Production & Supply Chain
Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts
Jan 2022
Publication
With global warming and the depletion of fossil resources our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this the photocatalytic water-splitting reaction which produces H2 from water and solar energy through photocatalysis has attracted much attention. However for practical use the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis researchers in the various fields must be employed in this type of study to achieve this. However for researchers in fields other than catalytic chemistry ceramic (semiconductor) materials chemistry and electrochemistry to participate in this field new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore in this review we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
A New Sustainable Hydrogen Clean Energy Paradigm
Feb 2018
Publication
We analyze the feasibility of a novel hydrogen fuel cell electric generator to provide power with zero noise and emissions for myriad ground based applications. The hydrogen fuel cell electric generator utilizes a novel scalable apparatus that safely generates hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant. The detailed analysis shows that the novel hydrogen fuel cell electric generator will be capable of meeting the clean power requirements for residential and commercial buildings including single family homes and light commercial establishments under a wide range of geographic and climatic conditions.
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Economic Viability and Environmental Efficiency Analysis of Hydrogen Production Processes for the Decarbonization of Energy Systems
Aug 2019
Publication
The widespread penetration of hydrogen in mainstream energy systems requires hydrogen production processes to be economically competent and environmentally efficient. Hydrogen if produced efficiently can play a pivotal role in decarbonizing the global energy systems. Therefore this study develops a framework which evaluates hydrogen production processes and quantifies deficiencies for improvement. The framework integrates slack-based data envelopment analysis (DEA) with fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS). The proposed framework is applied to prioritize the most efficient and sustainable hydrogen production in Pakistan. Eleven hydrogen production alternatives were analyzed under five criteria including capital cost feedstock cost O&M cost hydrogen production and CO2 emission. FAHP obtained the initial weights of criteria while FTOPSIS determined the ultimate weights of criteria for each alternative. Finally slack-based DEA computed the efficiency of alternatives. Among the 11 three alternatives (wind electrolysis PV electrolysis and biomass gasification) were found to be fully efficient and therefore can be considered as sustainable options for hydrogen production in Pakistan. The rest of the eight alternatives achieved poor efficiency scores and thus are not recommended.
Compact Heat Integrated Reactor System of Steam Reformer, Shift Reactor and Combustor for Hydrogen Production from Ethanol
Jun 2020
Publication
A compact heat integrated reactor system (CHIRS) of a steam reformer a water gas shift reactor and a combustor were designed for stationary hydrogen production from ethanol. Different reactor integration concepts were firstly studied using Aspen Plus. The sequential steam reformer and shift reactor (SRSR) was considered as a conventional system. The efficiency of the SRSR could be improved by more than 12% by splitting water addition to the shift reactor (SRSR-WS). Two compact heat integrated reactor systems (CHIRS) were proposed and simulated by using COMSOL Multiphysics software. Although the overall efficiency of the CHIRS was quite a bit lower than the SRSR-WS the compact systems were properly designed for portable use. CHIRS (I) design combining the reactors in a radial direction was large in reactor volume and provided poor temperature control. As a result the ethanol steam reforming and water gas shift reactions were suppressed leading to lower hydrogen selectivity. On the other hand CHIRS (II) design combining the process in a vertical direction provided better temperature control. The reactions performed efficiently resulting in higher hydrogen selectivity. Therefore the high performance CHIRS (II) design is recommended as a suitable stationary system for hydrogen production from ethanol.
