Production & Supply Chain
Experimental Study for Thermal Methane Cracking Reaction to Generate Very Pur Hydrogen in Small or Medium Scales by Using Regenrative Reactor
Sep 2022
Publication
Non-catalytic thermal methane cracking (TMC) is an alternative for hydrogen manufacturing and traditional commercial processes in small-scale hydrogen generation. Supplying the high-level temperatures (850–1800°C) inside the reactors and reactor blockages are two fundamental challenges for developing this technology on an industrial scale (Mahdi Yousefi and Donne 2021). A regenerative reactor could be a part of a solution to overcome these obstacles. This study conducted an experimental study in a regenerative reactor environment between 850 and 1170°C to collect the conversion data and investigate the reactor efficiency for TMC processes. The results revealed that the storage medium was a bed for carbon deposition and successfully supplied the reaction’s heat with more than 99.7% hydrogen yield (at more than 1150°C). Results also indicated that the reaction rate at the beginning of the reactor is much higher and the temperature dependence in the early stages of the reaction is considerably higher. However after reaching a particular concentration of Hydrogen at each temperature the influence of temperature on the reaction rate decreases and is almost constant. The type of produced carbon in the storage medium and its auto-catalytic effect on the reactions were also investigated. Results showed that carbon black had been mostly formed but in different sizes from 100 to 2000 nm. Increasing the reactor temperature decreased the size of the generated carbon. Pre-produced carbon in the reactor did not affect the production rate and is almost negligible at more than 850°C.
System-friendly Process Design: Optimizing Blue Hydrogen Production for Future Energy Systems
Aug 2022
Publication
While the effects of ongoing cost reductions in renewables batteries and electrolyzers on future energy systems have been extensively investigated the effects of significant advances in CO2 capture and storage (CCS) technologies have received much less attention. This research gap is addressed via a long-term (2050) energy system model loosely based on Germany yielding four main findings. First CCS-enabled pathways offer the greatest benefits in the hydrogen sector where hydrogen prices can be reduced by two-thirds relative to a scenario without CCS. Second advanced blue hydrogen technologies can reduce total system costs by 12% and enable negative CO2 emissions due to higher efficiencies and CO2 capture ratios. Third co-gasification of coal and biomass emerged as an important enabler of these promising results allowing efficient exploitation of limited biomass resources to achieve negative emissions and limit the dependence on imported natural gas. Finally CCS decarbonization pathways can practically and economically incorporate substantial shares of renewable energy to reduce fossil fuel dependence. Such diversification of primary energy inputs increases system resilience to the broad range of socio-techno-economic challenges facing the energy transition. In conclusion balanced blue-green pathways offer many benefits and deserve serious consideration in the global decarbonization effort.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
Opportunities for Flexible Electricity Loads such as Hydrogen Production from Curtailed Generation
Jun 2021
Publication
Variable low-cost low-carbon electricity that would otherwise be curtailed may provide a substantial economic opportunity for entities that can flexibly adapt their electricity consumption. We used historical hourly weather data over the contiguous U.S. to model the characteristics of least-cost electricity systems dominated by variable renewable generation that powered firm and flexible electricity demands (loads). Scenarios evaluated included variable wind and solar power battery storage and dispatchable natural gas with carbon capture and storage with electrolytic hydrogen representing a prototypical flexible load. When flexible loads were small excess generation capacity was available during most hours allowing flexible loads to operate at high capacity factors. Expanding the flexible loads allowed the least-cost systems to more fully utilize the generation capacity built to supply firm loads and thus reduced the average cost of delivered electricity. The macro-scale energy model indicated that variable renewable electricity systems optimized to supply firm loads at current costs could supply 25% or more additional flexible load with minimal capacity expansion while resulting in reduced average electricity costs (10% or less capacity expansion and 10% to 20% reduction in costs in our modeled scenarios). These results indicate that adding flexible loads to electricity systems will likely allow more full utilization of generation assets across a wide range of system architectures thus providing new energy services with infrastructure that is already needed to supply firm electricity loads.
Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)
Jan 2023
Publication
Over the past decade energy demand has witnessed a drastic increase mainly due to huge development in the industry sector and growing populations. This has led to the global utilization of renewable energy resources and technologies to meet this high demand as fossil fuels are bound to end and are causing harm to the environment. Solar PV (photovoltaic) systems are a renewable energy technology that allows the utilization of solar energy directly from the sun to meet electricity demands. Solar PV has the potential to create a reliable clean and stable energy systems for the future. This paper discusses the different types and generations of solar PV technologies available as well as several important applications of solar PV systems which are “Large-Scale Solar PV” “Residential Solar PV” “Green Hydrogen” “Water Desalination” and “Transportation”. This paper also provides research on the number of solar papers and their applications that relate to the Sustainable Development Goals (SDGs) in the years between 2011 and 2021. A total of 126513 papers were analyzed. The results show that 72% of these papers are within SDG 7: Affordable and Clean Energy. This shows that there is a lack of research in solar energy regarding the SDGs especially SDG 1: No Poverty SDG 4: Quality Education SDG 5: Gender Equality SDG 9: Industry Innovation and Infrastructure SDG 10: Reduced Inequality and SDG 16: Peace Justice and Strong Institutions. More research is needed in these fields to create a sustainable world with solar PV technologies.
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e. activation ohmic concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally from the efficiency calculation it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions however these processes are assumed relatively fast. For this reason the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
Everything About Hydrogen Podcast: ITM Power
Sep 2019
Publication
On this weeks show we discuss with Graham Cooley the CEO of ITM Power how his company has expanded from a research company on AIM in the early 2000’s to one of the largest electrolyser manufacturers in the world. On the show we also ask Graham to talk about how the hydrogen market has evolved where he sees the potential growth trajectory for the industry and how ITM sees its role within this space.
The podcast can be found on their website
The podcast can be found on their website
Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming
Dec 2021
Publication
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions our environment conditions might be affected necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore this study analyzed and examined it critically. In this study two different routes for the production of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions energy efficiency energy consumption and environmental and economic impacts. In this study the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8% which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen which was almost 9% lower than that of Case I. In terms of the environmental analysis both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity the hydrogen could be used for production of other products further downstream or for industrial applications.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
Techno-economic Assessment of a Chemical Looping Splitting System for H2 and CO Co-generation
Feb 2022
Publication
The natural gas (NG) reforming is currently one of the low-cost methods for hydrogen production. However the mixture of H2 and CO2 in the produced gas inevitably includes CO2 and necessitates the costly CO2 separation. In this work a novel double chemical looping involving both combustion (CLC) and sorption-enhanced reforming (SE-CLR) was proposed towards the co-production of H2 and CO (CLC-SECLRHC) in two separated streams. CLC provides reactant CO2 and energy to feed SECLRHC which generates hydrogen in a higher purity as well as the calcium cycle to generate CO in a higher purity. Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness. Studies revealed that the optimal molar ratios of oxygen carrier (OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0 respectively. The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs. The desired temperatures of fuel reactor (FR) and reforming reactor (RR) should be 850 °C and 600 °C respectively. The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor and the NG split ratio for reforming and combustion was 0.53:0.47. Under the optimal conditions the H2 purity the H2 yield and the CH4 conversion efficiency were 98.76% 2.31 mol mol-1 and 97.96% respectively. The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45% in terms of the total hydrogen in both steam and NG. The exergy efficiency of the overall process reached 70.28%. In terms of the conventional plant capacity (75×103 t y-1 ) and current raw materials price (2500 $ t-1 ) the payback period can be 6.2 years and the IRR would be 11.5 demonstrating an economically feasible and risk resistant capability.
Everything About Hydrogen Podcast: Scaling Clean Hydrogen Production
Dec 2021
Publication
Today we are joined by our good friends from Enapter. The company is a leader in the clean hydrogen sector focused on AEM electrolyzer technology and innovative software solutions that make it possible to rapidly deploy and scale hydrogen production assets. For those who follow the hydrogen sector regularly it’s been hard not to hear Enapter-related news in 2021 and its impressive trajectory as they have gone public announced the plans for a brand new production facility in Germany (on which they have now begun construction) and most recently the announcement that Enapter was selected as the winner of the prestigious Earthshot prize. To do that we are absolutely delighted to have with us all the way from his home base in Thailand Thomas Chrometzka Chief Strategy Officer at Enapter and one of the people that we enjoy having on the show so much that we have brought him back again to fill us in on what he and Enapter are up to and what they have planned for the future of hydrogen.
The podcast can be found on their website
The podcast can be found on their website
Analysis of Control-System Strategy and Design of a Small Modular Reactor with Different Working Fluids for Electricity and Hydrogen Production as Part of a Decentralised Mini Grid
Mar 2022
Publication
Hydrogen is increasingly being viewed as a significant fuel for future industrial processes as it offers pathways to zero emission. The UK sees hydrogen as one of a handful of low-carbon solutions for transition to net zero. Currently most hydrogen production is from steam reforming of natural gas or coal gasification both of which involve the release of carbon dioxide. Hydrogen production from mini decentralised grids via a thermochemical process coupled with electricity production could offer favourable economics for small modular reactors (SMRs) whereby demand or grid management as a solution would include redirecting the power for hydrogen production when electricity demand is low. It also offers a clean-energy alternative to the aforementioned means. SMRs could offer favourable economics due to their flexible power system as part of the dual-output function. This study objective is to investigate the critical performance parameters associated with the nuclear power plant (NPP) the cycle working fluids and control-system design for switching between electricity and hydrogen demand to support delivery as part of a mini grid system for a reactor power delivering up to approximately 600 MWth power. The novelty of the work is in the holistic parametric analysis undertaken using a novel in-house tool which analyses the NPP using different working fluids with a control function bolt-on at the offtake for hydrogen production. The results indicate that the flow conditions at the offtake can be maintained. The choice of working fluids affects the pressure component. However the recuperator and heat-exchanger effectiveness are considered as efficiency-limiting factors for hydrogen production and electricity generation. As such the benefit of high-technology heat exchangers cannot be underestimated. This is also true when deciding on the thermochemical process to bolt onto the plant. The temperature of the gas at the end of the pipeline should also be considered to ensure that the minimum temperature-requirement status for hydrogen production is me
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Building an Integrated Clean Hydrogen Infrastructure from the Ground Up
Nov 2021
Publication
On this episode of EAH we are joined by Andrew Clennett Co-Founder and CEO of Hiringa Energy. Hiringa is headquartered in New Zealand where they are building clean hydrogen production projects using renewable energy to displace the use of fossil fuels for transport and industrial feedstock across New Zealand. We are delighted to have Andrew with us today to speak about how Hiringa are using hydrogen to change the energy and carbon landscape of New Zealand.
This podcast can be found on their website
This podcast can be found on their website
A Review of the Use of Electrolytic Cells for Energy and Environmental Applications
Feb 2023
Publication
There is a significant push to reduce carbon dioxide (CO2) emissions and develop low-cost fuels from renewable sources to replace fossil fuels in applications such as energy production. As a result CO2 conversion has gained widespread attention as it can reduce the accumulation of CO2 in the atmosphere and produce fuels and valuable industrial chemicals including carbon monoxide alcohols and hydrocarbons. At the same time finding ways to store energy in batteries or energy carriers such as hydrogen (H2) is essential. Water electrolysis is a powerful technology for producing high-purity H2 with negligible emission of greenhouse gases and compatibility with renewable energy sources. Additionally the electrolysis of organic compounds such as lignin is a promising method for localised H2 production as it requires lower cell voltages than conventional water electrolysis. Industrial wastewater can be employed in those organic electrolysis systems due to their high organic content decreasing industrial pollution through wastewater disposal. Electrocoagulation indirect electrochemical oxidation anodic oxidation and electro-Fenton are effective electrochemical methods for treating industrial wastewater. Furthermore bioenergy technology possesses a remarkable potential for producing H2 and other value-added chemicals (e.g. methane formic acid hydrogen peroxide) along with wastewater treatment. This paper comprehensively reviews these approaches by analysing the literature in the period 2012–2022 pointing out the high potential of using electrolytic cells for energy and environmental applications.
