Policy & Socio-Economics
How the UK’s Hydrogen Sector Can Help Support the UK’s Economic Recovery
Jul 2020
Publication
The APPG on Hydrogen’s latest report urges the Government to move quickly on hydrogen and set ambitious policies to unlock investment create employment opportunities and support the UK’s net-zero targets.
The APPG on Hydrogen’s report developed as part of its inquiry into ‘How the UK’s hydrogen sector can help support the UK’s economic recovery’ sets out 15 recommendations to support and accelerate the growth of the UK’s hydrogen sector.
These include:
The APPG on Hydrogen’s report developed as part of its inquiry into ‘How the UK’s hydrogen sector can help support the UK’s economic recovery’ sets out 15 recommendations to support and accelerate the growth of the UK’s hydrogen sector.
These include:
- Developing a cross-departmental hydrogen strategy between Government and industry
- Using regulatory levers to unlock private sector investment required including amending the GSMR and expanding the remit of the Bus Service Operator Grant
- Setting interim targets for low-carbon hydrogen production by 2030 alongside the introduction of a Low Carbon Obligation to enable investment in low carbon forms of heating such as hydrogen
- Mandating hydrogen-ready boilers by 2025
- Creating greater incentives in hydrogen alternatives to support organisations and customers who produce purchase or use hydrogen HGVs buses and trains
- Working with local and regional authorities exploring hydrogen’s potential to support the uptake and commercialisation of existing projects
- Setting more ambitious policies and financial targets on hydrogen to meet net-zero by 2050 ahead of other international competitors
- Ensuring the UK hydrogen industry plays a major role at COP26 allowing the UK to inspire other nations and sell its products and services
- Delivering funding models to create investment and economic jobs directly to the UK
- Implementing measures similar to Offshore Wind such as Contracts for Difference to incentivise industry and scale-up a hydrogen economy.
Energy Innovation Needs Assessment: Road Transport
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Thermodynamic, Economic and Environmental Assessment of Renewable Natural Gas Production Systems
May 2020
Publication
One of the options to reduce the dependence on fossil fuels is to produce gas with the quality of natural gas but based on renewable energy sources. It can encompass among other biogas generation from various types of biomass and its subsequent upgrading. The main aim of this study is to analyze under a combined technical economic and environmental perspective three of the most representative technologies for the production of biomethane (bio-based natural gas): (i) manure fermentation and its subsequent upgrading by CO2 removal (ii) manure fermentation and biogas methanation using renewable hydrogen from electrolysis and (iii) biomass gasification in the atmosphere of oxygen and methanation of the resulted gas. Thermodynamic economic and environmental analyses are conducted to thoroughly compare the three cases. For these purposes detailed models in Aspen Plus software were built while environmental analysis was performed using the Life Cycle Assessment methodology. The results show that the highest efficiency (66.80%) and the lowest break-even price of biomethane (19.2 €/GJ) are reached for the technology involving fermentation and CO2 capture. Concerning environmental assessment the system with the best environmental performance varies depending on the impact category analyzed being the system with biomass gasification and methanation a suitable trade-off solution for biomethane production.
Clean Growth- Transforming Heating Overview of Current Evidence
Dec 2018
Publication
Government has reviewed the evidence base on options for achieving long term heat decarbonisation. This report provides an overview of the key issues arising from our review and seeks to:
- highlight the different characteristics of the main alternative sources of low carbon heat and the approaches to achieving transformational change
- set out strategically important issues ‘strategic inferences’ which we have drawn from the evidence available to help focus the development of our long term policy framework
- identify areas that require further exploration to inform the development of a new long term policy framework for heat
- better understanding of the different options available for decarbonising heating
- a clearer common agenda across industry academia and the public sector to ensure effort and resources are effectively and efficiently applied to long term heat decarbonisation issues
- the strategic inferences identified
- the priority areas requiring further development
- any important omissions
- the parties best placed to deliver in these areas
- opportunities for enhancing co-ordination
Report on Socio-economic Impact of the FCH -JU Activities
Feb 2016
Publication
The FCH JU has with its industry and research partners worked since 2008 to develop and demonstrate FCH technologies along with development of the various business and environmental cases. It has involved a programme of increasingly ambitious demonstrations projects a consistent approach to research and development actions and a long term policy commitment. Developing the business and environmental cases for FCH technologies has created an increasingly compelling vision appealing to a range of stakeholders: to FCH technology businesses themselves assured by the long term commitment of the FCH JU to end users in terms of cost and operational performance potential and as critically to increasing numbers of policy and decision makers attracted by the substantial socio-economic benefits.
Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool
May 2022
Publication
A new assessment tool for evaluating decarbonization technologies that considers each technology’s sustainability security affordability readiness and impact for a specific country is proposed. This tool is applied to a set of decarbonization technologies for the power transport and industry sectors for the ten Southeast Asian countries that constitute ASEAN. This results in a list of the most promising decarbonization technologies as well as the remaining issues that need more research and development. This study reveals several common themes for ASEAN’s decarbonization. First carbon capture and storage (CCS) is a key technology for large-scale CO2 emission. Second for countries that rely heavily on coal for power generation switching to gas can halve their CO2 emission in the power sector and should be given high priority. Third hydropower and bioenergy both have high potential for the majority of ASEAN countries if their sustainability issues can be resolved satisfactorily. Fourth replacing conventional vehicles by electric vehicles is the overarching theme in the road transport sector but will result in increased demand for electricity. In the medium to long term the use of hydrogen for marine fuel and biofuels for aviation fuel are preferred solutions for the marine and aviation transport sectors. Fifth for the industry sector installing CCS in industrial plants should be given priority but replacing fossil fuels by blue hydrogen for high-temperature heating is the preferred long-term solution.
Technology Investment Roadmap First Low Emissions Technology Statement – 2020 Global Leadership in Low Emissions Technologies
Sep 2020
Publication
Australia’s Technology Investment Roadmap is a strategy to accelerate development and commercialisation of low emissions technologies.
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
- priority technologies and economic stretch goals
- Australia’s big technology challenges and opportunities
- Technology Investment Framework
- monitoring transparency and impact evaluation
A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation
Oct 2021
Publication
Global maritime transportation is responsible for around 3% of total anthropogenic green‐ house gas emissions and significant proportions of SOx NOx and PM emissions. Considering the predicted growth in shipping volumes to 2050 greenhouse gas emissions from ships must be cut by 75–85% per ton‐mile to meet Paris Agreement goals. This study reviews the potential of a range of alternative fuels for decarbonisation in maritime. A systematic literature review and information synthesis method was applied to evaluate fuel characteristics production pathways utilization technologies energy efficiency lifecycle environmental performance economic viability and cur‐ rent applicable policies. Alternative fuels are essential to decarbonisation in international shipping. However findings suggest there is no single route to deliver the required greenhouse gas emissions reductions. Emissions reductions vary widely depending on the production pathways of the fuel. Alternative fuels utilising a carbon‐intensive production pathway will not provide decarbonisation instead shifting emissions elsewhere in the supply chain. Ultimately a system‐wide perspective to creating an effective policy framework is required in order to promote the adoption of alternative propulsion technologies.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Between Hope And Hype: A Hydrogen Vision For The UK
Mar 2021
Publication
There is a growing conversation around the role that hydrogen can play in the future of the UK and how to best harness its potential to secure jobs show climate leadership promote industrial competitiveness and drive innovation. The Government’s ‘Ten Point Plan for a Green Industrial Revolution’ included hydrogen as one of its ten actions targeting 5GW of ‘low carbon’ hydrogen production by 2030. Britain is thus joining the EU US Japan Germany and a host of other countries seeking to be part of the hydrogen economy of the future.<br/><br/>A focus on clean green hydrogen within targeted sectors and hubs can support multiple Government goals – including demonstrating climate leadership reducing regional inequalities through the ‘levelling up’ agenda and ensuring a green and cost-effective recovery from the coronavirus pandemic which prioritises jobs and skills. A strategic hydrogen vision must be honest and recognise where green hydrogen does not present the optimal pathway for decarbonisation – for instance where alternative solutions are already readily available for roll-out are more efficient and cost-effective. A clear example is hydrogen use for heating where it is estimated to require around 30 times more offshore wind farm capacity than currently available to produce enough green hydrogen to replace all gas boilers as well as adding costs for consumers.<br/><br/>This paper considers the offer of hydrogen for key Government priorities – including an inclusive and resilient economic recovery from the pandemic demonstrating climate leadership and delivering for all of society across the UK. It assesses existing evidence and considers the risks and opportunities and how they might inform a strategic vision for the UK. Ahead of the forthcoming Hydrogen Strategy it sets expectations for Government and outlines key recommendations.
Integration of Hydrogen into Multi-Energy Systems Optimisation
Apr 2020
Publication
Hydrogen presents an attractive option to decarbonise the present energy system. Hydrogen can extend the usage of the existing gas infrastructure with low-cost energy storability and flexibility. Excess electricity generated by renewables can be converted into hydrogen. In this paper a novel multi-energy systems optimisation model was proposed to maximise investment and operating synergy in the electricity heating and transport sectors considering the integration of a hydrogen system to minimise the overall costs. The model considers two hydrogen production processes: (i) gas-to-gas (G2G) with carbon capture and storage (CCS) and (ii) power-to-gas (P2G). The proposed model was applied in a future Great Britain (GB) system. Through a comparison with the system without hydrogen the results showed that the G2G process could reduce £3.9 bn/year and that the P2G process could bring £2.1 bn/year in cost-savings under a 30 Mt carbon target. The results also demonstrate the system implications of the two hydrogen production processes on the investment and operation of other energy sectors. The G2G process can reduce the total power generation capacity from 71 GW to 53 GW and the P2G process can promote the integration of wind power from 83 GW to 130 GW under a 30 Mt carbon target. The results also demonstrate the changes in the heating strategies driven by the different hydrogen production processes.