Optimal Design and Operation of Integrated Wind-hydrogen-electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain
Nov 2015
Publication
This paper presents the optimal design and operation of integrated wind-hydrogen-electricity networks using the general mixed integer linear programming energy network model STeMES (Samsatli and Samsatli 2015). The network comprises: wind turbines; electrolysers fuel cells compressors and expanders; pressurised vessels and underground storage for hydrogen storage; hydrogen pipelines and electricity overhead/underground transmission lines; and fuelling stations and distribution pipelines.<br/>The spatial distribution and temporal variability of energy demands and wind availability were considered in detail in the model. The suitable sites for wind turbines were identified using GIS by applying a total of 10 technical and environmental constraints (buffer distances from urban areas rivers roads airports woodland and so on) and used to determine the maximum number of new wind turbines that can be installed in each zone.<br/>The objective is the minimisation of the total cost of the network subject to satisfying all of the demands of the domestic transport sector in Great Britain. The model simultaneously determines the optimal number size and location of each technology whether to transmit the energy as electricity or hydrogen the structure of the transmission network the hourly operation of each technology and so on. The cost of distribution was estimated from the number of fuelling stations and length of the distribution pipelines which were determined from the demand density at the 1 km level.<br/>Results indicate that all of Britain's domestic transport demand can be met by on-shore wind through appropriately designed and operated hydrogen-electricity networks. Within the set of technologies considered the optimal solution is: to build a hydrogen pipeline network in the south of England and Wales; to supply the Midlands and Greater London with hydrogen from the pipeline network alone; to use Humbly Grove underground storage for seasonal storage and pressurised vessels at different locations for hourly balancing as well as seasonal storage; for Northern Wales Northern England and Scotland to be self-sufficient generating and storing all of the hydrogen locally. These results may change with the inclusion of more technologies such as electricity storage and electric vehicles.
Development of Water Electrolysis in the European Union
Feb 2014
Publication
In view of the recent interest in the transformation of renewable energy into a new energy vector that did not produce by combustion greenhouse gases emissions the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the industrial perspectives of water electrolysis in Europe. and the role that public support has in that evolution.
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
Nov 2017
Publication
The need for energy storage to balance intermittent and inflexible electricity supply with demand is driving interest in conversion of renewable electricity via electrolysis into a storable gas. But high capital cost and uncertainty regarding future cost and performance improvements are barriers to investment in water electrolysis. Expert elicitations can support decision-making when data are sparse and their future development uncertain. Therefore this study presents expert views on future capital cost lifetime and efficiency for three electrolysis technologies: alkaline (AEC) proton exchange membrane (PEMEC) and solid oxide electrolysis cell (SOEC). Experts estimate that increased R&D funding can reduce capital costs by 0–24% while production scale-up alone has an impact of 17–30%. System lifetimes may converge at around 60000–90000 h and efficiency improvements will be negligible. In addition to innovations on the cell-level experts highlight improved production methods to automate manufacturing and produce higher quality components. Research into SOECs with lower electrode polarisation resistance or zero-gap AECs could undermine the projected dominance of PEMEC systems. This study thereby reduces barriers to investment in water electrolysis and shows how expert elicitations can help guide near-term investment policy and research efforts to support the development of electrolysis for low-carbon energy systems.
Effect of Syngas Fuel Compositions on the Occurrence of Instability of Laminar Diffusion Flame
Dec 2020
Publication
The paper presents a numerical investigation of the critical roles played by the chemical compositions of syngas on laminar diffusion flame instabilities. Three different flame phenomena – stable flickering and tip-cutting – are formulated by varying the syngas fuel rate from 0.2 to 1.4 SLPM. Following the satisfactory validation of numerical results with Darabkhani et al. [1] the study explored the consequence of each species (H2 CO CH4 CO2 N2) in the syngas composition. It is found that low H2:CO has a higher level of instability which however does not rise any further when the ratio is less than 1. Interestingly CO encourages the heat generation with less fluctuation while H2 plays another significant role in the increase of flame temperature and its fluctuation. Diluting CH4 into syngas further increases the instability level as well as the fluctuation of heat generation significantly. However an opposite effect is found from the same action with either CO2 or N2. Finally considering the heat generation and flame stability the highest performance is obtained from 25%H2+75%CO (81 W) followed by EQ+20%CO2 and EQ+20%N2 (78 W).