Exergetic Sustainability Comparison of Turquoise Hydrogen Conversion to Low-carbon Fuels
Nov 2022
Publication
Turquoise hydrogen is produced from methane cracking a cleaner alternative to steam methane reforming. This study looks at two proposed systems based on solar methane cracking for low-carbon fuel production. The systems utilize different pathways to convert the hydrogen into a suitable form for transportation and utilize the carbon solid by-product. A direct carbon fuel cell is integrated to utilize the carbon and capture the CO2 emissions. The CO2 generated is utilized for fuel production using CO2 hydrogenation or co-electrolysis. An advanced exergetic analysis is conducted on these systems using Aspen plus simulations of the process. The exergetic efficiency waste exergy ratio exergy destruction ratio exergy recoverability ratio environmental effect factor and the exergetic sustainability index were determined for each system and the subsystems. Solar methane cracking was found to have an environmental effect factor of 0.08 and an exergetic sustainability index of 12.27.
Design and Analysis of a New Renewable-Nuclear Hybrid Energy System for Production of Hydrogen, Fresh Water and Power
Nov 2021
Publication
This paper investigates an integrated system where solar energy system (with 75MWp bifacial PV arrays) and nuclear power plant (with 2×10MWt HTR-10 type pebble bed reactors) are hybridized and integrated with a 72MWe capacity high-temperature solid oxide electrolysis (SOE) unit to produce hydrogen fresh water and electrical power. Bifacial PV plant is integrated to system for supplying electricity with a low LCOE and zero-carbon system. A Rankine cycle is integrated to generate power from the steam that generated from nuclear heat. According to the available irradiance; the steam is diverted between steam turbine and high-temperature electrolyzer for hydrogen and power generation. Multi-effect desalination unit is integrated to exploit the excess heat to generate fresh water. A system performance assessment is carried out by energy and exergy efficiencies thermodynamically. The bifacial PV plant is analyzed in six selected latitudes in order to assess the feasibility and applicability of the system. Numerous time-dependent analyses are carried out to study the effects of varying inputs such as solar radiation intensity. For 20MWt nuclear 75MWp solar capacity; hydrogen productions are found to be between 0.036 and 0.562kg/s. Among the Northern Hemisphere latitudes the peak daily hydrogen production rate is expected to reach 25.9 tons of hydrogen per day for the 75 °N case mostly with the influence of low temperature and high albedo. The pitch distance change is increased the hydrogen production rate by 28% between 3 m and 7 m tracker spacing. The overall system energy efficiency is obtained between 21.8% and 24.2% where the overall system exergy efficiency is found between 18.6% and 21.1% under dynamic conditions for the 45°N latitude case.
Hydrogen Production: State of Technology
May 2020
Publication
Presently hydrogen is for ~50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels to produce ammonia and other fertilizers (viz. urea) to upgrade heavy oils (like oil sands) and to produce other chemicals. There are several ways to produce H2 each with limitations and potential such as steam reforming electrolysis thermal and thermo-chemical water splitting dark and photonic fermentation; gasification and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high "green" potential.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives
Jan 2023
Publication
Green hydrogen production i.e. produced on a CO2 -neutral basis through the electrolysis of water employing renewable electricity has attracted increasing attention. The electricity required is generated from Renewable Energy Sources (RES) for example wind energy hydropower or solar energy. Since neither the process of production nor the end products of H2 and O2 are harmful to the environment green hydrogen is climate neutral. Developing electrolysis technology is therefore a research topic to follow. Anion Exchange Membrane (AEM) Water Electrolysis (WE) is an innovative technology that couples the advantages of the more mature technologies of Proton Exchange Membrane (PEM) and conventional alkaline electrolysis with the potential to eliminate the drawbacks of both. AEMWE technology is in an evolutionary stage and involves more investigation on several research topics such as membrane and catalyst development and stability as well as alternative feeding solutions that do not compromise the availability of fresh water. These topics are addressed in this paper mentioning the state-of-the-art materials new promising ones and providing future research directions to improve AEMWE towards a most mature technology.
Technical and Economic Performance Assessment of Blue Hydrogen Production Using New Configuration Through Modelling and Simulation
Mar 2024
Publication
Steam methane reforming (SMR) is the dominant process for hydrogen production which produce large amount of carbon dioxide (CO2) as a by-product. To address concerns about carbon emissions there is an increasing focus on blue hydrogen to mitigate carbon emissions during hydrogen production. However the commercialization of blue hydrogen production (BHP) is hindered by the challenges of high cost and energy consumption. This study proposes a new configuration to address these challenges which is characterized by: (a) the use of piperazine (PZ) as a solvent which has a high CO2 absorption efficiency; (b) a more efficient heat exchange configuration which recovers the waste exergy from flue gas; (c) the advanced flash stripper (AFS) was adopted to reduce the capital cost due to its simpler stripper configuration. In addition the technical and economic performance of the proposed energy and cost-saving blue hydrogen production (ECSB) process is investigated and compared with the standard SMR process. The detailed models of the SMR process and the post-combustion carbon capture (PCC) process were developed and integrated in Aspen plus® V11. The results of the technical analysis showed that the ECSB process with 30 wt.% PZ achieves a 36.3 % reduction in energy penalty when compared to the standard process with 30 wt.% Monoethanolamine (MEA). The results of the economic analysis showed that the lowest levelized cost of blue hydrogen (LCBH) was achieved by the ECSB process with 30 wt.% PZ. Compared to the BHP process with 30 wt.% MEA the LCBH was reduced by 19.7 %.
A Study of Thermoelectric Generation Coupled with Methanol Steam Reforming for Hydrogen Production
Nov 2022
Publication
Waste heat recovery was considered as a promising candidate for energy conservation and emission reduction. Methanol steam reforming was considered to be an effective means for hydrogen production because of its advantages. In this work a micro reactor was constructed and thermoelectric generation coupled with hydrogen production from methanol steam reforming was innovatively used to recycle waste heat which was simulated by hot air from a hot air gun. The waste heat was converted into electricity and hydrogen at the same time. The characteristic of thermoelectric generation coupled with methanol steam reforming was investigated. It was experimentally verified that both the hydrogen production rate and methanol conversion increased with the increasing inlet temperature but thermal efficiency increased firstly and then decreased with the increasing temperature. The methanol steam reforming could effectively maintain cold side temperature distribution of thermoelectric generation. In the case of the thermoelectric module (1) the highest temperature difference of 37 ◦C was determined and the maximum open circuit voltage of 2 V was observed. The highest methanol conversion of 64.26% was achieved at a space velocity of 0.98 h−1 when the temperature was 543 K comprehensively considering the CO content and thermal efficiency.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
EU Harmonised Testing Procedure: Determination of Water Electrolyser Energy Performance
Jan 2023
Publication
The objective of this pre-normative research (PNR) document is to present a testing procedure for establishing the energy performance of water (steam) electrolyser systems (WE systems) whether grid-connected or off-grid and individual water electrolysers (WEs)/high-temperature electrolysers (HTEs) for the generation of hydrogen by water/steam electrolysis. The WE systems use electricity mostly from variable renewable energy sources. HTE may additionally utilise (waste) heat from energy conversion and other industrial processes. By applying this procedure the determination of the specific energy consumption per unit of hydrogen output under standard ambient temperature and pressure (SATP) conditions allows for an adequate comparison of different WE systems. Also the energy performance potential of WEs or WE systems employing low-temperature water electrolysis (LTWE) technologies compared to HTE employing high-temperature steam electrolysis (HTSEL) technologies may be established under actual hydrogen output conditions by applying this procedure. The test method is to evaluate the specific energy consumption during steady-state operation at specified conditions including rated input power pressure and temperature of hydrogen recommended by the manufacturer of the WE or WE system. The energy efficiency and the electrical efficiency based on higher and lower heating value of hydrogen can be derived from respectively the specific energy consumption and the specific electric energy consumption as additional energy performance indicators (EPIs). In a plant setting the specific energy consumption of an individual water electrolyser including HTE under hydrogen output conditions may also be determined using this testing procedure. This procedure is intended to be used as a general characterisation method for evaluating the energy performance of WEs including HTEs and systems by the research community and industry alike.
A Systematic Review of the Techno-economic Assessment of Various Hydrogen Production Methods of Power Generation
Oct 2022
Publication
Hydrogen is a low or zero-carbon energy source that is considered the most promising and potential energy carrier of the future. In this study the energy sources feedstocks and various methods of hydrogen production from power generation are comparatively investigated in detail. In addition this study presents an economic assessment to evaluate cost-effectiveness based on different economic indicators including sensitivity analysis and uncertainty analysis. Proton exchange membrane fuel cell (PEMFCs) technology has the most potential to be developed compared to several other technologies. PEMFCs have been widely used in various fields and have advantages (i.e. start-up zero-emissions high power density). Among the various sources of uncertainty in the sensitivity analysis the cost estimation method shows inflationary deviations from the proposed cost of capital. This is due to the selection process and untested technology. In addition the cost of electricity and raw materials as the main factors that are unpredictable.
A Review of Recent Advances in Water-gas Shift Catalysis for Hydrogen Production
Aug 2020
Publication
The water-gas shift reaction (WGSR) is an intermediate reaction in hydrocarbon reforming processes considered one of the most important reactions for hydrogen production. Here water and carbon monoxide molecules react to generate hydrogen and carbon dioxide. From the thermodynamics aspect pressure does not have an impact whereas low-temperature conditions are suitable for high hydrogen selectivity because of the exothermic nature of the WGSR reaction. The performance of this reaction can be greatly enhanced in the presence of suitable catalysts. The WGSR has been widely studied due do the industrial significance resulting in a good volume of open literature on reactor design and catalyst development. A number of review articles are also available on the fundamental aspects of the reaction including thermodynamic analysis reaction condition optimization catalyst design and deactivation studies. Over the past few decades there has been an exceptional development of the catalyst characterization techniques such as near-ambient x-ray photoelectron spectroscopy (NA-XPS) and in situ transmission electron microscopy (in situ TEM) providing atomic level information in presence of gases at elevated temperatures. These tools have been crucial in providing nanoscale structural details and the dynamic changes during reaction conditions which were not available before. The present review is an attempt to gather the recent progress particularly in the past decade on the catalysts for low-temperature WGSR and their structural properties leading to new insights that can be used in the future for effective catalyst design. For the ease of reading the article is divided into subsections based on metals (noble and transition metal) oxide supports and carbon-based supports. It also aims at providing a brief overview of the reaction conditions by including a table of catalysts with synthesis methods reaction conditions and key observations for a quick reference. Based on our study of literature on noble metal catalysts atomic Pt substituted Mn3O4 shows almost full CO conversion at 260 °C itself with zero methane formation. In the case of transition metals group the inclusion of Cu in catalytic system seems to influence the CO conversion significantly and in some cases with CO conversion improvement by 65% at 280 °C. Moreover mesoporous ceria as a catalyst support shows great potential with reports of full CO conversion at a low temperature of 175 °C.
Green Hydrogen Production Potential in West Africa – Case of Niger
Jul 2022
Publication
Niger offers the possibility of producing green hydrogen due to its high solar energy potential. Due to the still growing domestic oil and coal industry the use of green hydrogen in the country currently seems unlikely at the higher costs of hydrogen as an energy vector. However the export of green hydrogen to industrialized countries could be an option. In 2020 a hydrogen partnership has been established between Germany and Niger. The potential import of green hydrogen represents an option for Germany and other European countries to decarbonize domestic energy supply. Currently there are no known projects for the electrolytic production of hydrogen in Niger. In this work potential hydrogen demand across electricity and transport sectors is forecasted until 2040. The electricity demand in 2040 is expected at 2934 GWh and the gasoline and diesel demand at 964 m3 and 2181 m3 respectively. Accordingly the total hydrogen needed to supply electricity and the transport sector (e.g. to replace 1% gasoline and diesel demand in 2040) is calculated at 0.0117 Mt. Only a small fraction of 5% of the land area in Niger would be sufficient to generate the required electricity from solar PV to produce hydrogen.
