Policy & Socio-Economics
Balancing GHG Mitigation and Land-use Conflicts: Alternative Northern European Energy System Scenarios
Jan 2022
Publication
Long-term power market outlooks suggest a rapid increase in renewable energy deployment as a main solution to greenhouse gas mitigation in the Northern European energy system. However the consequential area requirement is a non-techno-economic aspect that currently is omitted by many energy system optimization models. This study applies modeling to generate alternatives (MGA) technique to the Balmorel energy system model to address spatial conflicts related to increased renewable energy deployment. The approach searches for alternative solutions that minimize land-use conflicts while meeting the low-carbon target by allowing a 1% to 15% increase in system costs compared to the least-cost solution. Two alternative objectives are defined to reflect various aspects of spatial impact. The results show that the least-cost solution requires 1.2%–3.6% of the land in the modeled countries in 2040 for onshore wind and solar PV installations. A 10% increase in costs can reduce the required land area by 58% by relying more on offshore wind. Nuclear energy may also be an option if both onshore and offshore areas are to be reduced or in a less flexible system. Both offshore wind and nuclear energy technologies are associated with higher risks and pose uncertainties in terms of reaching the climate targets in time. The changes in costs and required land areas imply significantly higher annual costs ranging from 200 to 750 kEUR/km2 to avoid land use for energy infrastructure. Overall this study confirms that the energy transition strategies prioritizing land savings from energy infrastructure are feasible but high risks and costs of averted land are involved.
Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways
Jul 2016
Publication
Power-to-gas is a promising option for storing interment renewables nuclear baseload power and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways” including Power to Hydrogen Power to Natural Gas End-users Power to Renewable Content in Petroleum Fuel Power to Power Seasonal Energy Storage to Electricity Power to Zero Emission Transportation Power to Seasonal Storage for Transportation Power to Micro grid Power to Renewable Natural Gas (RNG) to Pipeline (“Methanation”) and Power to Renewable Natural Gas (RNG) to Seasonal Storage. In order to compare the different pathways the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems
A Pathway to Decarbonise the Shipping Sector by 2050
Oct 2021
Publication
Urgent action is needed to accelerate the pace of the global energy transition and the decarbonisation of the global economy. International shipping is a key sector of the economy as much as 90% of worldwide trade is transacted via ocean going vessels. The sector is also one of the most challenging to decarbonise.
In this context A Pathway to Decarbonise the Shipping Sector by 2050 by the International Renewable Energy Agency (IRENA) analyses the technology readiness of the renewable fuels suitable for international shipping. This report also explores the options and actions needed to progress towards a decarbonised maritime shipping sector by 2050 and seeks to identify a realistic mitigation pathway to reach the climate goal of limiting global temperature rise to 1.5°C and bringing CO2 emissions closer to net zero by mid-century.
Key messages:
In this context A Pathway to Decarbonise the Shipping Sector by 2050 by the International Renewable Energy Agency (IRENA) analyses the technology readiness of the renewable fuels suitable for international shipping. This report also explores the options and actions needed to progress towards a decarbonised maritime shipping sector by 2050 and seeks to identify a realistic mitigation pathway to reach the climate goal of limiting global temperature rise to 1.5°C and bringing CO2 emissions closer to net zero by mid-century.
Key messages:
- The sector’s decarbonisation strategy must involve a combination of energy efficiency and renewable fuels. Starting now the active adoption of energy efficiency measures will be critical to reduce energy demand and thus CO2 emissions in the immediate term.
- In the short term advanced biofuels will play a key role in the reduction of CO2 emissions. In the medium and long-term green hydrogen-based fuels are set to be the backbone for the sector’s decarbonisation.
- Renewable e-ammonia will play a pivotal role; where 183 million tonnes of renewable ammonia for international shipping alone will be needed by 2050 - a comparable amount to today’s ammonia global production.
