cells and Hydrogen Observatory Standards Report
Sep 2021
Publication
Purpose: The Standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized in order to enhance ease of access and usability. The development of sector-relevant standards facilitates and enhances economies of scale interoperability comparability safety and many other issues. Scope: The database presents European and International standards. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. The report spans January 2019 – December 2019. Key Findings: The development of sector relevant standards on an international level continued to grow in 2019 on European level many standards are still in the process of being drafted. The recently established CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin.
Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices
Jun 2009
Publication
In this paper we review our recent results in developing gas sensors for hydrogen using various device structures including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio which will improve sensitivity and because they operate at low current levels will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure high temperature operation and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity recoverability and reliability are presented. Also reported are demonstrations of detection of other gases including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.
IGEM/TD/13 Edition 3 Supplement 1 - Pressure Regulating Installations for Hydrogen at Pressures Exceeding 7 Bar
Nov 2021
Publication
IGEM/TD/13 Standard applies to the safe design construction inspection testing operation and maintenance of pressure regulating installations (PRIs) in accordance with current knowledge and operational experience.
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations
You can purchase the standard here
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations
- with an upstream maximum operating pressure (MOP) not greater than 100 bar
- with an outlet pressure greater than or equal to 7 bar
- for use with Hydrogen or NG/H blends with a Hydrogen content greater than 10 %
- operating with a temperature range between -20°C and 120°C.
You can purchase the standard here
IGEM/TD/1 Edition 6 Supplement 2 - High Pressure Hydrogen Pipelines
Nov 2021
Publication
This Supplement gives additional requirements and qualifications for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) pipelines to Hydrogen service. For the purposes of this document any NG/H blend above 10% MOL is considered to be an equivalence to 100% hydrogen. For blends below 10% MOL there is no evidence to confirm that blends containing up to 10 mol.% hydrogen do not cause material degradation but it is considered that the risk is low.
This Supplement covers the design construction inspection testing operation and maintenance of steel pipelines and certain associated installations in Hydrogen service and the repurposing of NG pipelines to Hydrogen service at maximum operating pressure (MOP) exceeding 7 bar and not exceeding 137.9 bar.
This standard can be purchased here
This Supplement covers the design construction inspection testing operation and maintenance of steel pipelines and certain associated installations in Hydrogen service and the repurposing of NG pipelines to Hydrogen service at maximum operating pressure (MOP) exceeding 7 bar and not exceeding 137.9 bar.
This standard can be purchased here
Notes on the Development of the Hydrogen Supplement to IGEM/TD13 > 7 bar
Nov 2021
Publication
IGEM/TD/13 Standard applies to the safe design construction inspection testing operation and maintenance of pressure regulating installations (PRIs) in accordance with current knowledge and operational experience.
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations:
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations:
- with an upstream maximum operating pressure (MOP) not greater than 100 bar
- with an outlet pressure greater than or equal to 7 bar
- for use with Hydrogen or NG/H blends with a Hydrogen content greater than 10 %
- operating with a temperature range between -20°C and 120°C.
Renewable Hydrogen Standards, Certifications, and Labels: A State-of-the-art Review from a Sustainability Systems Governance Perspective
Feb 2024
Publication
A range of existing and newly developed hydrogen standards certification and labelling (SCL) schemes aim to promote the role of ‘renewable’ ‘clean’ or ‘green’ hydrogen in decarbonising energy transitions. This paper analyses a sample of these SCLs to assess their role in the scaling up of renewable hydrogen and its derivatives. To analyse these hydrogen SCLs we embellish a novel conceptual framework that brings together Sustainability Systems Thinking and Governance (SSG) literatures. The results reveal noteworthy scheme differences in motivation approach criteria and governance; highlighting the complex interconnected and dynamic reality within which energy systems are embedded. We consider whether the sustainable utilisation of renewable hydrogen is well-served by the proliferation of SCLs and recommend an SSG-informed approach. An SSG approach will better promote collaboration towards an authoritative global multistakeholder compromise on hydrogen certification that balances economic considerations with social and environmental dimensions.
Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia
Feb 2021
Publication
As a party to the United Nation Framework Convention on Climate Change (UNFCCC) Malaysia is committed to reduce its greenhouse gases (GHG) emission intensity of gross domestic product (GDP) by 45% by 2030 relative to the emission intensity of GDP in 2005. One of the ways for Malaysia to reduce its GHG emission is to diversify its energy mix and to include hydrogen fuel cell (HFC) in its energy mix. Since Malaysia does not have any legal framework for HFCs it is best to see how other countries are doing and how can it be replicated in Malaysia. This paper reviews the HFC legal framework in the United States Germany and South Korea as these countries are among those that have advanced themselves in this technology. The researchers conducted a library-based research and obtained the related materials from online databases and public domain. Based on the reviews the researchers find that these countries have a proper legal framework in place for HFC. With these legal frameworks funds will be available to support research and development as well as demonstration of HFC. Thus it is recommended that Malaysia to have a proper HFC legal framework in place in order to support the development of the HFC industry.
No more items...