Policy & Socio-Economics
The Future Potential Hydrogen Demand in Energy-intensive Industries - A Site-specific Approach Applied to Germany
Dec 2021
Publication
Hydrogen when based on renewable electricity can play a key role in the transition towards CO2-neutral industrial production since its use as an energy carrier as well as a feedstock in various industrial process routes is promising. At the same time a large-scale roll-out of hydrogen for industrial use would entail substantial impacts on the energy system which can only be assessed if the regional distribution of future hydrogen demand is considered. Here we assess the technical potential of hydrogen-based technologies for energy-intensive industries in Germany. The site-specific and process-specific bottom-up calculation considers 615 individual plants at 367 sites and results in a total potential hydrogen demand of 326 TWh/a. The results are available as an open dataset. Using hydrogen for non-energy-intensive sectors as well increases the potential hydrogen demand to between 482 and 534 TWh/a for Germany - based on today’s industrial structure and production output. This assumes that fossil fuels are almost completely replaced by hydrogen for process heating and feedstocks. The resulting hydrogen demand is very unevenly distributed: a few sites account for the majority of the overall potential and similarly the bulk of demand is concentrated in a few regions with steel and chemical clusters.
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
Scottish Hydrogen Assessment
Dec 2020
Publication
During 2020 the Scottish Government in partnership with Highlands and Islands Enterprise and Scottish Enterprise commissioned Arup and E4Tech to carry out a hydrogen assessment to deepen our evidence base in order to inform our policies on hydrogen going forward. The assessment aims to investigate how and where hydrogen may fit within the evolving energy system technically geographically and economically. To assist in this consideration a key part of the Hydrogen Assessment is the development of distinct viable scenarios for hydrogen deployment in Scotland and the economic assessment of those scenarios.<br/>From our assessment it is clear that hydrogen is not just an energy and emissions reduction opportunity; it could also have an important role in generating new economic opportunities in Scotland. The assessment forms an important part of the evidence base that informed the development of the Hydrogen Policy Statement.
Scottish Offshore Wind to Green Hydrogen Opportunity Assessment
Dec 2020
Publication
Initial assessment of Scotland’s opportunity to produce green hydrogen from offshore wind
Summary of Key Findings
Summary of Key Findings
- Scotland has an abundant offshore wind resource that has the potential to be a vital component in our net zero transition. If used to produce green hydrogen offshore wind can help abate the emissions of historically challenging sectors such as heating transport and industry.
- The production of green hydrogen from offshore wind can help overcome Scotland’s grid constraints and unlock a massive clean power generation resource creating a clean fuel for Scottish industry and households and a highly valuable commodity to supply rapidly growing UK and European markets.
- The primary export markets for Scottish green hydrogen are expected to be in Northern Europe (Germany Netherlands & Belgium). Strong competition to supply these markets is expected to come from green hydrogen produced from solar energy in Southern Europe and North Africa.
- Falling wind and electrolyser costs will enable green hydrogen production to be cost-competitive in the key transport and heat sectors by 2032. Strategic investment in hydrogen transportation and storage is essential to unlocking the economic opportunity for Scotland.
- Xodus’ analysis supports a long-term outlook of LCoH falling towards £2/kg with an estimated reference cost of £2.3 /kg in 2032 for hydrogen delivered to shore.
- Scotland has extensive port and pipeline infrastructure that can be repurposed for hydrogen export to the rest of UK and to Europe. Pipelines from the ‘90s are optimal for this purpose as they are likely to retain acceptable mechanical integrity and have a metallurgy better suited to hydrogen service. A more detailed assessment of export options should be performed to provide a firm foundation for early commercial green hydrogen projects.
- There is considerable hydrogen supply chain overlap with elements of parallel sectors most notably the oil and gas offshore wind and subsea engineering sectors. Scotland already has a mature hydrocarbon supply chain which is engaged in supporting green hydrogen. However a steady pipeline of early projects supported by a clear financeable route to market will be needed to secure this supply chain capability through to widescale commercial deployment.
- There are gaps in the Scottish supply chain in the areas of design manufacture and maintenance of hydrogen production storage and transportation systems. Support including apprenticeships will be needed to develop indigenous skills and capabilities in these areas.
- The development of green hydrogen from offshore wind has the potential to create high value jobs a significant proportion which are likely to be in remote rural/coastal communities located close to offshore wind resources. These can serve as an avenue for workers to redeploy and develop skills learned from oil and gas in line with Just Transition principles.