Utilization of Excess Water Accumulation for Green Hydrogen Production in a Run-ofTiver Hydropower Plant
Jun 2022
Publication
This paper discusses the potential for green-hydrogen production in a run-of-river 9 hydropower plant. This particular hydropower plant has no significant water accumulation but 10 there is the potential for limited hydrogen production due to a mismatch between the daily 11 predefined electricity production (known as the timetable) and the actual water inflows. The 12 timetable for the hydropower plant is prepared by the operator of the electro-energetic system 13 based on a model of the available production capacities forecasted consumption water 14 accumulation state of the river flows weather forecasts and the system operator’s strategy. The 15 uncertainty in the model’s input parameters is reflected in the output timetable for the 16 hydropower plant and for this reason a small reserve of water for potential exploitation is 17 envisaged. By using real data for the timetable and the water inflow we estimate the excess 18 hydropower that can be used for hydrogen cogeneration. Since the primary task of the 19 hydropower plant is to produce electricity according to the timetable the production of 20 hydrogen is only possible to a limited extent. Therefore we present a control algorithm that 21 regulates the amount of hydrogen production while considering the predefined timetable and 22 the real water accumulation. The second part of the paper deals with the economic viability of 23 hydrogen cogeneration in the case-study run-of-river hydropower plant and discusses the 24 possibility of using it for local public transport.
Optimal Renewable Energy Distribution Between Gasifier and Electrolyzer for Syngas Generation in a Power and Biomass-to-Liquid Fuel Process
Jan 2022
Publication
By adding energy as hydrogen to the biomass-to-liquid (BtL) process several published studies have shown that carbon efficiency can be increased substantially. Hydrogen can be produced from renewable electrical energy through the electrolysis of water or steam. Adding high-temperature thermal energy to the gasifier will also increase the overall carbon efficiency. Here an economic criterion is applied to find the optimal distribution of adding electrical energy directly to the gasifier as opposed to the electrolysis unit. Three different technologies for electrolysis are applied: solid oxide steam electrolysis (SOEC) alkaline water electrolysis (AEL) and proton exchange membrane (PEM). It is shown that the addition of part of the renewable energy to the gasifier using electric heaters is always beneficial and that the electrolysis unit operating costs are a significant portion of the costs. With renewable electricity supplied at a cost of 50 USD/MWh and a capital cost of 1500 USD/kW installed SOEC the operating costs of electric heaters and SOEC account for more than 70% of the total costs. The energy efficiency of the electrolyzer is found to be more important than the capital cost. The optimal amount of energy added to the gasifier is about 37–39% of the energy in the biomass feed. A BtL process using renewable hydrogen imports at 2.5 USD/kg H2 or SOEC for hydrogen production at reduced electricity prices gives the best values for the economic objective.
Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology
Oct 2018
Publication
Methanol is currently considered one of the most useful chemical products and is a promising building block for obtaining more complex chemical compounds such as acetic acid methyl tertiary butyl ether dimethyl ether methylamine etc. Methanol is the simplest alcohol appearing as a colorless liquid and with a distinctive smell and can be produced by converting CO2 and H2 with the further benefit of significantly reducing CO2 emissions in the atmosphere. Indeed methanol synthesis currently represents the second largest source of hydrogen consumption after ammonia production. Furthermore a wide range of literature is focused on methanol utilization as a convenient energy carrier for hydrogen production via steam and autothermal reforming partial oxidation methanol decomposition or methanol–water electrolysis reactions. Last but not least methanol supply for direct methanol fuel cells is a well-established technology for power production. The aim of this work is to propose an overview on the commonly used feedstocks (natural gas CO2 or char/biomass) and methanol production processes (from BASF—Badische Anilin und Soda Fabrik to ICI—Imperial Chemical Industries process) as well as on membrane reactor technology utilization for generating high grade hydrogen from the catalytic conversion of methanol reviewing the most updated state of the art in this field.
Super Short Term Combined Power Prediction for Wind Power Hydrogen Production
Sep 2022
Publication
A combined ultra-short-term wind power prediction strategy with high robustness based on least squares support vector machine (LSSVM) has been proposed in order to solve the wind abandonment caused by wind power randomness and realize efficient hydrogen production under wide power fluctuation. Firstly the original wind power data is decomposed into sub-modes with different bandwidth by variational modal decomposition (VMD) which reduces the influence of random noise and mode mixing significantly. Then dragonfly algorithm (DA) is introduced to optimize LSSVM kernel function and the combined ultra-short-term wind power prediction strategy which meets the time resolution and accuracy requirements of electrolytic cell control has been established finally. This model is validated by a wind power hydrogen production demonstration project output in the middle east of China. The superior prediction accuracy for high volatility wind power data is verified and the algorithm provides theoretical basis to improve the control of wind power hydrogen production system
Water Electrolysis and Hydrogen in the European Union
Nov 2022
Publication
Renewable and low carbon hydrogen is both an energy carrier able to produce other fuels and downstream products such as the e-fuels or e-ammonia and a decarbonised gas produced through renewable electricity. It has the potential to decarbonise hard to abate sectors which are difficult to directly electrify and play a crucial role in achieving net zero emissions target in 2050. The European Commission has recently outlined the policy context and necessary actions for the development and deployment of renewable and low carbon hydrogen within the 2030 time horizon with the Hydrogen Strategy for a Climate Neutral Europe Communication (the Hydrogen Strategy). The REPowerEU Communication4 has further addressed the joint EU and Member State actions needed in the context of the crisis triggered by the invasion of Ukraine in February 2022 and the necessity to phase out dependence on Russian supplies. The EC has strengthened the policy narrative around hydrogen and increased objectives for a pan European framework accelerating and upscaling the production of RES and low-carbon hydrogen. The main objectives and actions of the REPowerEU Plan which build on the Hydrogen Strategy are the deployment of several tens of GW of electrolyser capacity and the production and imports of 10 Mt and 10 Mt respectively of renewable hydrogen by 2030. Currently the most mature and promising green hydrogen production technology is water electrolysis. The main technologies5 considered in this report are: Alkaline electrolysis Polymer Exchange Membrane (PEM) electrolysis Solid Oxide electrolysis and Anion Exchange Membrane electrolysers (AEM).
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture
Sep 2022
Publication
The combination of methane steam reforming technology and CCS (Carbon Capture and Storage) technology has great potential to reduce carbon emissions in the process of hydrogen production. Different from the traditional idea of capturing CO2 (Carbon Dioxide) in the exhaust gas with high work consumption this study simultaneously focuses on CO2 separation from fuel gas and recycling. A new hydrogen production system is developed by methane steam reforming coupled with carbon capture. Separated and captured high-purity carbon dioxide could be recycled for methane dry reforming; on this basis a new methane-dry-reforming-driven hydrogen production system with a carbon dioxide reinjection unit is innovatively proposed. In this study the energy flow and irreversible loss in the two newly developed systems are analyzed in detail through energy and exergy balance analysis. The advantages are explored from the perspective of hydrogen production rate natural gas consumption and work consumption. In addition in consideration of the integrated performance an optimal design analysis was conducted. In terms of hydrogen production the new system based on dry reforming is better with an advantage of 2.41%; however it is worth noting that the comprehensive thermal performance of the new steam reforming system is better reaching 10.95%. This study provides new ideas for hydrogen production from a low carbon emission perspective and also offers a new direction for future distributed energy system integration.
Design Strategies for Large Current Density Hydrogen Evolution Reaction
Apr 2022
Publication
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance cost-efficiency and high performance for large current density industrial applications is vital for H2 production. However most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm−2 ) which is far from satisfactory for industrial applications. In this minireview we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER) whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed including self-supporting electrodes to avoid the detachment of active materials the superaerophobicity and superhydrophilicity to release H2 bubble in time and the mechanical properties to resist destructive stress. Finally some views on the further development of high current density HER electrocatalysts are proposed such as scale up of the synthesis process in situ characterization to reveal the micro mechanism and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.
Hydrogen as Energy Carrier: Techno-economic Assessment of Decentralized Hydrogen Production in Germany
Jun 2021
Publication
Political and scientific discussions on changing German energy supply mix and challenges of such energy transition are already well established. At the supply level energy storage seems to be the biggest challenge ahead for such transition. Hydrogen could be one of the solutions for future energy transition if it is produced using renewable energy resources. In order to analyze the future role of hydrogen its economic performance analysis is inevitable. This has been done in this research for a case study site in Cologne. The potential of hydrogen production with the use of solar electricity powered electrolyzers (alkaline and proton exchange membrane (PEM)) has been analyzed. Both grid connected and off grid modes of solar hydrogen production are considered. Economic performance results are presented for six scenarios. Hydrogen produced with the grid connected solar photovoltaics system coupled with alkaline electrolyzers was found the cheapest with the levelized cost of hydrogen (LCOH) at 6.23 V/kg. These costs are comparable with the current hydrogen price at commercial refueling station in Cologne. On the other hand the LCOH of off grid systems with both alkaline and PEM electrolyzers is expensive as expected the most expensive LCOH among six scenarios reached to 57.61 V/kg.
Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
May 2021
Publication
About 95% of the hydrogen presently produced is from natural gas and coal and the remaining 5% is generated as a by-product from the production of chlorine through electrolysis1 . In the hydrogen economy (Crabtree et al. 2004; Penner 2006; Marbán and Valdés-Solís 2007) hydrogen is produced entirely from renewable energy. The easiest approach to advance renewable energy production is through solar photovoltaic and electrolysis a pathway of high technology readiness level (TRL) suffering however from two downfalls. First of all electricity is already an energy carrier and transformation with a penalty into another energy carrier hydrogen is in principle flawed. The second problem is that the efficiency of commercial solar panels is relatively low. The cadmium telluride (CdTe) thin-film solar cells have a solar energy conversion efficiency of 17%. Production of hydrogen using the current best processes for water electrolysis has an efficiency of ∼70%. As here explained the concentrated solar energy may be used to produce hydrogen using thermochemical water-splitting cycles at much global higher efficiency (fuel energy to incident sun energy). This research and development (R&D) effort is therefore undertaken to increase the TRL of this approach as a viable and economical option.
Determination of the Optimal Power Ratio between Electrolysis and Renewable Energy to Investigate the Effects on the Hydrogen Production Costs
Sep 2022
Publication
Green hydrogen via renewable powered electrolysis has a high relevance in decarbonization and supply security. Achieving economically competitive hydrogen production costs is a major challenge in times of an energy price crisis. Our objective is to show the economically optimal installed capacity of electrolysers in relation to wind and solar power so swift and credible statements can be made regarding the system design. The ratio between renewable generation and electrolysis power as well as scaling effects operating behaviour and development of costs are considered. Hydrogen production costs are calculated for four exemplary real PV and wind sites and different ratios of electrolysis to renewable power for the year 2020. The ideal ratio for PV systems is between 14% and 73% and for wind between 3.3% and 143% for low and high full load hours. The lowest hydrogen production costs are identified at 2.53 €/kg for 50 MW wind power and 72 MW electrolysis power. The results provide plant constructors the possibility to create a cost-optimized design via an optimum ratio of electrolysis to renewable capacity. Therefore the procedures for planning and dimensioning of selected systems can be drastically simplified.
Feasibility Analysis of Hydrogen Production Potential from Rooftop Solar Power Plant for Industrial Zones in Vietnam
Nov 2022
Publication
Currently global energy transformation and the promotion of renewable energy use are being taken care of to minimize the harm to the environment. However the disadvantage of renewable energy is the random change which leads to the regulation of grid operations which is very difficult when the capacity of renewable energy sources accounts for a large proportion. The hydrogen production technology from wind and solar energy sources is one of the possible methods to minimize adverse impacts on the utility grid and serve the load demand of industrial zones. In this study the photovoltaic (PV) hydrogen production potential for industrial zones in Vietnam is analyzed. The Homer was used to simulate and calculate power output. The results showed that the Hai Duong province has the lowest solar radiation so the solar power output is 3600389 kWh/year and the amount of hydrogen generated is less so it mainly serves the hydrogen load while the fuel cell can only generate very low amounts of electricity of about 4150 kWh/year for direct current (DC) load. The hybrid power systems in the typical industrial plant in Quang Nam province Binh Thuan province Can Tho city can generate about 17386 kg/year to 17422 kg/year to supply the operation of fuel cells based on the value of solar radiation of each province. The better the area with solar potential the lower the net present cost (NPC) cost of energy (COE) and operation cost so the economical and technical efficiency of the PV–Fuel cell hybrid power system will increase.