The Ten Point Plan for a Green Industrial Revolution: Building Back Better, Supporting Green Jobs, and Accelerating Our Path to Net Zero
Nov 2020
Publication
As the world looks to recover from the impact of coronavirus on our lives livelihoods and economies we have the chance to build back better: to invest in making the UK a global leader in green technologies.
The plan focuses on increasing ambition in the following areas:
The plan focuses on increasing ambition in the following areas:
- advancing offshore wind
- driving the growth of low carbon hydrogen
- delivering new and advanced nuclear power
- accelerating the shift to zero emission vehicles
- green public transport cycling and walking
- ‘jet zero’ and green ships
- greener buildings
- investing in carbon capture usage and storage
- protecting our natural environment
- green finance and innovation
Are We Building Back Better? Evidence from 2020 and Pathways for Inclusive Green Recovery Spending
Mar 2021
Publication
COVID-19 has led to a global crisis threatening the lives and livelihoods of the most vulnerable by increasing poverty exacerbating inequalities and damaging long-term economic growth prospects. The report Are We Building Back Better? Evidence from 2020 and Pathways for Inclusive Green Recovery Spending provides an analysis of over 3500 fiscal policies announced by leading economies in 2020 and calls for governments to invest more sustainably and tackle inequalities as they stimulate growth in the wake of the devastation wrought by the pandemic.
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Significance of Hydrogen as Economic and Environmentally Friendly Fuel
Nov 2021
Publication
The major demand of energy in today’s world is fulfilled by the fossil fuels which are not renewable in nature and can no longer be used once exhausted. In the beginning of the 21st century the limitation of the fossil fuels continually growing energy demand and growing impact of greenhouse gas emissions on the environment were identified as the major challenges with current energy infrastructure all over the world. The energy obtained from fossil fuel is cheap due to its established infrastructure; however these possess serious issues as mentioned above and cause bad environmental impact. Therefore renewable energy resources are looked to as contenders which may fulfil most energy requirements. Among them hydrogen is considered as the most environmentally friendly fuel. Hydrogen is clean sustainable fuel and it has promise as a future energy carrier. It also has the ability to substitute the present energy infrastructure which is based on fossil fuel. This is seen and projected as a solution for the above-mentioned problems including rise in global temperature and environmental degradation. Environmental and economic aspects are the important factors to be considered to establish hydrogen infrastructure. This article describes the various aspects of hydrogen including production storage and applications with a focus on fuel cell based electric vehicles. Their environmental as well as economic aspects are also discussed herein.
Hydrogen Energy: a New Dimension for the Energy Cooperation in the Northeast Asian Region
Nov 2020
Publication
The Northeast Asian Region is a home for the major world’s energy importers and Russia – the top energy exporter. Due to the depletion of national fossil energy resources the industrialised East Asian economies are facing serious energy security issues. The snapshot of the intraregional energy trade in 2019 was analysed in terms of development potential. Japan Korea and China are at the frontline of hydrogen energy technologies commercialisation and hydrogen energy infrastructure development. The drivers for such endeavours are listed and national institutions for hydrogen energy development are characterised. The priorities related to regional cooperation on hydrogen energy in Northeast Asia were derived on the basis of hydrogen production cost estimations. These priorities include steady development of international natural gas and power infrastructure. The shared process will lead to the synergy of regional fossil and renewable resources within combined power and hydrogen infrastructure.
Global Hydrogen Review 2021
Oct 2021
Publication
The Global Hydrogen Review is a new annual publication by the International Energy Agency to track progress in hydrogen production and demand as well as in other critical areas such as policy regulation investments innovation and infrastructure development.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
Decarbonizing China’s Energy System – Modeling the Transformation of the Electricity, Transportation, Heat, and Industrial Sectors
Nov 2019
Publication
Growing prosperity among its population and an inherent increasing demand for energy complicate China’s target of combating climate change while maintaining its economic growth. This paper therefore describes three potential decarbonization pathways to analyze different effects for the electricity transport heating and industrial sectors until 2050. Using an enhanced version of the multi-sectoral open-source Global Energy System Model enables us to assess the impact of different CO2 budgets on the upcoming energy system transformation. A detailed provincial resolution allows for the implementation of regional characteristics and disparities within China. Conclusively we complement the model-based analysis with a quantitative assessment of current barriers for the needed transformation. Results indicate that overall energy system CO2 emissions and in particular coal usage have to be reduced drastically to meet (inter-) national climate targets. Specifically coal consumption has to decrease by around 60% in 2050 compared to 2015. The current Nationally Determined Contributions proposed by the Chinese government of peaking emissions in 2030 are therefore not sufficient to comply with a global CO2 budget in line with the Paris Agreement. Renewable energies in particular photovoltaics and onshore wind profit from decreasing costs and can provide a more sustainable and cheaper energy source. Furthermore increased stakeholder interactions and incentives are needed to mitigate the resistance of local actors against a low-carbon transformation.
Catalysing Hydrogen Investment: What the Market Needs to Deliver Investment in Hydrogen Infrastructure
Oct 2021
Publication
Written by Arup in collaboration with the GIIA this report is centred on the opinions of investors from around the world gathered through a survey of GIIA members and in-depth interviews. It therefore presents the sentiments of the world’s leading fund managers insurance investors pension funds and a sovereign wealth fund. Their opinions matter because these are the decision makers that hold the purse strings when it comes to private sector investment in hydrogen infrastructure. Many of the facts about hydrogen are well-known to many readers and these are presented in this report drawing on Arup’s research and experience as a global infrastructure advisory firm. However the novelty of this report is that it looks at hydrogen through the uncompromising eyes of investors with analysis of feedback which identifies barriers to investment in the infrastructure required to enable the hydrogen economy. Perhaps most importantly it also proposes interventions that policymakers and regulators could take to overcome the barriers currently faced.<br/>Introduction The sentiments of investors are at the heart of this study with results from the survey presented at the beginning of each section to serve as a launch pad for Arup’s analysis. But we want it to be more than an interesting read; it is a call to action for policy makers to create the right environment to catalyse private sector investment and kickstart the hydrogen economy.
A Novel Framework for Development and Optimisation of Future Electricity Scenarios with High Penetration of Renewables and Storage
May 2019
Publication
Although electricity supply is still dominated by fossil fuels it is expected that renewable sources will have a much larger contribution in the future due to the need to mitigate climate change. Therefore this paper presents a new framework for developing Future Electricity Scenarios (FuturES) with high penetration of renewables. A multi-period linear programming model has been created for power-system expansion planning. This has been coupled with an economic dispatch model PowerGAMA to evaluate the technical and economic feasibility of the developed scenarios while matching supply and demand. Application of FuturES is demonstrated through the case of Chile which has ambitious plans to supply electricity using only renewable sources. Four cost-optimal scenarios have been developed for the year 2050 using FuturES: two Business as usual (BAU) and two Renewable electricity (RE) scenarios. The BAU scenarios are unconstrained in terms of the technology type and can include all 11 options considered. The RE scenarios aim to have only renewables in the mix including storage. The results show that both BAU scenarios have a levelised cost of electricity (LCOE) lower than or equal to today’s costs ($72.7–77.3 vs $77.6/MWh) and include 81–90% of renewables. The RE scenarios are slightly more expensive than today’s costs ($81–87/MWh). The cumulative investment for the BAU scenarios is $123-$145 bn compared to $147-$157 bn for the RE. The annual investment across the scenarios is estimated at $4.0 ± 0.4 bn. Both RE scenarios show sufficient flexibility in matching supply and demand despite solar photovoltaics and wind power contributing around half of the total supply. Therefore the FuturES framework is a powerful tool for aiding the design of cost-efficient power systems with high penetration of renewables.
Decarbonisation of Heat in Great Britain
Oct 2021
Publication
This study was conducted for a group of 15 clients in the public and private sectors interested in potential pathways for decarbonising residential heating and the impact of these pathways on the energy system. The ambition for all new heating installations to be low carbon from 2035 is essential to meeting the net zero target in 2050 and our study found that electricity demand for home heating is set to quadruple by 2050 as part of the shift away from gas-fired boilers.
The key findings from the study include:
The key findings from the study include:
- Phasing out natural gas boiler installations by 2035 is crucial for eliminating CO2 from home heating; delaying to 2040 could leave us with ¼ of today’s home heat emissions in 2050
- Achieving deployment of 600k heat pumps per year by 2028 will require policy intervention both to lower costs and to inform and protect consumers Almost £40bn could be saved in cumulative system costs by 2050 through adoption of more efficient and flexible electric heating technologies like networked heat pumps and storage
- Electricity demand from heating could quadruple by 2050 to over 100TWh per year almost a third of Great Britain’s current total annual electricity demand Using hydrogen for a share of heating could lower peak power demand although producing most of this hydrogen from electrolysis would raise overall power demand.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Hydrogen for Net Zero - A Critical Cost-competitive Energy Vector
Nov 2021
Publication
The report “Hydrogen for Net Zero” presents an ambitious yet realistic deployment scenario until 2030 and 2050 to achieve Net Zero emissions considering the uses of hydrogen in industry power mobility and buildings. The scenario is described in terms of hydrogen demand supply infrastructure abatement potential and investments required and then compared with current momentum and investments in the industry to identify the investment gaps across value chains and geographies.
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
How Green Are the National Hydrogen Strategies?
Feb 2022
Publication
Since Japan promulgated the world’s first national hydrogen strategy in 2017 28 national (or regional in the case of the EU) hydrogen strategies have been issued by major world economies. As carbon emissions vary with different types of hydrogen and only green hydrogen produced from renewable energy can be zero-emissions fuel this paper interrogates the commitment of the national hydrogen strategies to achieve decarbonization objectives focusing on the question “how green are the national hydrogen strategies?” We create a typology of regulatory stringency for green hydrogen in national hydrogen strategies analyzing the text of these strategies and their supporting policies and evaluating their regulatory stringency toward decarbonization. Our typology includes four parameters fossil fuel penalties hydrogen certifications innovation enablement and the temporal dimension of coal phasing out. Following the typology we categorize the national hydrogen strategies into three groups: zero regulatory stringency scale first and clean later and green hydrogen now. We find that most national strategies are of the type “scale first and clean later” with one or more regulatory measures in place. This article identifies further challenges to enhancing regulatory stringency for green hydrogen at both national and international levels.