- While renewable fuels production costs are currently high in the next decades renewable fuels will become cost competitive and can shield the shipping sector from the volatility that characterises the fossil fuels market.
- Taking early action is vital. Sector decarbonisation can be accelerated and ambition raised beyond the climate goals by fostering investment in the production of renewable fuels. Stakeholders need to develop broader business models and establish strategic partnerships involving energy-intensive industries as well as power suppliers and the petrochemical sector.
Zero-In on NI-Heat Exploring Pathways Towards Heat Decarbonisation in Northern Ireland
Jul 2020
Publication
Northern Ireland has achieved its 2020 targets in the electricity sector ahead of time with 46.8% of its electricity demand supplied by renewable generators. When it comes to heat the progress is less impressive – 68% of domestic heating is provided by oil and only around 2500 customers use low carbon heat generators in their homes. In addition 22% of consumers live in fuel poverty. Fuel poverty support programmes still propose the replacement of old oil boilers with new models or with gas boilers where a connection to the grid is possible.<br/>Failure of the commercial RHI scheme and the knock-on effect of the closure of the domestic RHI scheme caused significant damage to the industry and to the reputation of low carbon heat technologies leaving NI consumers without any explicit supporting mechanisms for low carbon heat supply. Decreases in carbon emissions from the heat sector are mainly achieved through switching from oil to gas heating. Gas infrastructure is under development in NI and promises to reach 60% of customers by 2022.
Exploring the Evidence on Potential Issues Associated with Trialling Hydrogen Heating in Communities
Dec 2020
Publication
Replacing natural gas with hydrogen in an everyday setting – piping hydrogen to homes and businesses through the existing gas network – is a new and untested proposition. At the same time piloting this proposition is an essential ingredient to a well-managed low carbon transition.<br/>The Department of Business Energy and Industrial Strategy (BEIS) has commissioned CAG Consultants to undertake a literature review and conduct a set of four focus groups to inform the development of work to assess issues associated with setting up a hypothetical community hydrogen trial. This report sets out the findings from the research and presents reflections on the implications of the findings for any future community hydrogen heating trials.<br/>The literature review was a short focused review aimed at identifying evidence relevant to members of the public being asked to take part in a hypothetical community trial. Based primarily on Quick Scoping Review principles the review involved the analysis of evidence from 26 items of literature. The four focus groups were held in-person in two city locations Manchester and Birmingham in November 2019. They involved consumers who either owned or rented houses (i.e. not flats) connected to the gas grid. Two of the focus groups involved owner-occupiers one was with private landlords and the other was with a mixture of tenants (private social and student).<br/>This report was produced in October 2019 and published in December 2020.
Australia's National Hydrogen Strategy
Nov 2019
Publication
Australia’s National Hydrogen Strategy sets a vision for a clean innovative safe and competitive hydrogen industry that benefits all Australians. It aims to position our industry as a major player by 2030.<br/>The strategy outlines an adaptive approach that equips Australia to scale up quickly as the hydrogen market grows. It includes a set of nationally coordinated actions involving governments industry and the community.
Methane Cracking as a Bridge Technology to the Hydrogen Economy
Nov 2016
Publication
Shifting the fossil fuel dominated energy system to a sustainable hydrogen economy could mitigate climate change through reduction of greenhouse gas emissions. Because it is estimated that fossil fuels will remain a significant part of our energy system until mid-century bridge technologies which use fossil fuels in an environmentally cleaner way offer an opportunity to reduce the warming impact of continued fossil fuel utilization. Methane cracking is a potential bridge technology during the transition to a sustainable hydrogen economy since it produces hydrogen with zero emissions of carbon dioxide. However methane feedstock obtained from natural gas releases fugitive emissions of methane a potent greenhouse gas that may offset methane cracking benefits. In this work a model exploring the impact of methane cracking implementation in a hydrogen economy is presented and the impact on global emissions of carbon dioxide and methane is explored. The results indicate that the hydrogen economy has the potential to reduce global carbon dioxide equivalent emissions between 0 and 27% when methane leakage from natural gas is relatively low methane cracking is employed to produce hydrogen and a hydrogen fuel cell is applied. This wide range is a result of differences between the scenarios and the CH4 leakage rates used in the scenarios. On the other hand when methane leakage from natural gas is relatively high methane steam reforming is employed to produce hydrogen and an internal combustion engine is applied the hydrogen economy leads to a net increase in global carbon dioxide equivalent emissions between 19 and 27%.