Efficient Hydrogen Production with CO2 Capture Using Gas Switching Reforming
Jul 2019
Publication
Hydrogen is a promising carbon-neutral energy carrier for a future decarbonized energy sector. This work presents process simulation studies of the gas switching reforming (GSR) process for hydrogen production with integrated CO2 capture (GSR-H2 process) at a minimal energy penalty. Like the conventional steam methane reforming (SMR) process GSR combusts the off-gas fuel from the pressure swing adsorption unit to supply heat to the endothermic reforming reactions. However GSR completes this combustion using the chemical looping combustion mechanism to achieve fuel combustion with CO2 separation. For this reason the GSR-H2 plant incurred an energy penalty of only 3.8 %-points relative to the conventional SMR process with 96% CO2 capture. Further studies showed that the efficiency penalty is reduced to 0.3 %-points by including additional thermal mass in the reactor to maintain a higher reforming temperature thereby facilitating a lower steam to carbon ratio. GSR reactors are standalone bubbling fluidized beds that will be relatively easy to scale up and operate under pressurized conditions and the rest of the process layout uses commercially available technologies. The ability to produce clean hydrogen with no energy penalty combined with this inherent scalability makes the GSR-H2 plant a promising candidate for further research.
Study on Hydrogen from Renewable Resources in the EU
Feb 2016
Publication
Hydrogen can be produced from a broad range of renewable energy sources acting as a unique energy hub providing low or zero emission energy to all energy consuming sectors. Technically and efficiently producing hydrogen from renewable sources is a key enabler for these developments.<br/>Traditionally hydrogen has been produced from fossil sources by steam methane reforming of natural gas. At present the technology of choice to produce renewable ‘green’ hydrogen is water electrolysis using renewable electricity. The FCH JU has been supporting research and development of electrolyser technology and application projects aiming to increase the energy efficiency of electrolytic hydrogen production from renewable sources and to reduce costs.<br/>This study complements these activities by focusing on renewable hydrogen generation other than electrolysis. In this report these alternative hydrogen generation technologies are described characterized by their technical capabilities maturity and economic performance and assessed for their future potential.<br/>A methodology has been devised to first identify and structure a set of relevant green hydrogen pathways (eleven pathways depicted in the figure below) analyse them at a level of detail allowing a selection of those technologies which fit into and promise early commercialization in the framework of FCH 2 JU’s funding program.<br/>These originally proposed eleven pathways use solar thermal energy sunlight or biomass as major energy input.
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant that circumvents this limitation via an added combustor after the CLC reactors. Without the added combustor the energy penalty amounts to 11.4%-points causing a high CO2 avoidance cost of $117.3/ton which is more expensive than a conventional NGCC plant with post-combustion capture ($93.8/ton) with an energy penalty of 8.1%-points. This conventional CLC plant would also require a custom gas turbine. With an added combustor fired by natural gas a standard gas turbine can be deployed and CO2 avoidance costs are reduced to $60.3/ton mainly due to a reduction in the energy penalty to only 1.4%-points. However due to the added natural gas combustion after the CLC reactor CO2 avoidance is only 52.4%. Achieving high CO2 avoidance requires firing with clean hydrogen instead increasing the CO2 avoidance cost to $96.3/ton when a hydrogen cost of $15.5/GJ is assumed. Advanced heat integration could reduce the CO2 avoidance cost to $90.3/ton by lowering the energy penalty to only 0.6%-points. An attractive alternative is therefore to construct the plant for added firing with natural gas and retrofit the added combustor for hydrogen firing when CO2 prices reach very high levels.