Investigation on Green Hydrogen Generation Devices Dedicated for Integrated Renewable Energy Farm: Solar and Wind
Oct 2022
Publication
This study presents a comprehensive methodology to evaluate plants that integrate renewable energy sources and hydrogen generation devices. The paper focuses on presenting the methods for devices’ operation assessment taking into account the annual operation. Multiple effectiveness indices have been presented. On the basis of experimental investigation with the hydrogen generator the methods for assessing its operation during start-up phase and sudden change in the supply current were proposed. The results of the experiments and the provided mathematical models show that dynamics of the hydrogen generator should be taken into account when selecting the suitable device for cooperation with variable renewable energy. It is especially important for multiple start-ups throughout the day due to significant differences in the amount of hydrogen produced by devices characterized by the same efficiency yet various time constants. Methodology for selecting the optimal nominal power for hydrogen generator to cooperate with given renewable sources was developed. It was proven the optimal power depends on the type of the renewable source and minimal load of the hydrogen generator. Several case studies including the integration of wind and solar energy farms to yield a 10 MW renewable energy farm were considered and the minimal load of the hydrogen generator impacts the annual operation of the device has been presented. The paper provides a set of tools to contribute to the development of sustainable energy plants. The methods proposed in this paper are universal and can be used for various renewable energy sources.
Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
Feb 2017
Publication
Although polymer electrolyte water electrolyzers (PEWEs) have been used in small-scale (kW to tens of kW range) applications for several decades PEWE technology for hydrogen production in energy applications (power-to-gas power-to-fuel etc.) requires significant improvements in the technology to address the challenges associated with cost performance and durability. Systems with power of hundreds of kW or even MWs corresponding to hydrogen production rates of around 10 to 20 kg/h have started to appear in the past 5 years. The thin (∼0.2 mm) polymer electrolyte in the PEWE with low ohmic resistance compared to the alkaline cell with liquid electrolyte allows operation at high current densities of 1–3 A/cm2 and high differential pressure. This article after an introductory overview of the operating principles of PEWE and state-of-the-art discusses the state of understanding of key phenomena determining and limiting performance durability and commercial readiness identifies important ‘gaps’ in understanding and essential development needs to bring PEWE science & engineering forward to prosper in the energy market as one of its future backbone technologies. For this to be successful science engineering and process development as well as business and market development need to go hand in hand.
Study on Enhancing Hydrogen Production Potential from Renewable Energy in Multi-terminal DC System
Aug 2021
Publication
Renewable energy complementary hydrogen production can enhance the full consumption of renewable energy and reduce the abandonment of wind and solar power. The integration of renewable energy and hydrogen production equipment through existing multi-terminal DC systems can reduce new power lines construction and save investment in distribution equipment. For integrated renewable energy/hydrogen energy in an existing multi-terminal DC system this paper investigates its potential of hydrogen production based on renewable energy while ensuring the normal performance of the existing system being not affected. The typical structure and control strategy of the integrated renewable energy/hydrogen energy in multi-terminal DC system are firstly described. Then the state space model of the system is constructed and the key parameters affecting the hydrogen production capacity are studied by using the eigenvalues analysis method. Finally the corresponding system simulation model and test platform are built and the theoretical analysis results are verified and the potential of using multi-terminal DC system to enhance hydrogen production is quantitatively analyzed. The proposed scheme can enhance the hydrogen production potential from renewable energy meanwhile the normal performance of the existing system is not affected.
Green Hydrogen from Anion Exchange Membrane Water Electrolysis: A Review of Recent Developments in Critical Materials and Operating Conditions
Mar 2020
Publication
Hydrogen production using water electrolysers equipped with an anion exchange membrane (AEM) a pure water feed and cheap components such as platinum group metal-free catalysts and stainless steel bipolar plates (BPP) can challenge proton exchange membrane (PEM) electrolysis systems as the state of the art. For this to happen the performance of the AEM electrolyzer must match the compact design stability H2 purity and high current densities of PEM systems. Current research aims at bringing AEM water electrolysis technology to an advanced level in terms of electrolysis cell performance. Such technological advances must be accompanied by demonstration of the cost advantages of AEM systems. The current state of the art in AEM water electrolysis is defined by sporadic reports in the academic literature mostly dealing with catalyst or membrane development. The development of this technology requires a future roadmap for systematic development and commercialization of AEM systems and components. This will include basic and applied research technology development & integration and testing at a laboratory scale of small demonstration units (AEM electrolyzer shortstacks) that can be used to validate the technology (from TRL 2–3 currently to TRL 4–5). This review paper gathers together recent important research in critical materials development (catalysts membranes and MEAs) and operating conditions (electrolyte composition cell temperature performance achievements). The aim of this review is to identify the current level of materials development and where improvements are required in order to demonstrate the feasibility of the technology. Once the challenges of materials development are overcome AEM water electrolysis can drive the future use of hydrogen as an energy storage vector on a large scale (GW) especially in developing countries.
Solar Water Splitting by Photovoltaic-electrolysis with a Solar-to-hydrogen Efficiency over 30%
Oct 2016
Publication
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
Assessing the Prospective Environmental Performance of Hydrogen from High Temperature Electrolysis Coupled with Concentrated Solar Power
Jul 2022
Publication
Hydrogen is currently being promoted because of its advantages as an energy vector its potential 12 to decarbonise the economy and strategical implications in terms of energy security. Hydrogen 13 from high-temperature electrolysis coupled with concentrated solar power (CSP) is especially 14 interesting since it enhances the last two aspects and could benefit from significant technological 15 progress in the coming years. However there is a lack of studies assessing its future 16 environmental performance. This work fills this gap by carrying out a prospective life cycle 17 assessment based on the expected values of key performance parameters in 2030. The results 18 show that parabolic trough CSP coupled with a solid oxide electrolyser is a promising solution 19 under environmental aspects. It leads to a prospective hydrogen carbon footprint (1.85 kg CO2 20 eq/kg H2) which could be classified as low-carbon according to current standards. The 21 benchmarking study for the year 2030 shows that the assessed system significantly decreases the 22 hydrogen carbon footprint compared to future hydrogen from steam methane reforming (81% 23 reduction) and grid electrolysis (51%) even under a considerable penetration of renewable energy 24 sources.
Experimental Study of the Feasibility of In‐Situ Hydrogen Generation from Gas Reservoir
Nov 2022
Publication
Due to there is no better way to exploit depleted gas reservoirs and hydrogen can generate from natural gas combustion. In this paper the possibility of in‐situ hydrogen generation in air injected gas reservoirs was determined through pseudo dynamic experiments. The study indicated that highertemperature and steam/methane ratio can generate more hydrogen and the temperature should not be lower than 600 °C within gas reservoirs. The debris has positive catalysis for hydrogen generation. The maximum mole fraction of hydrogen was 26.63% at 600 °C.
Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia
Nov 2022
Publication
A potential method of storing and transporting hydrogen safely in a cost-effective and practical way involves the utilization of molecules that contain hydrogen in their structure such as ammonia. Because of its high hydrogen content and carbon-free molecular structure as well as the maturity of related technology (easy liquefaction) ammonia has gained attention as a “hydrogen carrier” for the generation of energy. Unfortunately hydrogen production from ammonia requires an efficient catalyst to achieve high conversion at low reaction temperatures. Recently very attractive results have been obtained with low-surface-area materials. This review paper is focused on summarizing and comparing recent advances in novel economic and active catalysts for this reaction paying particular attention to materials with low surface area such as silicon carbide (SiC) and perovskites (ABO3 structure). The effects of the supports the active phase and the addition of promoters in such low-porosity materials have been analyzed in detail. Advances in adequate catalytic systems (including support and active metal) benefit the perspective of ammonia as a hydrogen carrier for the decarbonization of the energy sector and accelerate the “hydrogen economy”.
Intelligent Damping Control of Renewable Energy/Hydrogen Energy DC Interconnection System
Oct 2022
Publication
Renewable energy DC hydrogen production has become a new development trend. Due to the interaction between the weak damping of DC network and the negative impedance characteristics of power supply of hydrogen production the actual available power of renewable and hydrogen energy DC interconnection system will be lower than its rated setting value. To solve this problem this paper proposes an intelligent damping control to realize the rated power operation of hydrogen generation power source and significantly improve the hydrogen generation performance. In this paper the nonlinear model under typical control strategies is established in order to adapt to different degrees of disturbance and the damping controller is designed based on state feedback including feedback control law and damping generation formula. On this basis an intelligent method of damping control is proposed to support rapid decision-making. Finally the intelligent damping control method is verified by simulation analysis. It realizes rated power of power supply of hydrogen production by generating only a small amount of damping power and superimposing it on the hydrogen production power
Carbon-free Green Hydrogen Production Process with Induction Heating-based Ammonia Decomposition Reactor
Dec 2022
Publication
This study presents an induction heating-based reactor for ammonia decomposition and to achieve a 150 Nm3 /h carbon-free green hydrogen production process. The developed metallic monolith reactor acts by increasing the reactor temperature through an electromagnetic induction method using renewable-based electricity. As a result hydrogen is produced without the generation of air pollutants such as CO2 which are formed via the conventional production pathway. Furthermore techno-economic analysis was conducted based on exergy and economic analysis to evaluate the feasibility of the developed process. Experimentally the proposed reactor showed an ammonia conversion of 90.0 % at 600 ℃ and 7 barg. Exergy analysis indicated that the total unused exergy accounted for 45.79 % of the total exergy input giving an exergy efficiency of 54.21 % for the overall process. Furthermore the CAPEX and OPEX values are calculated as 1599567 USD and 644719 USD/y respectively; therefore the levelized cost of hydrogen (LCOH) was calculated to be 6.98 USD/kgH2. This study also demonstrated that the LCOH varies with the ammonia feed price and the process capacity and so it would be expected to decrease from 6.98 to 5.33 USD/kgH2 as the hydrogen production capacity is increased from 150 to 500 Nm3 / h. Overall our results confirm the feasibility of carbon-free green hydrogen production on on-site hydrogen refueling stations and they will be expected to advance the development of an environmental hydrogen economy.
Energy Recovery from Wastewater in Mexico: A Systematic Review
Feb 2023
Publication
The usage of fossil fuels to generate energy and the lack of wastewater treatment in Mexico are two issues that can be addressed at the same time while developing wastewater treatment technologies that incorporate energy recovery in their process train. We carried out a systematic review based on the PRISMA methodology to identify and review studies regarding energy recovery using wastewater as a substrate in Mexico. Peer-reviewed papers were identified through Scopus Web of Knowledge and Google Scholar using a timeframe of 22 years that represented from 2000 to 2022. After applying the selection criteria we identified 31 studies to be included in the final review starting from 2007. The kind of energy product type of technology used substrate wastewater amount of energy produced and main parameters for the operation of the technology were extracted from the papers. The results show that methane is the most researched energy recovery product from wastewater followed by hydrogen and electricity and the technology used to archive it is an up-flow anaerobic sludge bed (UASB) reactor to produce methane and hydrogen. In addition microbial fuel cells (MFCs) were preferred to produce electricity. According to our data more energy per kgCOD removed could be obtained with methane-recovering technologies in the Mexican peer-reviewed studies compared with hydrogen recovery and electricity production.
Treatment of Dark Fermentative H2 Production Effluents by Microbial Fuel Cells: A Tutorial Review on Promising Operational Strategies and Practices
Nov 2020
Publication
Deriving biohydrogen from dark fermentation is a practically suitable pathway for scaling-up and envisaged mass production. However a common issue with these systems is the incomplete conversion of feedstock as a result of which a process effluent with notable organic strength is left behind. The main components of dark fermentation effluents are volatile fatty acids that can be utilized by integrated applications involving bioelectrochemical systems particularly microbial fuel cells (MFCs) to generate electrical energy. In this work MFCs deployed to treat dark fermentative H2 production effluents are assessed to take a look into the current standing of this specific research area and address what MFC design and operating features (reactor configuration mode of operation anode surface and reactor size) seem favorable towards improved working efficiency (e.g. power density Coulombic efficiency COD removal). Furthermore promising technological implementations are outlined and suggestions conclusions for future studies for this field are given.