Shipping the Sunshine: An Open-source Model for Costing Renewable Hydrogen Transport from Australia
Apr 2022
Publication
Green hydrogen (H2) is emerging as a future clean energy carrier. While there exists significant analysis on global renewable (and non-renewable) hydrogen generation costs analysis of its transportation costs irrespective of production method is still limited. Complexities include the different forms in which hydrogen can be transported the limited experience to date in shipping some of these carrier forms the trade routes potentially involved and the possible use of different shipping fuels. Herein we present an open-source model developed to assist stakeholders in assessing the costs of shipping various forms of hydrogen over different routes. It includes hydrogen transport in the forms of liquid hydrogen (LH2) ammonia liquified natural gas (LNG) methanol and liquid organic hydrogen carriers (LOHCs). It considers both fixed and variable costs including port fees possible canal usage charges fuel costs ship capital and operating costs boil-off losses and possible environmental taxes among many others. The model is applied to the Rotterdam-Australia route as a case study revealing ammonia ($0.56/kgH2) and methanol ($0.68/kgH2) as the least expensive hydrogen derivatives to transport followed by liquified natural gas ($1.07/kgH2) liquid organic hydrogen carriers ($1.37/kgH2) and liquid hydrogen ($2.09/kgH2). While reducing the transportation distance led to lower shipping costs we note that the merit order of assumed underlying shipping costs remain unchanged. We also explore the impact of using hydrogen (or the hydrogen carrier) as a low/zero carbon emission fuel for the ships which led to lowering of costs for liquified natural gas ($0.88/kgH2) a similar cost for liquid hydrogen ($2.19/kgH2) and significant increases for the remainder. Given our model is open-sourced it can be adapted globally and updated to match the changing cost dynamics of the emerging green hydrogen market.
Petroleum Sector-Driven Roadmap for Future Hydrogen Economy
Nov 2021
Publication
In the climate change mitigation context based on the blue hydrogen concept a narrative frame is presented in this paper to build the argument for solving the energy trilemma which is the possibility of job loss and stranded asset accumulation with a sustainable energy solution in gas- and oil-rich regions especially for the Persian Gulf region. To this aim scientific evidence and multidimensional feasibility analysis have been employed for making the narrative around hydrogen clear in public and policy discourse so that choices towards acceleration of efforts can begin for paving the way for the future hydrogen economy and society. This can come from natural gas and petroleum-related skills technologies experience and infrastructure. In this way we present results using multidimensional feasibility analysis through STEEP and give examples of oil- and gas-producing countries to lead the transition action along the line of hydrogen-based economy in order to make quick moves towards cost effectiveness and sustainability through international cooperation. Lastly this article presents a viewpoint for some regional geopolitical cooperation building but needs a more full-scale assessment.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance
Nov 2019
Publication
Hydrogen which is expected to be a popular type of next-generation energy is drawing attention as a fuel option for the formation of a low-carbon society. Because hydrogen energy is different in nature from existing energy technologies it is necessary to promote sufficient social recognition and acceptability of the technology for its widespread use. In this study we focused on the effect of initiatives to improve awareness of hydrogen energy technology thereby investigating the acceptability of hydrogen energy to those participating in either several hydrogen energy technology introduction events or professional seminars. According to the survey results participants in the technology introduction events tended to have lower levels of hydrogen and hydrogen energy technology knowledge than did participants in the hydrogen-energy-related seminars but confidence in the technology and acceptability of the installation of hydrogen stations near their own residences tended to be higher. It was suggested that knowledge about hydrogen and technology could lead to improved acceptability through improved levels of trust in the technology. On the other hand social benefits such as those for the environment socioeconomics and energy security have little impact on individual levels of acceptance of new technology.
Technology Roadmaps for Transition Management: The Case of Hydrogen Energy
Oct 2011
Publication
Technology roadmaps are increasingly used by governments to inform and promote technological transitions such as a transition to a hydrogen energy system. This paper develops a framework for understanding how current roadmapping practice relates to emerging theories of the governance of systems innovation. In applying this framework to a case study of hydrogen roadmaps the paper finds that roadmapping for transitions needs to place greater emphasis on ensuring good quality and transparent analytic and participatory procedures. To be most useful roadmaps should be embedded within institutional structures that enable the incorporation of learning and re-evaluation but in practice most transition roadmaps are one-off exercises
Techno-Economic Analysis of a Novel Hydrogen-Based Hybrid Renewable Energy System for Both Grid-Tied and Off-Grid Power Supply in Japan: The Case of Fukushima Prefecture
Jun 2020
Publication
After the Great East Japan Earthquake energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES) in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture Japan. The techno-economic assessment of deploying the proposed systems was conducted using an integrated simulation-optimization modeling framework considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results the proposed HRES can generate about 47.3 MWh of electricity in all scenarios which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh respectively
Future Electricity Series Part 1 - Power from Fossil Fuels
Apr 2013
Publication
Power from Fossil Fuels analyses the role of coal and gas power generation in the UK's future power generation mix. It is the first of three reports in Carbon Connect's 2013 research inquiry the Future Electricity Series which examines what role fossil fuels renewables and nuclear can play in providing secure sustainable and affordable electricity in the UK. The report finds that significantly decarbonising the power sector by 2030 will prove the most successful strategy on energy sustainability security and affordability grounds and that switching the UK’s reliance on coal to gas generation - while using fossil fuel power stations increasingly for backup purposes - will be the most viable method of achieving this. The independent report chaired by former energy minister Charles Hendry MP and Opposition Energy and Climate Change Spokesperson in the House of Lords Baroness Worthington was compiled between January and April 2013 and received contributions from over 30 experts in academia industry Parliament and Government and was launched in Parliament on the 22nd April 2013. This independent inquiry was sponsored by the Institution of Gas Engineers and Managers
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
The Czech Republic's Hydrogen Strategy
Jul 2021
Publication
The Czech Republic’s Hydrogen Strategy is being developed in the context of the Hydrogen Strategy for a climate neutral Europe which reflects the European Green Deal objective of climate neutrality by 2050. The objective of the Strategy is thus to reduce greenhouse gas emissions in such a way that the economy shifts smoothly to low-carbon technologies.
This is associated with two strategic goals:
This is associated with two strategic goals:
- Reduce greenhouse gas emissions
- Stimulate the economic growth
- Volume of low-carbon hydrogen production
- Volume of low-carbon hydrogen consumption
- Infrastructure readiness for hydrogen transport and storage
- Progress in R&D and production of hydrogen technologies
- Low-carbon hydrogen production
- Low-carbon hydrogen use
- Hydrogen transport and storage
- Hydrogen technologies
The Path to Net Zero and Progress on Reducing Emissions in Wales
Dec 2020
Publication
These two joint reports required under the Environment (Wales) Act 2016 provide ministers with advice on Wales’ climate targets between now and 2050 and assess progress on reducing emissions to date. Our advice to the Welsh Government is set out in two parts:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
- All the charts and data behind the report as well as a separate dataset for the scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
Developing Community Trust in Hydrogen
Oct 2019
Publication
The report documents current knowledge of the social issues surrounding hydrogen projects. It reviews leading practice stakeholder engagement and communication strategies and findings from focus groups and research activities across Australia.
The full report can be found at this link.
The full report can be found at this link.
Future Fuels Strategy: Discussion Paper Powering Choice
Feb 2021
Publication
New vehicle technologies and fuels will drive the future of road transport in Australia. Increased availability of battery electric vehicles hydrogen fuel cell vehicles biofuels and associated recharging and refuelling infrastructure will:
- give consumers more choice
- provide productivity emissions reduction fuel security and air quality benefits
Possible Hydrogen Transitions in the UK: Critical Uncertainties and Possible Decision Points
Jun 2012
Publication
Many energy system optimization studies show that hydrogen may be an important part of an optimal decarbonisation mix but such analyses are unable to examine the uncertainties associated with breaking the ‘locked-in’ nature of incumbent systems. Uncertainties around technical learning rates; consumer behaviour; and the strategic interactions of governments automakers and fuel providers are particularly acute. System dynamics and agent-based models and studies of historical alternative fuel transitions have furthered our understanding of possible transition dynamics but these types of analysis exclude broader systemic issues concerning energy system evolution (e.g. supplies and prices of low-carbon energy) and the politics of transitions. This paper presents a hybrid approach to assessing hydrogen transitions in the UK by linking qualitative scenarios with quantitative energy systems modelling using the UK MARKAL model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points with modelling used to inform and test key elements of each scenario. The scenarios draw on literature review and participatory input and the scenario structure is based on archetypal transition dynamics drawn from historical energy system transitions reflecting insights relating to innovation system development and resistance to change. Conclusions are drawn about appropriate policy responses.
The Role of Advanced Demand-sector Technologies and Energy Demand Reduction in Achieving Ambitious Carbon Budgets
Jan 2019
Publication
Limiting cumulative carbon emissions to keep global temperature increase to well below 2°C (and as low as 1.5°C) is an extremely challenging task requiring rapid reduction in the carbon intensity of all sectors of the economy and with limited leeway for residual emissions. Addressing residual emissions in ‘challenging-to-decarbonise’ sectors such as the industrial and aviation sectors relies on the development and commercialization of innovative advanced technologies currently still in their infancy. The aim of this study was to (a) explore the role of advanced technologies in achieving deep decarbonisation of the energy system and (b) provide technology- specific details of how rapid and deep carbon intensity reductions can be achieved in the energy demand sectors. This was done using TIAM-Grantham – a linear cost optimization model of the global energy system with a detailed representation of demand-side technologies. We find that the inclusion of advanced technologies in the demand sectors together with energy demand reduction through behavioural changes enables the model to achieve the rapid and deep decarbonisation of the energy system associated with limiting global warming to below 2°C whilst at the same time reduces reliance on negative emissions technologies by up to ∼18% compared to the same scenario with a standard set of technologies. Realising such advanced technologies at commercial scales as well as achieving such significant reductions in energy demand represents a major challenge for policy makers businesses and civil society. There is an urgent need for continued R&D efforts in the demand sectors to ensure that advanced technologies become commercially available when we need them and to avoid the gamble of overreliance on negative emissions technologies to offset residual emissions.