Effect of TiO2 on Electrocatalytic Behavior of Ni-Mo Alloy Coating for Hydrogen Energy
Jun 2018
Publication
Ni-Mo-TiO2 composite coating has been developed through electrodeposition method by depositing titanium dioxide (TiO2) nanoparticles parallel to the process of Ni-Mo alloy coating. The experimental results explaining the increased electrocatalytic activity of Ni-Mo alloy coating on incorporation of TiO2 nanoparticles into its alloy matrix is reported here. The effect of addition of TiO2 on composition morphology and phase structure of TiO2 – composite coating is studied with special emphasis on its electrocatalytic activity for hydrogen evolution reaction (HER) in 1.0 M KOH solution. The electrocatalytic activity of alloy coatings were validated using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Under optimal condition TiO2 – composite alloy coating represented as (Ni-Mo-TiO2)2.0 A dm 2 is found to exhibit the highest electrocatalytic activity for HER compared to its binary alloy counterpart. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 composite coating was attributed to the increased Mo content porosity and roughness of coating affected due to addition of TiO2 nanoparticles supported by SEM EDX XRD and AFM study. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating was found due to decreased Rct and increased Cdl values demonstrated by EIS study. Better electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating compared to (Ni-Mo)2.0 A dm 2 coating has been explained through mechanism. Experimental study revealed that (Ni-Mo-TiO2)2.0 A dm 2 composite coating follows Volmer-Heyrovsky mechanism compared to Tafel mechanism in case of (Ni-Mo-TiO2)2.0 A dm 2 coating assessed on the basis of Tafel slopes.
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Low-carbon Hydrogen Via Integration of Steam Methane Reforming with Molten Carbonate Fuel Cells at Low Fuel Utilization
Feb 2021
Publication
Hydrogen production is critical to many modern chemical processes – ammonia synthesis petroleum refining direct reduction of iron and more. Conventional approaches to hydrogen manufacture include steam methane reforming and autothermal reforming which today account for the lion's share of hydrogen generation. Without CO2 capture these processes emit about 8.7 kg of CO2 for each kg of H2 produced. In this study a molten carbonate fuel cell system with CO2 capture is proposed to retrofit the flue gas stream of an existing Steam Methane Reforming plant rated at 100000 Nm3 h−1 of 99.5% pure H2. The thermodynamic analysis shows direct CO2 emissions can be reduced by more than 95% to 0.4 to 0.5 kg CO2 /kg H2 while producing 17% more hydrogen (with an increase in natural gas input of approximately 37%). Because of the additional power and hydrogen generation of the carbonate fuel cell the efficiency debit associated with CO2 capture is quite small reducing the SMR efficiency from 76.6% without capture to 75.6% with capture. In comparison the use of standard amine technology for CO2 capture reduces the efficiency below 70%. This demonstrates the synergistic nature of the carbonate fuel cells which can reform natural gas to H2 while simultaneously capturing CO2 from the SMR flue gas and producing electricity giving rise to a total system with very low emissions yet high efficiency.
High-pressure Hydrogen Production with Inherent Sequestration of a Pure Carbon Dioxide Stream Via Fixed Bed Chemical Looping
Feb 2019
Publication
The proof of concept for the production of pure pressurized hydrogen from hydrocarbons in combination with the sequestration of a pure stream of carbon dioxide with the reformer steam iron cycle is presented. The iron oxide based oxygen carrier (95% Fe2O3 5% Al2O3) is reduced with syngas and oxidized with steam at 1023 K. The carbon dioxide separation is achieved via partial reduction of the oxygen carrier from Fe2O3 to Fe3O4 yielding thermodynamically to a product gas only containing CO2 and H2O. By the subsequent condensation of steam pure CO2 is sequestrated. After each steam oxidation phase an air oxidation was applied to restore the oxygen carrier to hematite level. Product gas pressures of up to 30.1 bar and hydrogen purities exceeding 99% were achieved via steam oxidations. The main impurities in the product gas are carbon monoxide and carbon dioxide which originate from solid carbon depositions or from stored carbonaceous molecules inside the pores of the contact mass. The oxygen carrier samples were characterized using elemental analysis BET surface area measurement XRD powder diffraction SEM and light microscopy. The maximum pressure of 95 bar was demonstrated for hydrogen production in the steam oxidation phase after the full oxygen carrier reduction significantly reducing the energy demand for compressors in mobility applications.