Hydrogen Production by PEM Water Electrolysis – A Review
Mar 2019
Publication
Hydrogen is the most efficient energy carrier. Hydrogen can be obtained from different sources of raw materials including water. Among many hydrogen production methods eco-friendly and high purity of hydrogen can be obtained by water electrolysis. However In terms of sustainability and environmental impact PEM water electrolysis was considered as most promising techniques for high pure efficient hydrogen production from renewable energy sources and emits only oxygen as byproduct without any carbon emissions. Moreover the produced hydrogen (H2) and oxygen (O2) directly used for fuel cell and industrial applications. However overall water splitting resulting in only 4% of global industrial hydrogen being produced by electrolysis of water mainly due to the economic issues. Nowadays increased the desire production of green hydrogen has increased the interest on PEM water electrolysis. Thus the considerable research has been completed recently in the development of cost effective electrocatalysts for PEM water electrolysis. In this present review we discussed about the recent developments in the PEM water electrolysis including high performance low cost HER and OER electrocatalysts and their challenges new and old related to electrocatalysts and PEM cell components also addressed. This review will contribute further research improvements and a road map in order to support in developing the PEM water electrolyser as a commercially feasible hydrogen production purpose.
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed while the overall current through the cell correlating with the water splitting process is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells.
Methane Emissions from Natural Gas and LNG Imports: An Increasingly Urgent Issue for the Future of Gas in Europe
Nov 2020
Publication
Pressure is mounting on the natural gas and LNG community to reduce methane emissions and this is most urgent in EU countries following the adoption of much tougher greenhouse gas reduction targets of 2030 and the publication of the European Commission’s Methane Strategy. With rapidly declining indigenous EU production and therefore rising import dependence there are increasing calls for emissions from imported pipeline gas and LNG to be quantified and based on actual measurements as opposed to standard emission factors. The Methane Strategy promises to be a significant milestone in that process. Companies which are supplying (or intending to supply) natural gas to the EU – the largest global import market for pipeline gas and a very significant market for LNG – would be well advised to pay close attention to how the regulation of methane emissions is unfolding and to make an immediate and positive response. Failure to do so could accelerate the demise of natural gas in European energy balances faster than would otherwise have been the case and shorten the time available for transition to decarbonised gases – specifically hydrogen – using existing natural gas infrastructure.<br/>This EU initiative will (and arguably already has) attracted attention from non-EU governments and companies involved in global gas and LNG trade. We have already seen deliveries of `carbon neutral’ LNG cargos to Asia as well as a long-term LNG contract in which the greenhouse gas content of cargos will be measured reported and verified (MRV) according to an agreed methodology. Natural gas and LNG exports if based on these standards or those set out in the EU Methane Strategy may be able to command premium prices from buyers eager to demonstrate their own GHG reduction credentials to governments customers and civil society.
Aldehyde Replacement Advances Efficient Hydrogen Production in Electrolyser
Mar 2022
Publication
The high energy consumption and production of undesired oxygen greatly restrict the wide adoption of water electrolysis for hydrogen production. In a paper recently published in Nature Catalysis Wang and coworkers rationally introduce aldehydes for oxidation at anode to replace oxygen evolution reaction which can produce hydrogen and value-added products at low potential realizing efficient bipolar hydrogen production with high-purity. Moreover these aldehydes are biomass-derived and contribute to sustainable hydrogen production
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
Wittichenite Semiconductor of Cu3BiS3 Films for Efficient Hydrogen Evolution from Solar Driven Photoelectrochemical Water Splitting
Jun 2021
Publication
A highly efficient low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.
Sustainable Hydrogen Production by Plasmonic Thermophotocatalysis
Feb 2021
Publication
A vision of hydrogen based economy and clean sustainable fossil fuels-free world inspires the scientific community to put much effort into the development of visible-light-driven photochemistry and efficient solar energy harvesting. The unique features of plasmonic nanomaterials such as capability of significant electric field amplification an extreme local heating generation of high energy charge carriers and broad tunability of optical properties coupled to catalytically active surfaces provide an exciting opportunity for hydrogen production with solar photochemistry. This review sums up recent progress in the development of plasmonic thermophotocatalysis paying particular attention to sustainable production of hydrogen. We approach the subject from a broad bottom-up perspective beginning with the brief description of plasmon-related phenomena and plasmon-assisted photochemistry through the demonstration of various plasmonic nanostructures their synthesis and hydrogen production efficiency ending with the idea of continuous-flow reactors and their future implementation in hydrogen production by plasmonic thermophotocatalysis. Finally we summarize the review and highlight the remaining challenges that have to be faced before the widespread commercialization of this technology.
Renewable Hydrogen Production from the Organic Fraction of Municipal Solid Waste through a Novel Carbon-negative Process Concept
Apr 2022
Publication
Bioenergy with carbon capture and storage (BECCS) is one of the prevailing negative carbon emission technologies. Ensuring a hydrogen economy is essential to achieving the carbon-neutral goal. In this regard the present study contributed by proposing a carbon negative process for producing high purity hydrogen from the organic fraction of municipal solid waste (OFMSW). This integrated process comprises anaerobic digestion pyrolysis catalytic reforming water-gas shift and pressure swing adsorption technologies. By focusing on Sweden the proposed process was developed and evaluated through sensitivity analysis mass and energy balance calculations techno-economic assessment and practical feasibility analysis. By employing the optimum operating conditions from the sensitivity analysis 72.2 kg H2 and 701.47 kg negative CO2 equivalent emissions were obtained by treating 1 ton of dry OFMSW. To achieve these results 6621.4 MJ electricity and 325 kg of steam were utilized during this process. Based on this techno-economic assessment of implementing the proposed process in Stockholm when the negative CO2 equivalent emissions are recognized as income the internal rate of return and the discounted payback period can be obtained as 26% and 4.3 years respectively. Otherwise these values will be 13% and 7.2 years.
Palladium (Pd) Membranes as Key Enabling Technology for Pre-combustion CO2 Capture and Hydrogen Production
Aug 2017
Publication
Palladium (Pd) membranes are a promising enabling technology for power generation and hydrogen production with CO2 capture. SINTEF has developed and patented a flexible technology to produce Pd-alloy membranes that significantly improves flux and thereby reduces material costs. Reinertsen AS and SINTEF aim to demonstrate the Pd membrane technology for H2 separation on a side stream of the Statoil Methanol Plant at Tjeldbergodden Norway. In the present article we present the upscaling of the membrane manufacturing process together with the membrane module and skid design and construction.
The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium
Dec 2020
Publication
Hydrogen is recognized as the “future fuel” and the most promising alternative of fossil fuels due to its remarkable properties including exceptionally high energy content per unit mass (142 MJ/kg) low mass density and massive environmental and economical upsides. A wide spectrum of methods in H2 production especially carbon-free approaches H2purification and H2storage have been investigated to bring this energy source closer to the technological deployment. Hydrogen hydrates are among the most intriguing material paradigms for H2storage due to their appealing properties such as low energy consumption for charge and discharge safety cost-effectiveness and favorable environmental features. Here we comprehensively discuss the progress in understanding of hydrogen clathrate hydrates with an emphasis on charging/discharging rate of H2 (i.e. hydrate formation and dissociation rates) and the storage capacity. A thorough understanding on phase equilibrium of the hydrates and its variation through different materials is provided. The path toward ambient temperature and pressure hydrogen batteries with high storage capacity is elucidated. We suggest that the charging rate of H2 in this storage medium and long cyclic performance are more immediate challenges than storage capacity for technological translation of this storage medium. This review and provided outlook establish a groundwork for further innovation on hydrogen hydrate systems for promising future of hydrogen fuel.
Comparative Assessment of Blue Hydrogen from Steam Methane Reforming, Autothermal Reforming, and Natural Gas Decomposition Technologies for Natural Gas-producing Regions
Jan 2022
Publication
Interest in blue hydrogen production technologies is growing. Some researchers have evaluated the environmental and/or economic feasibility of producing blue hydrogen but a holistic assessment is still needed. Many aspects of hydrogen production have not been investigated. There is very limited information in the literature on the impact of plant size on production and the extent of carbon capture on the cost and life cycle greenhouse gas (GHG) emissions of blue hydrogen production through various production pathways. Detailed uncertainty and sensitivity analyses have not been included in most of the earlier studies. This study conducts a holistic comparative cost and life cycle GHG emissions’ footprint assessment of three natural gas-based blue hydrogen production technologies – steam methane reforming (SMR) autothermal reforming (ATR) and natural gas decomposition (NGD) to address these research gaps. A hydrogen production plant capacity of 607 tonnes per day was considered. For SMR based on the percentage of carbon capture and capture points we considered two scenarios SMR-52% (indicates 52% carbon capture) and SMR-85% (indicates 85% carbon capture). A scale factor was developed for each technology to understand the hydrogen production cost with a change in production plant size. Hydrogen cost is 1.22 1.23 2.12 1.69 2.36 1.66 and 2.55 $/kg H2 for SMR ATR NGD SMR-52% SMR-85% ATR with carbon capture and sequestration (ATR-CCS) and NGD with carbon capture and sequestration (NGD-CCS) respectively. The results indicate that when uncertainty is considered SMR-52% and ATR are economically preferable to NGD and SMR-85%. SMR-52% could outperform ATR-CCS when the natural gas price decreases and the rate of return increases. SMR-85% is the least attractive pathway; however it could outperform NGD economically when CO2 transportation cost and natural gas price decrease. Hydrogen storage cost significantly impacts the hydrogen production cost. SMR-52% SMR-85% ATR-CCS and NGD-CCS have scale factors of 0.67 0.68 0.54 and 0.65 respectively. The hydrogen cost variation with capacity shows that operating SMR-52% and ATR-CCS above hydrogen capacity of 200 tonnes/day is economically attractive. Blue hydrogen from autothermal reforming has the lowest life cycle GHG emissions of 3.91 kgCO2eq/kg H2 followed by blue hydrogen from NGD (4.54 kgCO2eq/kg H2) SMR-85% (6.66 kgCO2eq/kg H2) and SMR-52% (8.20 kgCO2eq/kg H2). The findings of this study are useful for decision-making at various levels.
Hydrogen Production from Offshore Wind Parks: Current Situation and Future Perspectives
Jun 2021
Publication
With the increase in renewable energy connected to the grid new challenges arise due to its variable supply of power. Therefore it is crucial to develop new methods of storing energy. Hydrogen can fulfil the role of energy storage and even act as an energy carrier since it has a much higher energetic density than batteries and can be easily stored. Considering that the offshore wind sector is facing significant growth and technical advances hydrogen has the potential to be combined with offshore wind energy to aid in overcoming disadvantages such as the high installation cost of electrical transmission systems and transmission losses. This paper aims to outline and discuss the main features of the integration of hydrogen solutions in offshore wind power and to offer a literature review of the current state of hydrogen production from offshore wind. The paper provides a summary of the technologies involved in hydrogen production along with an analysis of two possible hydrogen producing systems from offshore wind energy. The analysis covers the system components including hydrogen storage the system configuration (i.e. offshore vs. onshore electrolyzer) and the potential uses of hydrogen e.g. Power to Mobility Power to Power and Power to Gas.
Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe
Jun 2015
Publication
Currently hydrogen is mainly produced through steam reforming of natural gas. However this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion global warming ozone layer depletion photochemical oxidant formation land competition acidification and eutrophication. Furthermore the cumulative (total and non-renewable) energy demand is calculated as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected) relevance of the feedstock and impact categories considered results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming in contrast to first-generation bioglycerol.
Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation
Jul 2017
Publication
Photocatalytic water splitting which directly converts solar energy into hydrogen is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration and encouraging progress has been achieved over the past years. However the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.
Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution
Jun 2021
Publication
Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy. The electronic property of the prepared SnSe thin films can be easily and accurately tuned in situ by three orders of magnitude through the controllable compensation of Sn atoms. The prepared film normally exhibited p-type conduction due to the deficiency of Sn in the film during its growth. First-principle calculations explained that Sn vacancies can introduce additional reactive sites for the hydrogen evolution reaction (HER) and enhance the HER performance by accelerating electron migration and promoting continuous hydrogen generation which was mirrored by the reduced Gibbs free energy by a factor of 2.3 as compared with the pure SnSe film. The results pave the way for synthesized 2D SnSe thin films in the applications of hydrogen production.
Rising To the Challenge of a Hydrogen Economy: The Outlook for Emerging Hydrogen Value Chains, From Production to Consumption
Jul 2021
Publication
For many a large-scale hydrogen economy is essential to a a clean energy future with three quarters of the more than 1100 senior energy professionals we surveyed saying Paris Agreement targets will not be possible without it.
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Apr 2016
Publication
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar´to´fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar´to´fuel both increase with decreasing TH due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance in the case where TH = 2280 K ηcycle = 24.4% and ηsolar´to´fuel = 29.5% (without heat recuperation) while ηcycle = 31.3% and ηsolar´to´fuel = 37.8% (with 40% heat recuperation).
Tautomeric Equilibrium of an Asymmetric β-Diketone in Halogen-Bonded Cocrystals with Perfluorinated Iodobenzenes
Jun 2021
Publication
In order to study the effect of halogen bond on tautomerism in β-diketones in the solid-state we have prepared a series of cocrystals derived from an asymmetric β-diketone benzoyl-4-pyridoylmethane (b4pm) as halogen bond acceptor and perfluorinated iodobenzenes: iodopentaflourobenzene (ipfb) 12- 13- and 14-diiodotetraflorobenzene (12tfib 13tfib and 14tfib) and 135-triiodo-246-trifluorobenzene (135titfb). All five cocrystals are assembled by I···N halogen bonds involving pyridyl nitrogen and iodoperfluorobenzene iodine resulting in 1:1 (four compounds) or 1:2 (one compound) cocrystal stoichiometry. Tautomer of b4pm in which hydrogen atom is adjacent to the pyridyl fragment was found to be more stable in vacuo than tautomer with a benzoyl hydroxyl group. This tautomer is also found to be dominant in the majority of crystal structures somewhat more abundantly in crystal structures of cocrystals in which additional I···O halogen bond with the benzoyl oxygen has been established. Attempts have also been made to prepare an equivalent series of cocrystals using a closely related asymmetric β-diketone benzoyl-3-pyridoylmethane (b3pm); however all attempts were unsuccessful which is attributed to more effective crystal packing of b3pm isomer compared to b4pm which reduced the probability of cocrystal formation.
Prospective Hydrogen Production Regions of Australia
Oct 2019
Publication
There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. Australia’s Chief Scientist Alan Finkel recently prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of the ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been commissioned by the Department of Industry Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential and the availability of water are the most important factors with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. In August 2018 Australia’s Chief Scientist Dr Alan Finkel prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been engaged by the Department of Industry Innovation and Science to develop maps that show areas with high potential for future hydrogen production. The study is technology agnostic but considers only low carbon production processes. It includes hydrogen production via electrolysis using renewable energy sources (referred to as renewable hydrogen) as well as fossil fuel-derived hydrogen coupled with carbon capture and storage (CCS) (referred to as CCS hydrogen). The maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential (from wind solar and hydro resources) and the availability of water are the most important factors while various infrastructure considerations also play a role. In the case of CCS hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the spatial distribution of potential hydrogen production. In this report we present five different scenarios that reflect key differences in technologies for hydrogen production and the requirements of those technologies. Using geospatial analysis each scenario is translated into a heat map that shows regional trends in potential for hydrogen production based on access to underpinning resources and existing infrastructure.
Three scenarios explore the future potential for renewable hydrogen produced by electrolysis. These demonstrate a high potential for hydrogen production in the future near many Australian coastal areas which is even larger if infrastructure is available to transport renewable power generated from inland areas to the coast. Results also show significant future potential for hydrogen production in inland areas where water is available. The final two scenarios focus on the future potential for CCS hydrogen: a 2030 scenario and a 2050 scenario. A key factor in future CCS hydrogen potential is related to the timeframes for the availability of geological storage resources for CO2.
As part of the ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been commissioned by the Department of Industry Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential and the availability of water are the most important factors with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. In August 2018 Australia’s Chief Scientist Dr Alan Finkel prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been engaged by the Department of Industry Innovation and Science to develop maps that show areas with high potential for future hydrogen production. The study is technology agnostic but considers only low carbon production processes. It includes hydrogen production via electrolysis using renewable energy sources (referred to as renewable hydrogen) as well as fossil fuel-derived hydrogen coupled with carbon capture and storage (CCS) (referred to as CCS hydrogen). The maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential (from wind solar and hydro resources) and the availability of water are the most important factors while various infrastructure considerations also play a role. In the case of CCS hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the spatial distribution of potential hydrogen production. In this report we present five different scenarios that reflect key differences in technologies for hydrogen production and the requirements of those technologies. Using geospatial analysis each scenario is translated into a heat map that shows regional trends in potential for hydrogen production based on access to underpinning resources and existing infrastructure.
Three scenarios explore the future potential for renewable hydrogen produced by electrolysis. These demonstrate a high potential for hydrogen production in the future near many Australian coastal areas which is even larger if infrastructure is available to transport renewable power generated from inland areas to the coast. Results also show significant future potential for hydrogen production in inland areas where water is available. The final two scenarios focus on the future potential for CCS hydrogen: a 2030 scenario and a 2050 scenario. A key factor in future CCS hydrogen potential is related to the timeframes for the availability of geological storage resources for CO2.
Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns
Feb 2022
Publication
Hydrogen is becoming an increasingly important energy carrier in sector integration for fuel cell transportation heat and electricity. Underground salt caverns are one of the most promising ways to store the hydrogen obtained from water electrolysis using power generation from renewable energy sources (RES). At the same time the production of hydrogen can be used to avoid energy curtailments during times of low electricity demand or low prices. The stored hydrogen can also be used during times of high energy demand for power generation e.g. with fuel cells to cover the fluctuations and shortages caused by low RES generation. This article presents an overview of the techniques that were used and proposed for using excess energy from RES for hydrogen production from water and its storage techniques especially in underground salt caverns for the aforementioned purpose and its feasibility. This paper compares and summarizes the competing technologies based on the current state-of-the-art identifies some of the difficulties in hydrogen production and storage and discusses which technology is the most promising. The related analysis compares cost and techno-economic feasibility with regard to hydrogen production and storage systems. The paper also identifies the potential technical challenges and the limitations associated with hydrogen integration into the power grid.
Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production
Jul 2021
Publication
Harnessing solar energy and converting it into renewable fuels by chemical processes such as water splitting and carbon dioxide (CO2 ) reduction is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture tunable composition large surface area and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation CO2 conversion and various organic transformation reactions. In this article we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Research Requirements to Move the Bar Forward Using Aqueous Formate Salts as H2 Carriers for Energy Storage Applications
Nov 2020
Publication
In this perspective on hydrogen carriers we focus on the needs for the development of robust active catalysts for the release of H2 from aqueous formate solutions which are non-flammable non-toxic thermally stable and readily available at large scales at reasonable cost. Formate salts can be stockpiled in the solid state or dissolved in water for long term storage and transport using existing infrastructure. Furthermore formate salts are readily regenerated at moderate pressures using the same catalyst as for the H2 release. There have been several studies focused on increasing the activity of catalysts to release H2 at moderate temperatures i.e. < 80 °C below the operating temperature of a proton exchange membrane (PEM) fuel cell. One significant challenge to enable the use of aqueous formate salts as hydrogen carriers is the deactivation of the catalyst under operating conditions. In this work we provide a review of the most efficient heterogeneous catalysts that have been described in the literature their proposed modes of deactivation and the strategies reported to reactivate them. We discuss potential pathways that may lead to deactivation and strategies to mitigate it in a variety of H2 carrier applications. We also provide an example of a potential use case employing formate salts solutions using a fixed bed reactor for seasonal storage of energy for a microgrid application.
Transient Numerical Modeling and Model Predictive Control of an Industrial-scale Steam Methane Reforming Reactor
Mar 2021
Publication
A steam methane reforming reactor is a key equipment in hydrogen production and numerical analysis and process control can provide a critical insight into its reforming mechanisms and flexible operation in real engineering applications. The present paper firstly studies the transport phenomena in an industrial-scale steam methane reforming reactor by transient numerical simulations. Wall effect and local non thermal equilibrium is considered in the simulations. A temperature profile of the tube outer wall is given by user defined functions integrated into the ANSYS FLUENT software. Dynamic simulations show that the species distribution is closely related to the temperature distribution which makes the temperature of the reactor tube wall an important factor for the hydrogen production of the reformer and the thermal conductivity of the catalyst network is crucial in the heat transfer in the reactor. Besides there exists a delay of the reformer's hydrogen production when the temperature profile of the tube wall changes. Among inlet temperature inlet mass flow rate and inlet steam-to-carbon (S/C) ratio the mass flow rate is the most influencing factor for the hydrogen production. The dynamic matrix control (DMC) scheme is subsequently designed to manipulate the mole fraction of hydrogen of the outlet to the target value by setting the temperature profile trajectory of the reforming tube with time. The proportional-integral control strategy is also studied for comparison. The closed-loop simulation results show that the proposed DMC control strategy can reduce the overshoot and have a small change of the input variable. In addition the disturbances of feed disturbance can also be well rejected to assure the tracking performance indicating the superiority of the DMC controller. All the results give insight to the theoretical analysis and controller design of a steam methane reformer and demonstrate the potential of the CFD modeling in study the transport mechanism and the idea of combining CFD modelling with controller design for the real application.
High Performance of Biohydrogen Production in Packed-Filter Bioreactor via Optimizing Packed-Filter Position
Jul 2021
Publication
In this present investigation a packed-filter bioreactor was employed to produce hydrogen utilizing an expired soft drink as a substrate. The effects of feeding substrate concentrations ranging from 19.51 10.19 5.34 3.48 to 2.51 g total sugar/L were examined and the position of the packed filter installed in the bioreactor at dimensionless heights (h/H) of 1/4 2/4 3/4 and 4/4 was studied. The results revealed that with a substrate concentration of 20 g total sugar/L and a hydraulic retention time (HRT) of 1 h a packed filter placed at the half-height position of the bioreactor (h/H 2/4) has the optimal hydrogen production rate hydrogen yield and average biomass concentration in the bioreactor resulting in 55.70 ± 2.42 L/L/d 0.90 ± 0.06 mol H2/mol hexose and 17.86 ± 1.09 g VSS/L. When feeding substrate concentrations varied from 20 10 to 5 g total sugar/L with the packed-filter position at h/H 2/4 Clostridium sp. Clostridium tyrobutyricum and Bifidobacterium crudilactis were the predominant bacteria community. Finally it was discovered that the packed-filter bioreactor can produce stable hydrogen in high-strength organic effluent.
Materials for End to End Hydrogen Roadmap
Jun 2021
Publication
This report is commissioned by the Henry Royce Institute for advanced materials as part of its role around convening and supporting the UK advanced materials community to help promote and develop new research activity. The overriding objective is to bring together the advanced materials community to discuss analyse and assimilate opportunities for emerging materials research for economic and societal benefit. Such research is ultimately linked to both national and global drivers namely Transition to Zero Carbon Sustainable Manufacture Digital & Communications Circular Economy as well as Health & Wellbeing.