Hungary's National Hydrogen Strategy
May 2021
Publication
Hungary’s National Hydrogen Strategy (hereinafter referred to as: Strategy) is ambitious but provides a realistic vision of the future as it opens the way for the establishment of a hydrogen economy therefore contributing to the achievement of decarbonisation goals and providing an opportunity for Hungary to become an active participant of the European hydrogen sector. On the long term the Strategy focuses on “green” hydrogen but in addition to hydrogen based on electricity generated using renewable resources primarily solar energy Hungary does not ignore opportunities for hydrogen production based on carbon-free energy accessed either through a nuclear basis or from the network. Additionally in the short and medium term a rapid reduction in emissions and the establishment of a viable hydrogen market will also require low-carbon hydrogen.
Future Electricity Series Part 2 - Power from Renewables
Sep 2013
Publication
The independent cross-party report highlights a ‘sensible middle ground’ in the renewables debate and calls for more effort in building cross-party consensus. It finds that the UK has only just begun to harness low carbon renewable resources bigger than North Sea oil and gas and argues that the Government could do more to narrow the scope of debate about the technology mix beyond 2020. It argues that it should work with industry and academia first to establish ‘low regrets’ levels of technology deployment and second to ensure that policies are in place to incentivise investments such as supply chain investment needed to deliver these low regrets actions.
This approach would help provide the longer term clarity that could secure supply chain investments giving the UK a head-start in the global race. The report finds that these investments could be missed delayed or more expensive if there is insufficient confidence about long term demand for key technologies such as offshore wind. Work by Government to help incentivise these investments would increase the likelihood that technology cost reductions are achieved and help mitigate against high costs if new nuclear or carbon capture and storage development fail or are delayed.
On affordability the report finds that there are ‘hidden’ benefits that the UK could see from investing more in renewables through electricity bills between now and 2020. These include: avoiding bill increases driven by fossil fuels; making electricity bills more predictable; and providing an economic boost. The extra money paid to support renewables and other low carbon generation such as nuclear power could be more than offset by energy efficiency savings although Government needs to do more to show how these savings will arise.
On sustainability the report tackles myths about the carbon emitted in manufacturing renewable technologies or in backing up varying technologies such as wind solar wave and tidal. It finds that even when considering these factors renewables are still amongst the most low carbon options. The report also looks at the sustainability of electricity from biomass. Bioenergy overall could provide up to ten per cent of energy and reduce the cost of cutting carbon by £44 billion per year in 2050. The Government’s new biomass policies are a pragmatic response to concerns about the sustainability of biomass power which balances protecting the environment building public confidence and enabling the sector to grow.
On security of supply the inquiry argues that debate should focus on the whole electricity system and that individual technologies should be considered in the context of how they add to or reduce system risks. Considered like this renewables reduce some risks such as fuel supply risks which caused concern last winter and add to others such as system balancing risks. System balancing risks from varying renewables (wind solar wave and tidal technologies) are manageable using a number of existing and developing technologies.
The independent report chaired by former Energy Minister Charles Hendry MP and Shadow Energy Minister Baroness Worthington was compiled between May and September 2013 and was sponsored by Siemens and DONG Energy. It is part of a year-long independent and cross party inquiry into the UK power sector the Future Electricity Series sponsored by the Institution of Gas Engineers and Managers.
Link to Launch Video
This approach would help provide the longer term clarity that could secure supply chain investments giving the UK a head-start in the global race. The report finds that these investments could be missed delayed or more expensive if there is insufficient confidence about long term demand for key technologies such as offshore wind. Work by Government to help incentivise these investments would increase the likelihood that technology cost reductions are achieved and help mitigate against high costs if new nuclear or carbon capture and storage development fail or are delayed.
On affordability the report finds that there are ‘hidden’ benefits that the UK could see from investing more in renewables through electricity bills between now and 2020. These include: avoiding bill increases driven by fossil fuels; making electricity bills more predictable; and providing an economic boost. The extra money paid to support renewables and other low carbon generation such as nuclear power could be more than offset by energy efficiency savings although Government needs to do more to show how these savings will arise.
On sustainability the report tackles myths about the carbon emitted in manufacturing renewable technologies or in backing up varying technologies such as wind solar wave and tidal. It finds that even when considering these factors renewables are still amongst the most low carbon options. The report also looks at the sustainability of electricity from biomass. Bioenergy overall could provide up to ten per cent of energy and reduce the cost of cutting carbon by £44 billion per year in 2050. The Government’s new biomass policies are a pragmatic response to concerns about the sustainability of biomass power which balances protecting the environment building public confidence and enabling the sector to grow.
On security of supply the inquiry argues that debate should focus on the whole electricity system and that individual technologies should be considered in the context of how they add to or reduce system risks. Considered like this renewables reduce some risks such as fuel supply risks which caused concern last winter and add to others such as system balancing risks. System balancing risks from varying renewables (wind solar wave and tidal technologies) are manageable using a number of existing and developing technologies.
The independent report chaired by former Energy Minister Charles Hendry MP and Shadow Energy Minister Baroness Worthington was compiled between May and September 2013 and was sponsored by Siemens and DONG Energy. It is part of a year-long independent and cross party inquiry into the UK power sector the Future Electricity Series sponsored by the Institution of Gas Engineers and Managers.
Link to Launch Video
Explaining Hydrogen Energy Technology Acceptance: A Critical Review
Jan 2022
Publication
The use of hydrogen energy and the associated technologies is expected to increase in the coming years. The success of hydrogen energy technology (HET) is however dependent on public acceptance of the technology. Developing this new industry in a socially responsible way will require an understanding of the psychology factors that may facilitate or impede its public acceptance. This paper reviews 27 quantitative studies that have explored the relationship between psychological factors and HET acceptance. The findings from the review suggest that the perceived effects of the technology (i.e. the perceived benefits costs and risks) and the associated emotions are strong drivers of HET acceptance. This paper does though highlight some limitations with past research that make it difficult to make strong conclusions about the factors that influence HET acceptance. The review also reveals that few studies have investigated acceptance of different types of HET beyond a couple of applications. The paper ends with a discussion about directions for future research and highlights some practical implications for messaging and policy.
Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria
Oct 2021
Publication
Achieving climate neutrality requires a massive transformation of current energy systems. Fossil energy sources must be replaced with renewable ones. Renewable energy sources with reasonable potential such as photovoltaics or wind power provide electricity. However since chemical energy carriers are essential for various sectors and applications the need for renewable gases comes more and more into focus. This paper determines the Austrian green hydrogen potential produced exclusively from electricity surpluses. In combination with assumed sustainable methane production the resulting renewable gas import demand is identified based on two fully decarbonised scenarios for the investigated years 2030 2040 and 2050. While in one scenario energy efficiency is maximised in the other scenario significant behavioural changes are considered to reduce the total energy consumption. A techno-economic analysis is used to identify the economically reasonable national green hydrogen potential and to calculate the averaged levelised cost of hydrogen (LCOH2) for each scenario and considered year. Furthermore roll-out curves for the necessary expansion of national electrolysis plants are presented. The results show that in 2050 about 43% of the national gas demand can be produced nationally and economically (34 TWh green hydrogen 16 TWh sustainable methane). The resulting national hydrogen production costs are comparable to the expected import costs (including transport costs). The most important actions are the quick and extensive expansion of renewables and electrolysis plants both nationally and internationally
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman
Aug 2021
Publication
Hydrogen production using renewable power is becoming an essential pillar for future sustainable energy sector development worldwide. The Sultanate of Oman is presently integrating renewable power generations with a large share of solar photovoltaic (PV) systems. The possibility of using the solar potential of the Sultanate can increase energy security and contribute to the development of the sustainable energy sector not only for the country but also for the international community. This study presents the hydrogen production potential using solar resources available in the Sultanate. About 15 locations throughout the Sultanate are considered to assess the hydrogen production opportunity using a solar PV system. A rank of merit order of the locations for producing hydrogen is identified. It reveals that Thumrait and Marmul are the most suitable locations whereas Sur is the least qualified. This study also assesses the economic feasibility of hydrogen production which shows that the levelized cost of hydrogen (LCOH) in the most suitable site Thumrait is 6.31 USD/kg. The LCOH in the least convenient location Sur is 7.32 USD/kg. Finally a sensitivity analysis is performed to reveal the most significant influential factor affecting the future’s green hydrogen production cost. The findings indicate that green hydrogen production using solar power in the Sultanate is promising and the LCOH is consistent with other studies worldwide.
Building Efficiency- Reducing Energy Demand in the Commercial Sector
Dec 2013
Publication
The report was formally launched on 2nd December in Parliament at a panel debate chaired by Lord Whitty and Oliver Colvile and featured representatives from Government and Industry. The report outlines the case for investment by businesses in the energy efficiency of their buildings and operations and highlights how this could help neutralise the threat to profitability posed by increasing energy bills energy price volatility and an increasing reliance on electricity in the commercial sector. The report highlights that business in the UK have the opportunity to not only reduce energy bills but increase their competitiveness and improve worker productivity through better designed buildings.