Technical Feasibility of Low Carbon Heating in Domestic Buildings
Dec 2020
Publication
Scotland’s Climate Change Plan set an ambition for emissions from buildings to be near zero by 2050 and targets 35% of domestic and 70% of non-domestic buildings’ heat to be supplied using low carbon technologies by 2032. The Climate Change (Emissions Reduction Targets) (Scotland) Act 2019 set a new target for emissions to be net zero by 2045 with interim targets of 75% by 2030 and 90% by 2040. The update to the Climate Change Plan will be published at the end of 2020 to reflect these new targets. The Energy Efficient Scotland programme launched in May 2018 sets out a wide range of measures to promote low carbon heating alongside energy efficiency improvements in Scotland’s buildings. Meeting these targets will require almost all households in Scotland to change the way they heat their homes. It is therefore imperative to advance our understanding of the suitability of the available low carbon heating options across Scotland’s building stock.<br/><br/>The aim of this work is to assess the suitability of low carbon heating technologies in residential buildings in Scotland. The outputs generated through this work will form a key part of the evidence base on low carbon heat which the Scottish Government will use to further develop and strengthen Scotland’s low carbon heat policy in line with the increased level of ambition of achieving Net Zero by 2045.
Smart Systems and Heat: Decarbonising Heat for UK homes
Nov 2015
Publication
Around 20% of the nation’s carbon emissions are generated by domestic heating. Analysis of the many ways the energy system might be adapted to meet carbon targets shows that the elimination of emissions from buildings is more cost effective than deeper cuts in other energy sectors such as transport. This effectively means that alternatives need to be found for domestic natural gas heating systems. Enhanced construction standards are ensuring that new buildings are increasingly energy efficient but the legacy building stock of around 26 million homes has relatively poor thermal performance and over 90% are expected to still be in use in 2050. Even if building replacement was seen as desirable the cost is unaffordable and the carbon emissions associated with the construction would be considerable.
YouTube link to accompanying video
YouTube link to accompanying video
The Norwegian Government’s Hydrogen Strategy - Towards a Low Emission Society
Jun 2020
Publication
On Wednesday 3rd of June 2020 Norwegian Minister for Petroleum and Energy Tina Bru and Minister for Climate and Environment Sveinung Rotevatn presented the Norwegian government's hydrogen strategy.<br/>The strategy sets the course for the government's efforts to stimulate development of hydrogen-related technologies. Hydrogen as an energy carrier can contribute to reduction of greenhouse gases and create value for the Norwegian business sector. The government wishes to prioritise efforts in areas where Norway Norwegian enterprises and technology clusters may influence the development of hydrogen related technologies and where there are opportunites for increased value creation and green growth. For hydrogen to be a low-carbon or emission-free energy carrier it must be produced with no or low emissions such as through water electrolysis with renewable electricity or from natural gas with carbon capture and storage.<br/>Today technology maturity and high costs represent barriers for increased use of hydrogen especially in the transport sector and as feedstock in parts of industry. If hydrogen and hydrogen-based solutions such as ammonia are to be used in new areas both the technology and the solutions must become more mature. In this respect further technology development will be vital.