Anchoring of Turbulent Premixed Hydrogen/Air Flames at Externally Heated Walls
Oct 2020
Publication
A joint experimental and numerical investigation of turbulent flame anchoring at externally heated walls is presented. The phenomenon has primarily been studied for laminar flames and micro-combustion while this study focuses on large-scale applications and elevated Reynolds number flows. Therefore a novel burner design is developed and examined for a diverse set of operating conditions. Hydroxyl radical chemiluminescence measurements are employed to validate the numerical method. The numerical investigation evaluates the performance of various hydrogen/air kinetics Reynolds-averaged turbulence models and the eddy dissipation concept (EDC) as a turbulence-chemistry interaction model. Simulation results show minor differences between detailed chemical mechanisms but pronounced deviations for a reduced kinetic. The baseline k-ω turbulence model is assessed to most accurately predict flame front position and shape. Universal applicability of EDC modelling constants is contradicted. Conclusively the flame anchoring concept is considered a promising approach for pilot flames in continuous combustion devices.
Hydrogen and Hydrogen-derived Fuels through Methane Decomposition of Natural Gas – GHG Emissions and Costs
May 2020
Publication
Hydrogen can be produced from the decomposition of methane (also called pyrolysis). Many studies assume that this process emits few greenhouse gas (GHG) because the reaction from methane to hydrogen yields only solid carbon and no CO2. This paper assesses the life-cycle GHG emissions and the levelized costs for hydrogen provision from methane decomposition in three configurations (plasma molten metal and thermal gas). The results of these configurations are then compared to electrolysis and steam methane reforming (SMR) with and without CO2capture and storage (CCS). Under the global natural gas supply chain conditions hydrogen from methane decomposition still causes significant GHG emissions between 43 and 97 g CO2-eq./MJ. The bandwidth is predominately determined by the energy source providing the process heat i.e. the lowest emissions are caused by the plasma system using renewable electricity. This configuration shows lower GHG emissions compared to the “classical” SMR (99 g CO2-eq./MJ) but similar emissions to the SMR with CCS (46 g CO2-eq./MJ). However only electrolysis powered with renewable electricity leads to very low GHG emissions (3 g CO2-eq./MJ). Overall the natural gas supply is a decisive factor in determining GHG emissions. A natural gas supply with below-global average GHG emissions can lead to lower GHG emissions of all methane decomposition configurations compared to SMR. Methane decomposition systems (1.6 to 2.2 €/kg H2) produce hydrogen at costs substantially higher compared to SMR (1.0 to 1.2 €/kg) but lower than electrolyser (2.5 to 3.0 €/kg). SMR with CCS has the lowest CO2abatement costs (24 €/t CO2-eq. other > 141 €/t CO2-eq.). Finally fuels derived from different hydrogen supply options are assessed. Substantially lower GHG emissions compared to the fossil reference (natural gas and diesel/gasoline) are only possible if hydrogen from electrolysis powered by renewable energy is used (>90% less). The other hydrogen pathways cause only slightly lower or even higher GHG emissions.
Effect of Anion Exchange Ionomer Content on Electrode Performance in AEM Water Electrolysis
Aug 2020
Publication
Anion exchange membrane water electrolysis (AEMWE) has acquired substantial consideration as a cost-effective hydrogen production technology. The anion ionomer content in the catalyst layers during hydrogen and oxygen evolution reaction (HER and OER) is of ultimate significance. Herein an in-situ half-cell analysis with reference electrodes was carried out for simultaneous potential measurements and identification of the influence of the anion exchange ionomer (AEI) content on anode and cathode performance. The measured half-cell potentials proved the influence of AEI content on the catalytic activity of HER and OER which was supported by the rotating disk electrode (RDE) measurements. Cathode overpotential of Ni/C was not negligible and more affected by the AEI content than anode with the optimized AEI content of 10 wt% while NiO anode OER overpotential was independent of the AEI content. For the same AEI content PGM catalysts showed higher electroactivity than Ni-based catalysts for HER and OER and the cathode catalyst's intrinsic activity is of high importance in the AEM electrolysis operation. Post-mortem analysis by SEM mapping of both AEI and catalyst distributions on the electrode surface showed the effect of AEI loading on the catalyst morphology which could be related to the electrode performance.
No more items...