Prospects of Integrated Photovoltaic‐Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review
Oct 2021
Publication
Integrated photovoltaic‐fuel cell (IPVFC) systems amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse re‐ search and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state‐of‐the‐art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialization. Design methodologies renewable energy‐ based microgrid and off‐grid applications energy management strategies optimizations and the prospects as self‐sustaining power sources were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the advances as well as the technical challenges to be surmounted to realize numerous potential applications of IPVFC systems in unmanned aerial vehicles hybrid electric vehicles agricultural applications telecommunications desalination synthesis of ammonia boats buildings and distributed microgrid applications.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
Interaction of Hydrogen Infrastructures with other Sector Coupling Options Towards a Zero-emission Energy System in Germany
Aug 2021
Publication
The flexible coupling of sectors in the energy system for example via battery electric vehicles electric heating or electric fuel production can contribute significantly to the integration of variable renewable electricity generation. For the implementation of the energy system transformation however there are numerous options for the design of sector coupling each of which is accompanied by different infrastructure requirements. This paper presents the extension of the REMix energy system modelling framework to include the gas sector and its application for investigating the cost-optimal design of sector coupling in Germany's energy system. Considering an integrated optimisation of all relevant technologies in their capacities and hourly use a path to a climate-neutral system in 2050 is analysed. We show that the different options for flexible sector coupling are all needed and perform different functions. Even though flexible electrolytic production of hydrogen takes on a very dominant role in 2050 it does not displace other technologies. Hydrogen also plays a central role in the seasonal balancing of generation and demand. Thus large-scale underground storage is part of the optimal system in addition to a hydrogen transport network. These results provide valuable guidance for the implementation of the energy system transformation in Germany.
Future Heat Series Part 2 - Policy for Heat
Oct 2015
Publication
Policy for Heat: Transforming the System urges Government to implement an ambitious long-term decarbonisation strategy for the heat sector before it’s too late in new inquiry report. The report builds on the work of Part 1 in the Future Heat Series which compared recent decarbonisation pathways and analyses to identify and highlight key policy mechanisms and transitions that are needed in order to decarbonise heat for buildings by 2050. Chaired by Shadow Energy Minister Jonathan Reynolds MP and Conservative MP Rebecca Pow (and also previous MP and member of the Energy and Climate Change Select Committee Dan Byles MP until he stood down at the General Election) the report is written by cross-party think tank group Carbon Connect. The report was published in Parliament at a cross-party debate on Wednesday 14th October. Sponsored by Energy & Utilities Alliance (EUA) and the Institution of Gas Engineers and Managers (IGEM) the report is the second in a cross-party and independent inquiry series.
Future Heat Series Part 1 - Pathways for Heat
Nov 2014
Publication
Together the pathways examined in the report paint a picture of the nationwide transformation getting underway in how we heat our homes and buildings. The report identifies that by 2050 gas used to heat buildings could fall by 75-95% electricity increase from a 10% share today to 30-80% and district heat increase from less than 2% to up to a 40% share. At the same time energy efficiency could help to lower bills and offset the expected growth in our heating needs from an expanding population and building stock. Across most pathways examined in the report mass deployment of low carbon heat solutions ramps up in the lead-in to 2030. Carbon Connect’s overarching recommendation is that the next decade should be spent preparing by developing a robust strategy for decarbonising heat in buildings whilst testing and scaling up delivery models. The report calls for the next Government to prioritise these preparations in the same way that preparing for power sector decarbonisation has been the overriding focus of energy policy in the past decade. The Future Heat Series brings together politicians policy and academic experts and industry leaders. Together this coalition of key figures is taking stock of evidence progressing the policy debate in an open and constructive forum and building consensus for prioritising and transforming heat. Pathways for Heat is the first part of the Future Heat Series and presents six recommendations and over twenty findings.
Prospective Techno-economic and Environmental Assessment of a National Hydrogen Production Mix for Road Transport
Nov 2019
Publication
Fuel cell electric vehicles arise as an alternative to conventional vehicles in the road transport sector. They could contribute to decarbonising the transport system because they have no direct CO2 emissions during the use phase. In fact the life-cycle environmental performance of hydrogen as a transportation fuel focuses on its production. In this sense through the case study of Spain this article prospectively assesses the techno-economic and environmental performance of a national hydrogen production mix by following a methodological framework based on energy systems modelling enriched with endogenous carbon footprint indicators. Taking into account the need for a hydrogen economy based on clean options alternative scenarios characterised by carbon footprint restrictions with respect to a fossil-based scenario dominated by steam methane reforming are evaluated. In these scenarios the steam reforming of natural gas still arises as the key hydrogen production technology in the short term whereas water electrolysis is the main technology in the medium and long term. Furthermore in scenarios with very restrictive carbon footprint limits biomass gasification also appears as a key hydrogen production technology in the long term. In the alternative scenarios assessed the functional substitution of hydrogen for conventional fossil fuels in the road transport sector could lead to high greenhouse gas emission savings ranging from 36 to 58 Mt CO2 eq in 2050. Overall these findings and the model structure and characterisation developed for the assessment of hydrogen energy scenarios are expected to be relevant not only to the specific case study of Spain but also to analysts and decision-makers in a large number of countries facing similar concerns.
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
Consumer Attitudes to Fuel Cell Vehicles Post Trial in the United Kingdom
Mar 2016
Publication
Fuel cell vehicles (FCVs) have clear societal and environmental benefits and can help mitigate the issues of climate change urban air pollution and oil dependence. In order for FCVs to have the biggest impact on these issues they need to be employed in large numbers. First though they need to be adopted by consumers. Their acceptance depends on positive consumer attitudes towards the vehicles. Currently there is a limited understanding within the literature on how consumers perceive FCVs and what the likelihood of adoption by consumers would be despite significant governmental and organisational investments into the technology. Therefore this study assesses consumer attitudes towards FCVs in the United Kingdom. 81 persons drove a Hyundai FCV at the Low Carbon Vehicle Event in September 2015 of which 30 took part in this study. The results show that at present FCVs are perceived mostly as being similar to incumbent internal combustion engine vehicles. This is an admirable technical achievement however in order for consumers to adopt FCVs they will need to be perceived as having distinctive benefits. Two significant barriers to the adoption of FCVs are observed in this sample: high costs and lack of refuelling infrastructure. This paper goes on to make suggestions on how and which beneficial attributes of the vehicles can be promoted to consumers and also makes suggestions on how the barriers can be overcame so that FCVs will be adopted by consumers.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Future Electricity Series Part 3 - Power from Nuclear
Mar 2014
Publication
This independent cross-party report highlights the key role that political consensus can play in helping to reduce the costs of nuclear power in the UK as well as other low carbon technologies. This political consensus has never been more important than in this ‘defining decade’ for the power sector. The report highlights that an immediate challenge facing the UK’s new build programme is agreeing with the European Commission a regime for supporting new nuclear power. Changing the proposed support package would not be an impossible task if made necessary but maintaining broad political consensus and considering the implications of delay are also important. The State Aid process is an important opportunity for scrutiny with the report demonstrating that shareholders for Hinkley Point C could see bigger returns (19-21%) than those typically expected for PFI projects (12-15%). However it is too early to conclude on the value for money of the Hinkley Point C agreement. Both the negotiation process and the resulting investment contract are important but there has been little transparency over either so far and the negotiations were not competitive. The inquiry calls for more urgency and better coordination in seizing the opportunity to reuse the UK’s plutonium stockpile.
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
Regional Insights into Low-carbon Hydrogen Scale Up: World Energy Insights Working Paper
May 2022
Publication
Following the release of the “Hydrogen on the Horizon” series in July and September 2021 the World Energy Council in collaboration with EPRI and PwC led a series of regional deep dives to understand regional differences within low-carbon hydrogen development. These regional deep dives aimed to uncover regional perspectives and differing dynamics for low-carbon hydrogen uptake.<br/>Although each region presents its own distinctive challenges and opportunities the deep dives revealed that the “regional paths” provide new insights into the global scaling up of low-carbon hydrogen in the coming years. In addition each region holds its own unique potential in achieving the Sustainable Development Goals.<br/>Key Takeaways:<br/>1. Our new regional insights indicate that low-carbon hydrogen can play a significant role by 2040 across the world by supporting countries’ efforts towards achieving Paris Agreement goals whilst contributing to the diversity and security of their energy portfolios. This would require significant global trade flows of hydrogen and hydrogen-based fuels.<br/>2. The momentum for hydrogen-based fuels is continuing to grow worldwide but differences are seen between regions – based on differing market activities and opportunities.<br/>3. Today moving from “whether” to “how” to develop low-carbon hydrogen highlights significant uncertainties which need to be addressed if hydrogen is to reach its full potential.<br/>Can the challenges in various supply chain options be overcome?<br/>Can hydrogen play a role in tackling climate change in the short term?<br/>Can bankable projects emerge and the gap between engineers and financers be bridged? Can the stability of supply of the main low-carbon hydrogen production sources be guaranteed?<br/>4. Enabling low-carbon hydrogen at scale would notably require greater coordination and cooperation amongst stakeholders worldwide to better mobilise public and private finance and to shift the focus to end-users and people through the following actions:<br/>Moving from production cost to end-use price<br/>Developing Guarantees of Origin schemes with sustainability requirements<br/>Developing a global monitoring and reporting tool on low-carbon hydrogen projects<br/>Better consideration of social impacts alongside economic opportunities
Power-to-Gas Hydrogen: Techno-economic Assessment of Processes Towards a Multi-purpose Energy Carrier
Dec 2016
Publication
The present work investigates Power-to-Gas (PtG) options for variable Renewable Electricity storage into hydrogen through low temperature (alkaline and PEM) and high-temperature (SOEC) water electrolysis technologies. The study provides the assessment of the cost of the final product when hydrogen is employed for mobility (on-site refueling stations) electricity generation (by fuel cells in Power-to-Power systems) and grid injection in the natural gas network. Costs estimations are performed for 2013-2030 scenarios. A case study on the impact of variable Renewable Electricity storage by hydrogen generation on the Italian electricity and mobility sectors is presented.