This paper can be download from their website
This paper can be download from their website
Optimal Strategies of Deployment of Far Offshore Co-located Wind-wave Energy Farms
Nov 2021
Publication
The most profitable offshore energy resources are usually found away from the coast. Nevertheless the accessibility and grid integration in those areas are more complicated. To avoid this problematic large scale hydrogen production is being promoted for far offshore applications. The main objective of this paper is to analyze the ability of wave energy converters to maximize hydrogen production in hybrid wind and wave far offshore farms. To that end wind and wave resource data are obtained from ERA5 for different locations in the Atlantic ocean and a Maximum Covariance Analysis is proposed for the selection of the most representative locations. Furthermore the suitability of different sized wave energy converters for auxiliary hydrogen production in the far offshore wind farms is also analysed. On that account the hydrodynamic parameters of the oscillating bodies are obtained via simulations with a Boundary Element Method based code and their operation is modelled using the software tool Matlab. The combination of both methodologies enables to perform a realistic assessment of the contribution of the wave energy converters to the hydrogen generation of an hybrid energy farm especially during those periods when the wind turbines would be stopped due to the variability of the wind. The obtained results show a considerable hydrogen generation capacity of the wave energy converters up to 6.28% of the wind based generation which could remarkably improve the efficiency of the far offshore farm and bring important economical profit. Wave energy converters are observed to be most profitable in those farms with low covariance between wind and waves where the disconnection times of the wind turbines are prone to be more prolonged but the wave energy is still usable. In such cases a maximum of 101.12 h of equivalent rated production of the wind turbine has been calculated to be recovered by the wave energy converters.
Hydrogen Production Technologies: Current State and Future Developments
Mar 2013
Publication
Hydrogen (H2) is currently used mainly in the chemical industry for the production of ammonia and methanol. Nevertheless in the near future hydrogen is expected to become a significant fuel that will largely contribute to the quality of atmospheric air. Hydrogen as a chemical element (H) is the most widespread one on the earth and as molecular dihydrogen (H2) can be obtained from a number of sources both renewable and nonrenewable by various processes. Hydrogen global production has so far been dominated by fossil fuels with the most significant contemporary technologies being the steam reforming of hydrocarbons (e.g. natural gas). Pure hydrogen is also produced by electrolysis of water an energy demanding process. This work reviews the current technologies used for hydrogen (H2) production from both fossil and renewable biomass resources including reforming (steam partial oxidation autothermal plasma and aqueous phase) and pyrolysis. In addition other methods for generating hydrogen (e.g. electrolysis of water) and purification methods such as desulfurization and water-gas shift reactions are discussed.
The Influence of Hydrogen Sulfide Contaminations on Hydrogen Production in Chemical Looping Processes
Aug 2021
Publication
Chemical looping with iron-based oxygen carriers enables the production of hydrogen from various fossil and biogenic primary energy sources. In applications with real producer gases such as biogas or gasified biomass hydrogen sulfide represents one of the most challenging contaminants. The impact of H2S on the reactivity of a Fe2O3/Al2O3 oxygen carrier material in chemical looping hydrogen production was investigated in the present work. First potential sulfur deactivation mechanisms are discussed in detail on the basis of thermodynamic data. Afterwards an experimental study in a fixed-bed reactor system gave experimental evidence on the fate of sulfur in chemical looping hydrogen systems. The chemisorption of hydrogen sulfide (H2S) was identified as the main cause for the accumulative adsorption of H2S in the reduction phase and was confirmed by ex-situ ICP-EOS analysis. In the subsequent steam oxidation step significant quantities of H2S were released resulting in an undesirable contamination of the hydrogen product gas. The reason was found as weakened sulfur bonds through increasing reactor temperatures caused by the exothermic oxidation reactions. In additional air oxidation steps no further contaminants as sulfur dioxide were identified. A profound interpretation was achieved through the fulfillment of the overall sulfur mass balance within a mean deviation of 3.7%. Quantitative investigations showed that the hydrogen consumption decreased by 12% throughout the reduction phase in the event of 100 ppm H2S in the feed gas
A Solar Thermal Sorption-enhanced Steam Methane Reforming (SE-SMR) Approach and its Performance Assessment
Feb 2022
Publication
This paper proposes an integration of concentrating solar power (CSP) with a sorption-enhanced steam methane reforming (SE-SMR) process and assesses its overall solar-to-fuel conversion performance. A thermodynamic treatment of the SE-SMR process for H2 production is presented and evaluated in an innovative two reactors system configuration using CSP as a heat input. Four metal carbonate/metal oxide pairs are considered and the equilibrium thermodynamics reveals that CaCO3/CaO pair is the most suitable candidate for this process. Additionally a reactor-scale thermodynamic model is developed to determine the optimum operating conditions for the process. For the carbonation step temperatures between 700 and 900 K and steam-to-methane ratio ≥4 are found to be the most favorable. Furthermore an advanced process model which utilizes operating conditions determined from the reactor-scale model is developed to evaluate the process efficiency. The model predicts that the proposed process can achieve a solar-to-fuel efficiency ~41% for calcination temperature of 1500 K and carbonation temperature of 800 K without considering any solid heat recovery. An additional 2.5% increase in the process efficiency is feasible with the consideration of the solid heat recovery. This study shows the thermodynamic feasibility of integrating the SE-SMR process with CSP technologies.
A Critical Review on the Principles, Applications, and Challenges of Waste-to-hydrogen Technologies
Sep 2020
Publication
Hydrogen sourced from energy recovery processes and conversion of waste materials is a method of providing both a clean fuel and a sustainable waste management alternative to landfill and incineration. The question is whether waste-to–hydrogen can become part of the zero-carbon future energy mix and serve as one of the cleaner hydrogen sources which is economically viable and environmentally friendly. This work critically assessed the potential of waste as a source of hydrogen production via various thermochemical (gasification and pyrolysis) and biochemical (fermentation and photolysis) processes. Research has shown hydrogen production yields of 33.6 mol/kg and hydrogen concentrations of 82% from mixed waste feedstock gasification. Biochemical methods such as fermentation can produce hydrogen up to 418.6 mL/g. Factors including feedstock quality process requirements and technology availability were reviewed to guide technology selection and system design. Current technology status and bottlenecks were discussed to shape future development priorities. These bottlenecks include expensive production and operation processes heterogeneous feedstock low process efficiencies inadequate management and logistics and lack of policy support. Improvements to hydrogen yields and production rates are related to feedstock processing and advanced energy efficiency processes such as torrefaction of feedstock which has shown thermal efficiency of gasification up to 4 MJ/kg. This will affect the economic feasibility and concerns around required improvements to bring the costs down to allow waste to viewed as a serious competitor for hydrogen production. Recommendations were also made for financially competitive waste-to-hydrogen development to be part of a combined solution for future energy needs.
Electrocatalytic Properties for the Hydrogen Evolution of the Electrodeposited Ni–Mo/WC Composites
May 2021
Publication
The catalytical activity for the hydrogen evolution reaction (HER) of the electrodeposited Ni–Mo/WC composites is examined in 1 M KOH solution. The structure surface morphology and surface composition is investigated using the scanning electron microscopy X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic properties for the HER is evaluated based on the cathodic polarization electrochemical impedance cyclic voltammetry and chronopotentiometry methods. The obtained results prove the superior catalytic activity for the HER of Ni–Mo/WC composites to Ni–Mo alloy. The catalytic activity of Ni–Mo/WC electrodes is determined by the presence of WC nanoparticles and Mo content in the metallic matrix. The best electrocatalytic properties are identified for Ni–Mo/WC composite with the highest Mo content and the most oxidized surface among the studied coatings. The impedance results reveal that the observed improvement in the catalytic activity is the consequence of high real surface area and high intrinsic catalytic activity of the composite.
The Merit and the Context of Hydrogen Production from Water and Its Effect on Global CO2 Emission
Feb 2022
Publication
For a green economy to be possible in the near future hydrogen production from water is a sought-after alternative to fossil fuels. It is however important to put things into context with respect to global CO2 emission and the role of hydrogen in curbing it. The present world annual production of hydrogen is about 70 million metric tons of which almost 50% is used to make ammonia NH3 (that is mostly used for fertilizers) and about 15% is used for other chemicals [1]. The hydrogen produced worldwide is largely made by steam CH4 reforming (SMR) which is one of the most energy-intensive processes in the chemical industry [2]. It releases based on reaction stoichiometry 5.5 kg of CO2 per 1 kg of H2 (CH4+ 2 H2O → CO2 + 4 H2). When the process itself is taken into account in addition the production [3] becomes about 9 kg of CO2 per kg of H2 and this ratio can be as high as 12 [4]. This results in the production of about one billion tons/year of CO2. The world annual CO2 emission from fossil fuels is however much larger: it is about 36 billion tons of which roughly 25% is emitted while generating electricity and heat 20% due to transport activity and 20% from other industrial processes. Because of the link between global warming and CO2 emissions there is an increasing move towards finding alternative approaches for energy vectors and their applications.
The Optimization of Hybrid Power Systems with Renewable Energy and Hydrogen Generation
Jul 2018
Publication
This paper discusses the optimization of hybrid power systems which consist of solar cells wind turbines fuel cells hydrogen electrolysis chemical hydrogen generation and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage we first developed a general hybrid power model using the Matlab/SimPowerSystemTM and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads without conducting individual experiments. Furthermore cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally the impacts of hydrogen costs on system optimization was discussed. In the future the developed method could be applied to design customized hybrid power systems.
A Hot Syngas Purification System Integrated with Downdraft Gasification of Municipal Solid Waste
Jan 2019
Publication
Gasification of municipal solid waste (MSW) with subsequent utilization of syngas in gas engines/turbines and solid oxide fuel cells can substantially increase the power generation of waste-to-energy facilities and optimize the utilization of wastes as a sustainable energy resources. However purification of syngas to remove multiple impurities such as particulates tar HCl alkali chlorides and sulfur species is required. This study investigates the feasibility of high temperature purification of syngas from MSW gasification with the focus on catalytic tar reforming and desulfurization. Syngas produced from a downdraft fixed-bed gasifier is purified by a multi-stage system. The system comprises of a fluidized-bed catalytic tar reformer a filter for particulates and a fixed-bed reactor for dechlorination and then desulfurization with overall downward cascading of the operating temperatures throughout the system. Novel nano-structured nickel catalyst supported on alumina and regenerable Ni-Zn desulfurization sorbent loaded on honeycomb are synthesized. Complementary sampling and analysis methods are applied to quantify the impurities and determine their distribution at different stages. Experimental and thermodynamic modeling results are compared to determine the kinetic constraints in the integrated system. The hot purification system demonstrates up to 90% of tar and sulfur removal efficiency increased total syngas yield (14%) and improved cold gas efficiency (12%). The treated syngas is potentially applicable in gas engines/turbines and solid oxide fuel cells based on the dew points and concentration limits of the remaining tar compounds. Reforming of raw syngas by nickel catalyst for over 20 h on stream shows strong resistance to deactivation. Desulfurization of syngas from MSW gasification containing significantly higher proportion of carbonyl sulfide than hydrogen sulfide traces of tar and hydrogen chloride demonstrates high performance of Ni-Zn sorbents.
Development of Visible-Light-Driven Rh–TiO2-CeO2 Hybrid Photocatalysts for Hydrogen Production
Jul 2021
Publication
Visible-light-driven hydrogen production through photocatalysis has attracted enormous interest owing to its great potential to address energy and environmental issues. However photocatalysis possesses several limitations to overcome for practical applications such as low light absorption efficiency rapid charge recombination and poor stability of photocatalysts. Here the preparation of efficient noble metal–semiconductor hybrid photocatalysts for photocatalytic hydrogen production is presented. The prepared ternary Rh–TiO2–CeO2 hybrid photocatalysts exhibited excellent photocatalytic performance toward the hydrogen production reaction compared with their counterparts ascribed to the synergistic combination of Rh TiO2 and CeO2.
Is Iridium Demand a Potential Bottleneck in the Realization of Large-Scale PEM Water Electrolysis?
Jul 2021
Publication
Proton exchange membrane water electrolysis (PEMWE) is a key technology for future sustainable energy systems. Proton exchange membrane (PEM) electrolysis cells use iridium one of the scarcest elements on earth as catalyst for the oxygen evolution reaction. In the present study the expected iridium demand and potential bottlenecks in the realization of PEMWE for hydrogen production in the targeted GW a−1 scale are assessed in a model built on three pillars: (i) an in-depth analysis of iridium reserves and mine production (ii) technical prospects for the optimization of PEM water electrolyzers and (iii) PEMWE installation rates for a market ramp-up and maturation model covering 50 years. As a main result two necessary preconditions have been identified to meet the immense future iridium demand: first the dramatic reduction of iridium catalyst loading in PEM electrolysis cells and second the development of a recycling infrastructure for iridium catalysts with technical end-of-life recycling rates of at least 90%.
Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass
Aug 2014
Publication
The framework for life cycle sustainability analysis (LCSA) developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability) is introducing a truly integrated approach for sustainability studies. However it needs to be further conceptually refined and to be made operational. In particular one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass to be used in automotive fuel cells.
Microalgal Hydrogen Production in Relation to Other Biomass‐Based Technologies—A Review
Sep 2021
Publication
Hydrogen is an environmentally friendly biofuel which if widely used could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost‐effective methods of production and storage. So far hydrogen has been produced using thermochemical methods (such as gasification pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation) with conventional fuels waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency can rapidly build biomass and possess other beneficial properties which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle
May 2021
Publication
The H2 internal combustion engine (ICE) is a key technology for complete decarbonization of the transport sector. To match or exceed the power density of conventional combustion engines H2 direct injection (DI) is essential. Therefore new injector concepts that meet the requirements of a H2 operation have to be developed. The macroscopic free stream behavior of H2 released from an innovative fluidic oscillating nozzle is investigated and compared with that of a conventional multi-hole nozzle. This work consists of H2 flow measurements and injection tests in a constant volume chamber using the Schlieren method and is accompanied by a LES simulation. The results show that an oscillating H2 free stream has a higher penetration velocity than the individual jets of a multi-hole nozzle. This behavior can be used to inject H2 far into the combustion chamber in the vertical direction while the piston is still near bottom dead center. As soon as the oscillation of the H2 free stream starts the spray angle increases and therefore H2 is also distributed in the horizontal direction. In this phase of the injection process spray angles comparable to those of a multi-hole nozzle are achieved. This behavior has a positive effect on H2 homogenization which is desirable for the combustion process.
Hydrogen Production on Demand by Redox-mediated Electrocatalysis: A Kinetic Study
Aug 2020
Publication
Producing hydrogen from water using a redox mediator on solid electrocatalyst particles in a reactor offers several advantages over classical electrolysis in terms of safety membrane degradation purity and flexibility. Herein vanadium-mediated hydrogen evolution on a commercial and low-cost Mo2C electrocatalyst is studied through the development of a reaction kinetics model. Based on a proposed mechanistic reaction scheme we established a kinetic rate law dependent on the concentration of V2+ the state-of-charge of the vanadium electrolyte from a vanadium redox flow battery and the amount of available catalytic sites on solid Mo2C. Kinetic experiments in transient conditions reveals a first-order dependence on both the concentration of V2+ and the concentration of catalytic active sites and a power law with an exponential factor of 0.57 was measured on the molar ratio V2+/V3+ i.e. on the electrochemical driving force generated on the Mo2C particles. The kinetic rate law was validated by studying the rate of reaction in steady-state conditions using a specially developed rotating ring-disk device (RRD) methodology. The kinetic model was demonstrated to be a useful tool to predict the hydrogen production via the chemical oxidation of V2+ over Mo2C at low pH (> 1 M H2SO4). For a perspective the model was implemented in a semi-batch reactor. The simulations highlight the optimal state-of-charge (SOC) to carry out the reaction in an efficient way for a given demand in hydrogen.
Influence of Cs Promoter on Ethanol Steam-Reforming Selectivity of Pt/m-ZrO2 Catalysts at Low Temperature
Sep 2021
Publication
The decarboxylation pathway in ethanol steam reforming ultimately favors higher selectivity to hydrogen over the decarbonylation mechanism. The addition of an optimized amount of Cs to Pt/m-ZrO2 catalysts increases the basicity and promotes the decarboxylation route converting ethanol to mainly H2 CO2 and CH4 at low temperature with virtually no decarbonylation being detected. This offers the potential to feed the product stream into a conventional methane steam reformer for the production of hydrogen with higher selectivity. DRIFTS and the temperature-programmed reaction of ethanol steam reforming as well as fixed bed catalyst testing revealed that the addition of just 2.9% Cs was able to stave off decarbonylation almost completely by attenuating the metallic function. This occurs with a decrease in ethanol conversion of just 16% relative to the undoped catalyst. In comparison with our previous work with Na this amount is—on an equivalent atomic basis—just 28% of the amount of Na that is required to achieve the same effect. Thus Cs is a much more efficient promoter than Na in facilitating decarboxylation.
Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis
Jun 2017
Publication
Industrial hydrogen production via alkaline water electrolysis (AEL) is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However today electricity from the national grid is widely utilized for industrial applications of AEL. Also the ban on asbestos membranes led to a change in performance patterns making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA) using the GaBi software (version 6.115 thinkstep Leinfelden-Echterdingen Germany) revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW Zirfon membranes) in three different countries (Austria Germany and Spain) with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present considering the three countries AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular used for cell manufacturing revealed significant contributions to the environmental burden.
AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges
May 2020
Publication
The main objective of the article is to provide a thorough review of currently used AC-DC converters for alkaline and proton exchange membrane (PEM) electrolyzers in power grid or wind energy conversion systems. Based on the current literature this article aims at emphasizing the advantages and drawbacks of AC-DC converters mainly based on thyristor rectifier bridges and chopper-rectifiers. The analysis is mainly focused on the current issues for these converters in terms of specific energy consumption current ripple reliability efficiency and power quality. From this analysis it is shown that thyristors-based rectifiers are particularly fit for high-power applications but require the use of active and passive filters to enhance the power quality. By comparison the association combination of the chopper-rectifier can avoid the use of bulky active and passive filters since it can improve power quality. However the use of a basic chopper (i.e. buck converter) presents several disadvantages from the reliability energy efficiency voltage ratio and current ripple point of view. For this reason new emerging DC-DC converters must be employed to meet these important issues according to the availability of new power switching devices. Finally based on the authors’ experience in power conversion for PEM electrolyzers a discussion is provided regarding the future challenges that must face power electronics for green hydrogen production based on renewable energy sources.
Techno-economic Modelling of Water Electrolysers in the Range of Several MW to Provide Grid Services While Generating Hydrogen for Different Applications: A Case Study in Spain Applied to Mobility with FCEVs
Jun 2019
Publication
The use of hydrogen as energy carrier is a promising option to decarbonize both energy and transport sectors. This paper presents an advanced techno-economic model for calculation of optimal dispatch of large-scale multi MW electrolysis plants in order to obtain a more accurate evaluation of the feasibility of business cases related to the supply of this fuel for different end uses combined with grid services' provision. The model is applied to the Spanish case using different scenarios to determine the minimum demand required from the FCEV market so that electrolysis facilities featuring several MW result in profitable business cases. The results show that grid services contribute to the profitability of hydrogen production for mobility given a minimum but considerable demand from FCEV fleets.
Characterization of the Inducible and Slow-Releasing Hydrogen Sulfide and Persulfide Donor P*: Insights into Hydrogen Sulfide Signaling
Jun 2021
Publication
Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However controversial findings also exist and its underlying molecular mechanisms are largely unknown. Recently the byproducts of H2S per-/polysulfides emerged as biological mediators themselves highlighting the complex chemistry of H2S. In this study we characterized the biological effects of P* a slow-releasing H2S and persulfide donor. To differentiate between H2S and polysulfide-derived effects we decomposed P* into polysulfides. P* was further compared to the commonly used fast-releasing H2S donor sodium hydrogen sulfide (NaHS). The effects on oxidative stress and interleukin-6 (IL-6) expression were assessed in ATDC5 cells using superoxide measurement qPCR ELISA and Western blotting. The findings on IL-6 expression were corroborated in primary chondrocytes from osteoarthritis patients. In ATDC5 cells P* not only induced the expression of the antioxidant enzyme heme oxygenase-1 via per-/polysulfides but also induced activation of Akt and p38 MAPK. NaHS and P* significantly impaired menadione-induced superoxide production. P* reduced IL-6 levels in both ATDC5 cells and primary chondrocytes dependent on H2Srelease. Taken together P* provides a valuable research tool for the investigation of H2S and per-/polysulfide signalling. These data demonstrate the importance of not only H2S but also per-/polysulfides as bioactive signaling molecules with potent anti-inflammatory and in particular antioxidant properties.
Thoughts on the Prospects of Renewable Hydrogen
Oct 2020
Publication
In the last two years or so there has been increasing interest in hydrogen as an energy source in Australia and around the world. Notably this is not the first time that hydrogen has caught our collective interest. Most recently the 2000s saw a substantial investment in hydrogen research development and demonstration around the world. Prior to that the oil crises of the 1970s also stimulated significant investment in hydrogen and earlier still the literature on hydrogen was not lacking. And yet the hydrogen economy is still an idea only.<br/>So what if anything might be different this time?<br/>This is an important question that we all need to ask and for which the author can only give two potential answers. First our need to make dramatic reductions in greenhouse gas (GHG) emissions has become more pressing since these previous waves of interest. Second renewable energy is considerably more affordable now than it was before and it has consistently outperformed expectations in terms of cost reductions by even its strongest supporters.<br/>While this dramatic and ongoing reduction in the cost of renewables is very promising our need to achieve substantial GHG emission reductions is the crucial challenge. Moreover meeting this challenge needs to be achieved with as little adverse social and economic impact as possible.<br/>When considering what role hydrogen might play we should first think carefully about the massive scale and complexity of our global energy system and the typical prices of the major energy commodities. This provides insights into what opportunities hydrogen may have. Considering a temperate country with a small population like Australia we see that domestic natural gas and transport fuel markets are comparable to and even larger than the electricity market on an energy basis.
Flexible Power & Biomass-to-Methanol Plants: Design Optimization and Economic Viability of the Electrolysis Integration
Nov 2021
Publication
This paper assesses the optimal design criteria of a flexible power and biomass to methanol (PBtM) plant conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The assessed plant includes a gasification section syngas cleaning and compression methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. A sorption-enhanced gasification technology allows to produce a tailored syngas for the downstream synthesis in both the baseline and enhanced operating conditions by controlling the in-situ CO2 separation rate. Two designs are assessed for the methanol synthesis unit with two different reactor sizes: (i) a larger reactor designed on the enhanced operation mode (enhanced reactor design – ERD) and (ii) a smaller reactor designed on the baseline operation mode (baseline reactor design – BRD). The ERD design resulted to be preferable from the techno economic perspectives resulting in 20% lower cost of the e-MeOH (30.80 vs. 37.76 €/ GJLHV) with the baseline assumptions (i.e. 80% of electrolyzer capacity factor and 2019 Denmark day-ahead market electricity price). Other important outcomes are: (i) high electrolysis capacity factor is needed to obtain competitive cost of e-MeOH and (ii) advantages of flexibly operated PBtM plants with respect to inflexible PBtM plants are significant in scenarios with high penetration of intermittent renewables leading to low average prices of electricity but also longer periods of high peak prices.
Hydrothermal Conversion of Lignin and Black Liquor for Phenolics with the Aids of Alkali and Hydrogen Donor
Jun 2019
Publication
The potentials of phenolic productions from lignin and black liquor (BL) via hydrothermal technology with the aids of alkalis and hydrogen donors were investigated by conducting batch experiments in micro-tube reactors with 300 °C sub-critical water as the solvent. The results showed that all the employed alkalis improved lignin degradation and thus phenolics production and the strong alkalis additionally manifested deoxygenation to produce more phenolics free of methoxyl group(s). Relatively hydrogen donors more visibly facilitated phenolics formation. Combination of strong alkali and hydrogen donors exhibited synergistically positive effects on producing phenolics (their total yield reaching 22 wt%) with high selectivities to phenolics among which the yields of catechol and cresols respectively peaked 16 and 3.5 wt%. BL could be hydrothermally converted into phenolics at high yields (approaching 10 wt% with the yields of catechol and cresols of about 4 and 2 wt% respectively) with the aids of its inherent alkali and hydrogen donors justifying its cascade utilization.
Heat to Hydrogen by RED—Reviewing Membranes and Salts for the RED Heat Engine Concept
Dec 2021
Publication
The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration we pinpoint the most promising salts for use in REDHE which we find to be KNO3 LiNO3 LiBr and LiCl. To further validate these results and compare the system performance with different salts there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model experimental studies can be designed to utilize the most favorable process conditions (e.g. salt solutions).
No more items...