Clean Energy and the Hydrogen Economy
Jan 2017
Publication
In recent years new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier hydrogen offers a range of benefits for simultaneously decarbonizing the transport residential commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems including fuel cell electric vehicles and micro-combined heat and power devices the use of hydrogen at grid scale requires the challenges of clean hydrogen production bulk storage and distribution to be resolved. Ultimately greater government support in partnership with industry and academia is still needed to realize hydrogen's potential across all economic sectors.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Heading for Hydrogen - The Oil and Gas Industry’s Outlook for Hydrogen, From Ambition to Reality
May 2020
Publication
The future of hydrogen energy is wrapped up with the future of natural gas renewable energy and carbon capture and storage (CCS). This yields useful synergies but also political economic and technical complexity. Nevertheless our survey of more than 1000 senior oil and gas professionals suggests a more certain future for hydrogen and that the time is right to begin scaling the hydrogen economy.
Industrial Decarbonisation Strategy
Mar 2021
Publication
The UK is a world leader in the fight against climate change. In 2019 we became the first major economy in the world to pass laws to end its contribution to global warming by 2050. Reaching this target will require extensive systematic change across all sectors including industry. We must get this change right as the products made by industry are vital to life in the UK and the sector supports local economies across the country.<br/><br/>This strategy covers the full range of UK industry sectors: metals and minerals chemicals food and drink paper and pulp ceramics glass oil refineries and less energy-intensive manufacturing. These businesses account for around one sixth of UK emissions and transformation of their manufacturing processes is key if we are to meet our emissions targets over the coming decades (BEIS Final UK greenhouse gas emissions from national statistics: 1990 to 2018: Supplementary tables 2020).<br/><br/>The aim of this strategy is to show how the UK can have a thriving industrial sector aligned with the net zero target without pushing emissions and business abroad and how government will act to support this. An indicative roadmap to net zero for UK industry based on the content in this strategy is set out at the end of this summary. This strategy is part of a series of publications from government which combined show how the net zero transition will take place across the whole UK economy.
The Strategic Road Map for Hydrogen and Fuel Cells: Industry-academia-government Action Plan to Realize a “Hydrogen Society”
Mar 2019
Publication
The fourth Strategic Energy Plan adopted in April 2014 stated ""a road map toward realization of a “hydrogen society” will be formulated and a council which comprises representatives of industry academia and government and which is responsible for its implementation will steadily implement necessary measures while progress is checked". Then the Council for a Strategy for Hydrogen and Fuel Cells which was held in June in the same year as a conference of experts from industry academia and government compiled a Strategic Roadmap for Hydrogen and Fuel Cells (hereinafter referred to as ""the Roadmap"") presenting efforts to be undertaken by concerned parties from the public/private sector aimed at building a hydrogen-based society.<br/>The Roadmap was revised in March 2016 in response to the progress of the efforts to include the schedule and quantitative targets to make the fuel cells for household use (Ene-Farm) fuel cell vehicles (FCVs) and hydrogen stations self-reliant. In April 2017 the first Ministerial Council on Renewable Energy Hydrogen and Related Issues was held. The Council decided to establish--by the end of the year--a basic strategy that would allow the government to press on with the measures in an integrated manner to realize a hydrogen-based society for the first time in the world. The second Ministerial Council on Renewable Energy Hydrogen and Related Issues was then held in December of that year to establish the Basic Hydrogen Strategy. The Strategy was positioned as a policy through which the whole government would promote relevant measures and proposed that hydrogen be another new carbon-free energy option. By setting a target to be achieved by around 2030 the Strategy provides the general direction and vision that the public and private sectors should share with an eye on 2050.<br/>Furthermore the fifth Strategic Energy Plan was adopted in July 2018. In order for hydrogen to be available as another new energy option in addition to renewable energy the Plan showed the correct direction of hydrogen energy in the energy policy specifically reducing the hydrogen procurement/supply cost to a level favorably comparable with that of existing energies while taking the calculated environmental value into account.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Mathematical Description of Energy Transition Scenarios Based on the Latest Technologies and Trends
Dec 2021
Publication
This work dedicated to a mathematical description of energy transition scenarios consists of three main parts. The first part describes modern trends and problems of the energy sector. A large number of charts reflecting the latest updates in energy are provided. The COVID-2019 pandemic’s impacts on the energy sector are also included. The second part of the paper is dedicated to the analysis of energy consumption and the structure of the world fuel and energy balance. Furthermore a detailed description of energy-efficient technologies is given. Being important and low-carbon hydrogen is discussed including its advantages and disadvantages. The last part of the work describes the mathematical tool developed by the authors. The high availability of statistical data made it possible to identify parameters used in the algorithm with the least squares method and verify the tool. Performing several not complicated steps of the algorithm the tool allows calculating the deviation of the average global temperature of the surface atmosphere from preindustrial levels in the 21st century under different scenarios. Using the suggested mathematical description the optimal scenario that makes it possible to keep global warming at a level below 1.7 ◦C was found.
Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers
Apr 2022
Publication
Hydrogen energy is a clean zero-carbon long-term storage flexible and efficient secondary energy. Accelerating the development of the hydrogen energy industry is a strategic choice to cope with global climate change achieve the goal of carbon neutrality and realize high-quality economic and social development. This study aimed to analyze the economic impact of introducing valueadded services to the hydrogen energy market on hydrogen energy suppliers. Considering the network effect of value-added services this study used a two-stage game model to quantitatively analyze the revenue of hydrogen energy suppliers under different scenarios and provided the optimal decision. The results revealed that (1) the revenue of a hydrogen energy supplier increases only if the intrinsic value of value-added services exceeds a certain threshold; (2) the revenue of hydrogen energy suppliers is influenced by a combination of four key factors: the intrinsic value of value-added services network effects user scale and the sales strategies of rivals; (3) the model developed in this paper can provide optimal decisions for hydrogen energy suppliers to improve their economic efficiency and bring more economic investment to hydrogen energy market in the future.
Energy White Paper: Powering our Net Zero Future
Dec 2020
Publication
The Prime Minister’s Ten Point Plan has set out the measures that will help ensure the UK is at the forefront of this revolution just as we led the first over two centuries ago. As nations move out of the shadow of coronavirus and confront the challenge of climate change with renewed vigour markets for new green products and services will spring up round the world. Taking action now will help ensure not just that we end our contribution to climate change by achieving our target of net zero emissions. It will help position UK companies and our world class research base to seize the business opportunities which flow from it creating jobs and wealth for our country.
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
- Transforms energy building a cleaner greener future for our country our people and our planet
- Supports a green recovery growing our economy supporting thousands of green jobs across the country in new green industries and leveraging new green export opportunities
- Creates a fair deal for consumers protecting the fuel poor providing opportunities to save money on bills giving us warmer more comfortable homes and balancing investment against bill impacts.
Meeting Net Zero with Decarbonised Gas
Aug 2019
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges
Dec 2022
Publication
The article presents a review of the research on green hydrogen from the social sciences identifying its main lines of research its problems and the relevant challenges due to the benefits and impacts that this energy vector has on energy transitions and climate change. The review analyzes a corpus of 78 articles indexed in the Web of Science (WoS) and SCOPUS published between 1997 and 2022. The review identified three research areas related to green hydrogen and the challenges for the social sciences in the future: (a) risks socio-environmental impacts and public perception; (b) public policies and regulation and (c) social acceptance and willingness to use associated technologies. Our results show that Europe and Asia lead the research on green hydrogen from the social sciences. Also most of the works focus on the area of public policy and regulation and social acceptance. Instead the field of social perception of risk is much less developed. We found that little research from the social sciences has focused on assessments of the social and environmental impacts of hydrogen on local communities and indigenous groups as well as the participation of local authorities in rural locations. Likewise there are few integrated studies (technical and social) that would allow a better assessment of hydrogen and cleaner energy transitions. Finally the lack of familiarity with this technology in many cases constitutes a limitation when evaluating its acceptance.
No more items...