Analysing Long-term Opportunities for Offshore Energy System Integration in the Danish North Sea
Aug 2021
Publication
This study analyzes future synergies between the Oil and Gas (O&G) and renewables sectors in a Danish context and explores how exploiting these synergies could lead to economic and environmental benefits. We review and highlight relevant technologies and related projects and synthesize the state of the art in offshore energy system integration. All of these preliminary results serve as input data for a holistic energy system analysis in the Balmorel modeling framework. With a timeframe out to 2050 and model scope including all North Sea neighbouring countries this analysis explores a total of nine future scenarios for the North Sea energy system. The main results include an immediate electrification of all operational Danish platforms by linking them to the shore and/or a planned Danish energy island. These measures result in cost and CO2 emissions savings compared to a BAU scenario of 72% and 85% respectively. When these platforms cease production this is followed by the repurposing of the platforms into hydrogen generators with up to 3.6 GW of electrolysers and the development of up to 5.8 GW of floating wind. The generated hydrogen is assumed to power the future transport sector and is delivered to shore in existing and/or new purpose-built pipelines. The contribution of the O&G sector to this hydrogen production amounts to around 19 TWh which represents about 2% of total European hydrogen demand for transport in 2050. The levelized costs (LCOE) of producing this hydrogen in 2050 are around 4 €2020/kg H2 which is around twice those expected in similar studies. But this does not account for energy policies that may incentivize green hydrogen production in the future which would serve to reduce this LCOE to a level that is more competitive with other sources.
Industrial Decarbonisation Policies for a UK Net-Zero Target
Dec 2020
Publication
To inform our Sixth Carbon Budget advice the Climate Change Committee (CCC) asked the University of Leeds to undertake independent research to evaluate which policies (and combinations of policies) would enable industrial decarbonisation in line with the UK’s net zero target without inducing carbon leakage. The research focused on policies applicable to the manufacturing sector but with some consideration also given to the policies required to decarbonise the Fossil Fuel Production and Supply and Non-Road Mobile Machinery sectors. This report:
Sets out a comprehensive review of existing policies;
The paper can be downloaded from the CCC website
Sets out a comprehensive review of existing policies;
- Identifies future policy mechanisms that address key challenges in decarbonising industry;
- Explores how combinations of policies might work together strategically in the form of ‘policy packages’ and how these packages might evolve over the period to 2050;
- Evaluates a series of illustrative policy packages and considers any complementary policies required to minimise carbon leakage and deliver ‘just’ industrial decarbonisation.
- The findings were developed through a combination of literature review and extensive stakeholder engagement with industry government and academic experts.
The paper can be downloaded from the CCC website
Just Transition Commission
Mar 2021
Publication
The Just Transition Commission started work in early 2019 with a remit to provide practical and affordable recommendations to Scottish Ministers. This report sets out their view of the key opportunities and challenges for Scotland and recommends practical steps to achieving a just transition<br/><br/>Climate action fairness and opportunity must go together. Taking action to tackle climate change must make Scotland a healthier more prosperous and more equal society whilst restoring its natural environment. We want a Scotland where wellbeing is at the heart of how we measure ourselves and our prosperity. We know that the scars from previous industrial transitions have remained raw for generations. We know that some more recent aspirations for green jobs have not delivered on all the benefits promised for Scottish workers and communities. We need rapid interventions to fully realise the potential (and mitigate the potential injustice) associated with the net-zero transition.
Hydrogen Valleys. Insights Into the Emerging Hydrogen Economies Around the World
Jun 2021
Publication
Clean hydrogen is universally considered an important energy vector in the global efforts to limit greenhouse gas emissions to the "well below 2 °C scenario" as agreed by more than 190 states in the 2015 Paris Agreement. Hydrogen Valleys – regional ecosystems that link hydrogen production transportation and various end uses such as mobility or industrial feedstock – are important steps towards enabling the development of a new hydrogen economy.<br/><br/>This report has been issued during the setup of the "Mission Innovation Hydrogen Valley Platform" which was commissioned by the European Union and developed by the Fuel Cells and Hydrogen Joint Undertaking. The global information sharing platform to date already features 30+ global Hydrogen Valleys with a cumulative investment volume of more than EUR 30 billion. The projects provide a first-of-its kind look into the global Hydrogen Valley project landscape its success factors and remaining barriers. This report summarizes the findings and presents identified best practices for successful project development as well as recommendations for policymakers on how to provide a favourable policy environment that paves the way to reach the Hydrogen Valleys' full potential as enablers of the global hydrogen economy.
Renewable Energy Policies in a Time of Transition: Heating and Cooling
Nov 2020
Publication
Heating and cooling accounts for almost half of global energy consumption. With most of this relying fossil fuels however it contributes heavily to greenhouse gas emissions and air pollution. In parts of the world lacking modern energy access meanwhile inefficient biomass use for cooking also harms people’s health damages the environment and reduces social well-being.
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
- Setting specific targets and developing an integrated long-term plan for the decarbonisation of heating and cooling in all end-uses including buildings industry and cooking and productive uses in areas with limited energy access.
- Creating a level playing field by phasing out fossil-fuel subsidies and introducing other fiscal policies to internalise environmental and socio-economic costs.
- Combining the electrification of heating and cooling with increasingly cost-competitive renewable power generation scaling up solar and wind use and boosting system flexibility via energy storage heat pumps and efficient electric appliances.
- Harnessing existing gas networks to accommodate renewable gases such as biogas and green hydrogen.
- Introducing standards certification and testing policies to promote the sustainable use of biomass combining efficient systems and bioenergy solutions such as pellets briquettes bioethanol or anaerobic digestion.
- Reducing investment risks for geothermal exploration and scaling up direct use of geothermal heat.
- Improving district heating and cooling networks through energy efficiency measures and the integration of low-temperature solar thermal geothermal and other renewable-based heat sources.
- Supporting clean cooking and introducing renewable-based food drying in areas lacking energy access with a combination of financing mechanisms capacity building and quality standards aimed at improving livelihoods and maximising socio-economic benefits.
UK Hydrogen Economy: Debate Pack
Dec 2020
Publication
A Westminster Hall debate on the UK hydrogen economy has been scheduled for Thursday 17 December 2020 at 3.00pm. The debate will be led by Alexander Stafford MP. This House of Commons Library debate pack provides background information and press and parliamentary coverage of the issues.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
Hydrogen Act Towards the creation of the European Hydrogen Economy
Apr 2021
Publication
It is time that hydrogen moves from an afterthought to a central pillar of the energy system and its key role in delivering climate neutrality means it merits a dedicated framework. It becomes paramount to allow hydrogen to express its full potential as the other leg of the energy mobility and industry transitions. The proposed “Hydrogen Act” is not a single piece of legislation it is intended to be a vision for an umbrella framework aimed at harmonising and integrating all separate hydrogen-related actions and legislations. It focuses on infrastructure and market aspects describing three phases of development: the kick-start phase the ramp-up phase and the market-growth phase.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
Reducing Emissions in Scotland 2020 Progress Report to the Scottish Parliament
Oct 2020
Publication
Outline
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Business Energy and Industrial Strategy Committee Inquiry into Decarbonising Heat in Homes
Dec 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Business Energy and Industrial Strategy Committee’s inquiry into decarbonising heat in homes. It is the Taskforce’s view that:
In March 2020 the Taskforce has defined a set of policy recommendations for Government which are designed to ensure that hydrogen can scale to meet the future demands of a net zero energy system: • Development of a cross departmental UK Hydrogen Strategy within UK Government;• Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;• Develop a financial support scheme for the production of hydrogen in blending industry power and transport.• Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and• Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
- Decarbonising heat is one of the biggest challenges that the UK faces in meeting Net Zero and several solutions will be required;
- Hydrogen can play a valuable role in reducing the cost of decarbonising heat. Its high energy density enables it to be stored cost effectively at scale providing system resilience;
- Hydrogen heating can be implemented at minimal disruption to the consumer;
- The UK holds world-class advantages in hydrogen production distribution and application; and
- Other economies are moving ahead in the development of this sector and the UK must respond.
In March 2020 the Taskforce has defined a set of policy recommendations for Government which are designed to ensure that hydrogen can scale to meet the future demands of a net zero energy system: • Development of a cross departmental UK Hydrogen Strategy within UK Government;• Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;• Develop a financial support scheme for the production of hydrogen in blending industry power and transport.• Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and• Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
EU Hydrogen Strategy: A Case for Urgent Action Towards Implementation
Jul 2020
Publication
Interest in hydrogen as one route to the decarbonisation of energy systems has risen rapidly over the past few years with the publication of a number of hydrogen strategies from countries across the global energy economy. The momentum in Europe has increased sharply this month with the publication of an EU strategy to incorporate hydrogen into its plans for a net zero emission future. This Comment reviews the key elements of this strategy and provides an initial commentary on the main goals. We highlight the challenges that will be faced in meeting hydrogen production targets in particular via the “green hydrogen” route and analyse the plans for expanding the consumption of hydrogen in Europe. We also assess the infrastructure questions that will need to be answered if and when hydrogen takes on a greater role in the region and note the extensive state support that will be needed in the early years of the implementation of the strategy. Despite this though we applaud the ambition laid out by the EU and look forward to the provision of more detailed plans over the coming months and years.
Link to document on OIES website
Link to document on OIES website
The Future of Gas in Decarbonising European Energy Markets – The Need for a New Approach
Sep 2017
Publication
The European gas industry has argued that gas can be a bridging fuel in the transition to decarbonised energy markets because of the advantages of switching from coal to gas and the role of gas in backing up intermittent renewable power generation. While this remains a logical approach for some countries in others it has proved either not relevant or generally unsuccessful in gaining acceptance with either policymakers or the environmental community. Policy decisions will be taken in the next 5-10 years which will irreversibly impact the future of gas in the period 2030-50. A paradigm shift in commercial time horizons and gas value chain cooperation will be necessary for the industry to embrace decarbonisation technologies (such as carbon capture and storage) which will eventually be necessary if gas is to prolong its future in European energy markets. To ensure a post-2030 future in European energy balances the gas community will be obliged to adopt a new message: `Gas can Decarbonise’ (and remain competitive with other low/zero carbon energy supplies). It will need to back up this message with a strategy which will lead to the decarbonisation of methane starting no later than 2030. Failure to do so will be to accept a future of decline albeit on a scale of decades and to risk that by the time the community engages with decarbonisation non-methane policy options will have been adopted which will make that decline irreversible.
Recovery Through Reform: Assessing the climate compatibility of Canada’s COVID-19 response in 2020
Feb 2021
Publication
Governments around the world are leveraging unprecedented amounts of capital to respond to the pandemic and bailing out struggling industries. Trends in energy-related spending indicate that despite the green push the world’s largest economies have still favoured fossil energy over clean energy.<br/><br/>We evaluate energy-related spending in Canada in 2020 (since the onset of COVID-19) using data from the Energy Policy Tracker. Trends in Canada are then compared to flagship policies in key jurisdictions with recent progressive climate policy announcements including France Germany and the United Kingdom. The brief ends with broad recommendations on how Canada can better align its recovery funding with climate action and fossil fuel subsidy reform.<br/><br/>This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Hydrogen Energy Vision 2060: Hydrogen as Energy Carrier in Malaysian Primary Energy Mix – Developing P2G Case
Mar 2021
Publication
The transition of Malaysia from fossil fuels to renewable energy sources provides significant challenges and opportunities for various energy sectors. Incorporation of H2 in the primary energy mix requires a deal of complexity in its relation to production transportation and end-use. The Sarawak State Government in Malaysia implemented a hydrogen energy roadmap for the year 2005–2030 on the state-level but despite the great enthusiasm and full support given by the government the development of hydrogen technology is still far from its goals. This is due to several factors that hinder its progress including (1) inability of hydrogen to be integrated with current primary energy infrastructure (2) limited technology resources to produce sustainable hydrogen and (3) lack of technical expertise in the field of hydrogen. In this paper a potential national roadmap and milestones are presented based on the power-to-gas (P2G) approach combined with its implications on the national natural gas (NG) pipeline network. Besides that the long-term and short-term strategies and implementation mechanisms are discussed in detail. Furthermore complete research schemes are formulated to be inline with the presented vision to further enhance technology development and implementation.
Integrating System and Operator Perspectives for the Evaluation of Power-to-Gas Plants in the Future German Energy System
Feb 2022
Publication
In which way and in which sectors will renewable energy be integrated in the German Energy System by 2030 2040 and 2050? How can the resulting energy system be characterised following a −95% greenhouse gas emission reduction scenario? Which role will hydrogen play? To address these research questions techno-economic energy system modelling was performed. Evaluation of the resulting operation of energy technologies was carried out from a system and a business point of view. Special consideration of gas technologies such as hydrogen production transport and storage was taken as a large-scale and long-term energy storage option and key enabler for the decarbonisation of the non-electric sectors. The broad set of results gives insight into the entangled interactions of the future energy technology portfolio and its operation within a coupled energy system. Amongst other energy demands CO2 emissions hydrogen production and future power plant capacities are presented. One main conclusion is that integrating the first elements of a large-scale hydrogen infrastructure into the German energy system already by 2030 is necessary for ensuring the supply of upscaling demands across all sectors. Within the regulatory regime of 2020 it seems that this decision may come too late which jeopardises the achievement of transition targets within the horizon 2050.
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy
Apr 2021
Publication
In its new report Making the Hydrogen Economy Possible: Accelerating clean hydrogen in an electrified economy the ETC outlines the role of clean hydrogen in achieving a highly electrified net-zero economy. The report sets out how a combination of private-sector collaboration and policy support can drive the initial ramp up of clean hydrogen production and use to reach 50 million tonnes by 2030.<br/>Clean hydrogen will play a complementary role to decarbonise sectors where direct electrification is likely to be technologically very challenging or prohibitively expensive such as in steel production and long-distance shipping. The report highlights how critical rapid ramp-up of production and use in the 2020s is to unlock cost reductions and to make mid-century growth targets achievable.<br/>This report is part of the ETC’s wider Making Mission Possible Series – a series of reports outlining how to scale up clean energy provision within the next 30 years to meet the needs of a net-zero greenhouse gas emissions (GHG) economy by mid-century. The reports in the series analyse and set out specific actions required in the next decade to put this net-zero by 2050 target within reach.
World Energy Issues Monitor 2021: Humanising Energy
Mar 2021
Publication
Based on data collection carried out between October and December 2020 and the testing of emerging findings with the Council’s regional communities during a series of digital workshops held during February 2021 the report has shown
- Energy leaders’ perceptions of areas of risk opportunity and priorities for action have radically changed over the last 12 months. While economic turbulence stemming from the ongoing reverberations of COVID-19 is the biggest area of uncertainty with uncertainty around economic trends increasing by a third over the previous year there is also a growing focus on the social agenda associated with a faster paced energy transition.
- There is an increased awareness of the societal and human impact of both recovery and the wider energy transition. The issue of energy affordability has rapidly risen up the industry’s priority list with its impact and uncertainty perceived 20% larger than a year ago. Energy affordability affects society across all geographies ranging from city dwellers in developed countries to the rural poor in developing ones.
- The emergence of a new generation of digital energy services and energy entrepreneurs. Increasingly agile disruptive technologies have taken advantage of the social upheaval to gain market share at the expense of supply-centric energy solutions. There is a growing focus on customer-centric demand-driven solutions and fast changing patterns of global and local demand.
Can the Current EU Regulatory Framework Deliver Decarbonisation of Gas?
Jun 2020
Publication
This Energy Insight examines the current regulatory framework and challenges facing the natural gas industry (producers transporters suppliers and consumers) during the transition to a zero-carbon economy. The EU has declared its intention to be climate neutral by 2050 which means that the current level of natural gas usage will no longer be possible. However natural gas is a crucial component of energy supply representing 24 per cent of primary energy supply for the EU27+UK and 36 per cent of residential energy consumption. In some countries the use of natural gas is much higher – around 40 per cent of primary energy supply in Netherlands UK and Italy. The current framework impacting gas addresses two different market failures – natural monopolies for gas transportation and the externalities of Greenhouse Gas Emissions. The framework will not deliver decarbonisation of gas as it does not stimulate either supply or demand for alternatives such as hydrogen nor create the conditions to enable gas networks to transition to a decarbonised future. Policy makers need to prioritise their objectives to take account of the trade-offs involved in designing a new framework. Exclusion of certain low carbon technologies risks driving away investors and reduces the chances of targets being met whilst “picking winners” involves risks because of the many uncertainties involved such as future costs and time required to build new value chains.
Link to Document on Oxford Institute for Energy Studies website
Link to Document on Oxford Institute for Energy Studies website
EU Hydrogen Vision: Regulatory Opportunities and Challenges
Sep 2020
Publication
This Insight provides an overview of the recent EU Commission Hydrogen Strategy Energy System Integration Strategy and Industrial Strategy focusing on regulatory issues impacting hydrogen. It looks at the proposed classification and preferences for different sources of hydrogen financial and regulatory support for development of hydrogen supply demand and infrastructure as well as potential regulation of hydrogen markets. Whilst the Hydrogen Strategy underlines the need for hydrogen to decarbonise the economy the Insight concludes that the EU has shown a clear preference for hydrogen based on renewable electricity at the expense of low carbon hydrogen from natural gas even though it recognises the need for low carbon hydrogen. In addition further detail is required on the support mechanisms and regulatory framework if development of new hydrogen value chain is to succeed. Lastly there is little sign that the Commission recognises the change in regulatory approach from the current natural gas framework which will be needed because of the different challenges facing the development of a hydrogen market.
Paper can be downloaded on their website
Paper can be downloaded on their website
The Future of Gas Networks – Key Issues for Debate
Sep 2019
Publication
The Oxford Institute for Energy Studies held a Workshop on “The Future of Gas Networks” to examine decarbonisation plans and the impact of the potential growth in the use of renewable and decarbonised gases in Europe. Participants included representatives from nine European gas network companies (both transmission and distribution) technical experts in decarbonisation regulators government officials and academics. This document summarises the seven key issues for debate arising from the Workshop discussions:
- The major gas networks recognise the need to prepare for and facilitate decarbonisation.
- The route to decarbonisation can take many forms though hydrogen is likely to feature in most networks. In larger countries solutions are likely to be regional rather than national.
- There are a number of pilot projects and targets/aspirations for 2050 – there is less clarity on how the targets will be achieved or on who will lead.
- Regulation is a key issue. In most countries existing regulatory objectives may need changing in order to align with government decarbonisation aspirations and the achievement of targets.
- There is a lack of consensus on whether and how market models might need to adapt.
- Detailed stakeholder analysis – and in particular customer attitudes – will be required.
- There are a range of important technical issues including standardisation data quality and transparency verification and certification to be considered.
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Reaching Zero with Renewables
Sep 2020
Publication
Patrick Akerman,
Pierpaolo Cazzola,
Emma Skov Christiansen,
Renée Van Heusden,
Joanna Kolomanska-van Iperen,
Johannah Christensen,
Kilian Crone,
Keith Dawe,
Guillaume De Smedt,
Alex Keynes,
Anaïs Laporte,
Florie Gonsolin,
Marko Mensink,
Charlotte Hebebrand,
Volker Hoenig,
Chris Malins,
Thomas Neuenhahn,
Ireneusz Pyc,
Andrew Purvis,
Deger Saygin,
Carol Xiao and
Yufeng Yang
Eliminating CO2 emissions from industry and transport in line with the 1.5⁰C climate goal
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
Energy Transition in France
May 2022
Publication
To address the climate emergency France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production which amounts to 25.5% in 2020 should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibility in power systems. This document presents the main strategies and projects developed in France as well as various recommendations to accompany and support its energy transition policy.
World Energy Issues Monitor 2020: Decoding New Signals of Change
Oct 2020
Publication
ISSUES MONITOR 2020: DECODING NEW SIGNALS OF CHANGE
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
Evaluation of Zero-Energy Building and Use of Renewable Energy in Renovated Buildings: A Case Study in Japan
Apr 2022
Publication
Following the Paris Agreement in 2015 the worldwide focus on global warming countermeasures has intensified. The Japanese government has declared its aim at achieving carbon neutrality by 2050. The concept of zero-energy buildings (ZEBs) is based on measures to reduce energy consumption in buildings the prospects of which are gradually increasing. This study investigated the annual primary energy consumption; as well as evaluated renewed and renovated buildings that had a solar power generation system and utilized solar and geothermal heat. It further examines the prospects of hydrogen production from on-site surplus electricity and the use of hydrogen fuel cells. A considerable difference was observed between the actual energy consumption (213 MJ/m2 ) and the energy consumption estimated using an energy simulation program (386 MJ/m2 ). Considerable savings of energy were achieved when evaluated based on the actual annual primary energy consumption of a building. The building attained a near net zero-energy consumption considering the power generated from the photovoltaic system. The study showed potential energy savings in the building by producing hydrogen using surplus electricity from on-site power generation and introducing hydrogen fuel cells. It is projected that a building’s energy consumption will be lowered by employing the electricity generated by the hydrogen fuel cell for standby power water heating and regenerating heat from the desiccant system.
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choice.
The document can be download on their website
The document can be download on their website
Hydrogen Economy Outlook
Mar 2020
Publication
The falling cost of making hydrogen from wind and solar power offers a promising route to cutting emissions in some of the most fossil fuel dependent sectors of the economy such as steel heavy-duty vehicles shipping and cement.
Hydrogen Economy Outlook a new and independent global study from research firm BloombergNEF (BNEF) finds that clean hydrogen could be deployed in the decades to come to cut up to 34% of global greenhouse gas emissions from fossil fuels and industry – at a manageable cost. However this will only be possible if policies are put in place to help scale up technology and drive down costs.
The report’s findings suggest that renewable hydrogen could be produced for $0.8 to $1.6/kg in most parts of the world before 2050. This is equivalent to gas priced at $6-12/MMBtu making it competitive with current natural gas prices in Brazil China India Germany and Scandinavia on an energy-equivalent basis. When including the cost of storage and pipeline infrastructure the delivered cost of renewable hydrogen in China India and Western Europe could fall to around $2/kg ($15/MMBtu) in 2030 and $1/kg ($7.4/MMBtu) in 2050.
Kobad Bhavnagri head of industrial decarbonization for BNEF and lead author of the report said: “Hydrogen has potential to become the fuel that powers a clean economy. In the years ahead it will be possible to produce it at low cost using wind and solar power to store it underground for months and then to pipe it on-demand to power everything from ships to steel mills.”
Hydrogen is a clean-burning molecule that can be used as a substitute for coal oil and gas in a large variety of applications. But for its use to have net environmental benefits it must be produced from clean sources rather than from unabated fossil fuel processes – the usual method at present.
Renewable hydrogen can be made by splitting water into hydrogen and oxygen using electricity generated by cheap wind or solar power. The cost of the electrolyzer technology to do this has fallen by 40% in the last five years and can continue to slide if deployment increases. Clean hydrogen can also be made using fossil fuels if the carbon is captured and stored but this is likely to be more expensive the report finds.
Read the full report on the BloombergNEF website here
Hydrogen Economy Outlook a new and independent global study from research firm BloombergNEF (BNEF) finds that clean hydrogen could be deployed in the decades to come to cut up to 34% of global greenhouse gas emissions from fossil fuels and industry – at a manageable cost. However this will only be possible if policies are put in place to help scale up technology and drive down costs.
The report’s findings suggest that renewable hydrogen could be produced for $0.8 to $1.6/kg in most parts of the world before 2050. This is equivalent to gas priced at $6-12/MMBtu making it competitive with current natural gas prices in Brazil China India Germany and Scandinavia on an energy-equivalent basis. When including the cost of storage and pipeline infrastructure the delivered cost of renewable hydrogen in China India and Western Europe could fall to around $2/kg ($15/MMBtu) in 2030 and $1/kg ($7.4/MMBtu) in 2050.
Kobad Bhavnagri head of industrial decarbonization for BNEF and lead author of the report said: “Hydrogen has potential to become the fuel that powers a clean economy. In the years ahead it will be possible to produce it at low cost using wind and solar power to store it underground for months and then to pipe it on-demand to power everything from ships to steel mills.”
Hydrogen is a clean-burning molecule that can be used as a substitute for coal oil and gas in a large variety of applications. But for its use to have net environmental benefits it must be produced from clean sources rather than from unabated fossil fuel processes – the usual method at present.
Renewable hydrogen can be made by splitting water into hydrogen and oxygen using electricity generated by cheap wind or solar power. The cost of the electrolyzer technology to do this has fallen by 40% in the last five years and can continue to slide if deployment increases. Clean hydrogen can also be made using fossil fuels if the carbon is captured and stored but this is likely to be more expensive the report finds.
Read the full report on the BloombergNEF website here
Scotland’s Energy Strategy Position Statement
Mar 2021
Publication
This policy statement provides:
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
- a whole-system view;
- an inclusive energy transition; and
- a smarter local energy model.
- Skills and Jobs;
- Supporting Local Communities:
- Investment; and
- Innovation
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
World Energy Issues Monitor 2018: Perspectives on the Grand Energy Transition
May 2018
Publication
The World Energy Issues Monitor provides the views of energy leaders from across the globe to highlight the key issues of uncertainty importance and developing signals for the future.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
- The geographical views can now be broken out into a country level.
- The time view allows you to see how specific issues have developed whether globally at a regional or country level
- Issues can also be viewed according to certain categories such as OECD non-OECD G20 countries innovators
Narratives for Natural Gas in a Decarbonising European Energy Market
Feb 2019
Publication
The advocacy narrative of the European Union gas community which focused on coal to gas switching and backing up renewables has failed to convince governments NGOs and media commentators that it can achieve post-2030 decarbonisation targets. The gas community therefore needs to develop decarbonisation narratives showing how it will develop commercial scale projects for biogas biomethane and hydrogen from power to gas (electrolysis) and reformed methane. COP21 carbon targets require an accelerating decline in EU methane demand starting around 2030. In 2050 the maximum projected availability of renewable gas is equivalent to 25 per cent of current EU gas demand. Maintaining current demand levels will therefore require very substantial volumes of hydrogen from reformed methane with carbon capture and storage (CCS). Pipeline gas and LNG suppliers will need to progressively decarbonise their product if it is to remain saleable in Europe. However networks face an existential threat unless they can maintain existing throughput while simultaneously adapting to a decarbonised product. Significant threats and challenges to these narratives include: short term geopolitical concerns stemming from dependence on Russian gas ‘hydrocarbon rejectionism’ and an inability of companies to invest for a post-2030 decarbonised future. Governments will need to shift current policy and regulatory frameworks from competition to decarbonisation which will require a ‘regulatory revolution’. In addition to government funding and regulatory support there will need to be very substantial corporate investment in projects for which there is currently no business case. Failure of the gas community to create and deliver credible decarbonisation narratives is likely to result in the adoption of electrification rather than gas decarbonisation options.
Heat Pump Manufacturing Supply Chain Research Project Report
Dec 2020
Publication
The Department for Business Energy and Industrial Strategy (BEIS) commissioned a study to research the capacity of the manufacturing supply chain to meet expected future demand for heat pumps. This report contains analysis of the existing supply chain including component parts and also assesses the risks to and opportunities for growth in domestic heat pump manufacture and export.<br/><br/>Alongside a literature review the findings in this report were supported by interviews with organisations involved in the manufacture of heat pumps and an online workshop held with a range of businesses throughout the supply chain.
Options for Multilateral Initiatives to Close the Global 2030 Climate Ambition and Action Gap - Policy Field Synthetic E-fuels
Jan 2021
Publication
Achieving the goals of the Paris Agreement requires increased global climate action especially towards the production and use of synthetic e-fuels. This paper focuses on aviation and maritime transport and the role of green hydrogen for indirect electrification of industry sectors. Based on a sound analysis of existing multilateral cooperation the paper proposes four potential initiatives to increase climate ambition of the G20 countries in the respective policy field: a Sustainable e-Kerosene Alliance a Sustainable e-fuel Alliance for Maritime Shipping a Hard-to-Abate Sector Partnership and a Global Supply-demand-partnership.
The full report can be found here on the Umweltbundesamt website
The full report can be found here on the Umweltbundesamt website
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
The Role of Hydrogen in Powering Industry: APPG on Hydrogen report
Jul 2021
Publication
The APPG on Hydrogen has published its report urging the Government to deliver beyond its existing net zero commitments and set ambitious hydrogen targets in forthcoming strategies to reach net zero by 2050.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
- The Government must continue to expand beyond its existing commitments of 5GW production in the forthcoming Hydrogen Strategy.
- Any forthcoming Government and devolved policies must be complementary of the wider UK low-carbon commitments.
- Industrial clusters should be prioritised for hydrogen use and will be the key catalyst for driving forward the UK’s decarbonisation of industry.
- The Government must commit to incentivising hydrogen production within the UK as opposed to importing this.
- The Government must align hydrogen production pathways with nuclear technology to enhance hydrogen production.
- The Government must develop a UK wide hydrogen network to support the transport sector including a larger-scale implementation of hydrogen refuelling stations.
- Regulators must act quickly to update energy regulations and guidance to support hydrogen’s role in powering industry.
- For hydrogen to expand in the UK a technology neutral approach is required for all types of energy systems.
- Significant and long-term financial support is required for the development deployment and operation of hydrogen technologies.
- Ofgem must ensure the hydrogen market is subject to effective competition to drive down prices for consumers.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
No more items...