Workshop Report: Summary & Outcomes, Putting Science into Standards Power-to-Hydrogen and HCNG
Oct 2014
Publication
The Joint Research Centre (JRC) of the European Commission together with the European Association of Research and Technology Organisations (EARTO) the European Standards Organisations (ESO) CEN and CENELEC and the European Commission Directorate-General Enterprise and Industry (ENTR) have launched an initiative within the context of the European Forum on Science and Industry to bring the scientific and standardization communities closer together. The second and very successful workshop in a series entitled “Putting Science into Standards" was held in at the Institute for Energy and Transport of the JRC in Petten on 21-22 October 2014.<br/>The workshop focused on Power to Hydrogen (P2H) and Hydrogen Compressed Natural Gas (HCNG) which represent a promising and major contribution to the challenging management of increased integration of renewable energy sources in the overall energy system. The workshop offered a platform to exchange ideas on technologies policy and standardization issues. The participation of major stakeholders from both industry and research to this event proved fruitful in moving towards consensus on the relevant technical issues involved and at identifying a common way forward to increase the maturity and market visibility of P2H components and systems. Other outcomes include a clarification of expectations of industry of where and how policy and standardization can contribute to a competitive development of P2H and related issues. The workshop results will be used to devise a roadmap on "Opportunities for Power to Hydrogen and HCNG" by CEN/CENELEC outlining the next steps of standardization activities.
Establishing a Hydrogen Economy: The Future of Energy 2035
May 2019
Publication
The next few decades are expected to be among the most transformative the energy sector has ever seen. Arup envisages a world with a much more diverse range of heating sources and with significantly lower emissions and renewable energy powering transport.<br/>As part of this the establishment of a strong hydrogen economy is a very real opportunity and is within reaching distance. Our report uses the UK as a case study example and explores the challenges and opportunities for hydrogen in the context of the whole energy system.<br/>Read about the progress already being made in using hydrogen for transport and heat. And the need to progress policy and collaboration between government the private sector and other stakeholders to shape future demand change consumer perception and create the strong supply chains needed to allow the hydrogen economy to thrive.
Green Hydrogen in the UK: Progress and Prospects
Apr 2022
Publication
Green hydrogen has been known in the UK since Robert Boyle described flammable air in 1671. This paper describes how green hydrogen has become a new priority for the UK in 2021 beginning to replace fossil hydrogen production exceeding 1 Mte in 2021 when the British Government started to inject significant funding into green hydrogen sources though much less than the USA Germany Japan and China. Recent progress in the UK was initiated in 2008 when the first UK green hydrogen station opened in Birmingham University refuelling 5 hydrogen fuel cell battery electric vehicles (HFCBEVs) for the 50 PhD chemical engineering students that arrived in 2009. Only 10 kg/day were required in contrast to the first large green ITM power station delivering almost 600 kg/day of green hydrogen that opened in the UK in Tyseley in July 2021. The first question asked in this paper is: ‘What do you mean Green?’. Then the Clean Air Zone (CAZ) in Birmingham is described with the key innovations defined. Progress in UK green hydrogen and fuel cell introduction is then recounted. The remarks of Elon Musk about this ‘Fool Cell; Mind bogglingly stupid’ technology are analysed to show that he is incorrect. The immediate deployment of green hydrogen stations around the UK has been planned. Another century may be needed to make green hydrogen dominant across the country yet we will be on the correct path once a profitable supply chain is established in 2022.
Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study
Dec 2022
Publication
With the growing need for decarbonization the future gas demand will decrease and the necessity of a gas distribution network is at stake. A remaining industrial gas demand on the distribution network level could lead to industry becoming the main gas consumer supplied by the gas distribution network leading to the question: can industry keep the gas distribution network alive? To answer this research question a three-stage analysis was conducted starting from a rough estimate of average gas demand per production site and then increasing the level of detail. This paper shows that about one third of the German industry sites investigated are currently supplied by the gas distribution network. While the steel industry offers new opportunities the food and tobacco industry alone cannot sustain the gas distribution network by itself.
Net Zero Review: Interim Report
Dec 2020
Publication
Climate change is an existential threat to humanity. Without global action to limit greenhouse gas emissions the climate will change catastrophically with almost unimaginable consequences for societies across the world. In recognition of the risks to the UK and other countries the UK became in 2019 the first major economy to implement a legally binding net zero target.<br/>The UK has made significant progress in decarbonising its economy but needs to go much further to achieve net zero. This will be a collective effort requiring changes from households businesses and government. It will require substantial investment and significant changes to how people live their lives.<br/>This transformation will also create opportunities for the UK economy. New industries and jobs will emerge as existing sectors decarbonise or give way to lowcarbon equivalents. The Ten Point Plan for a Green Industrial Revolution and Energy White Paper start to set out how the UK can make the most of these opportunities with new investment in sectors like offshore wind and hydrogen.1 The transition will also have distributional and competitiveness impacts that the government will need to consider as it designs policy.<br/>This interim report sets out the analysis so far from the Treasury’s Net Zero Review and seeks feedback on the approach ahead of the final report due to be published next year.
Welsh Government’s Department for Economy, Skills & Natural Resources Briefing: Cardiff University’s Expertise to Help Address the Challenges to Creating a CO2 Circular Economy for Wales
Oct 2021
Publication
Through its “Reducing Carbon whilst Creating Social Value: How to get Started’ initiative Welsh Government is keen to explore whether a ‘circular economy’ (and industry) could be developed for Wales for CO2.<br/>Although most companies have targets to reduce their CO2 by 2030 Wales does not have the space to store or bury any excess with the current choice to ship or ‘move the problem’ elsewhere. Meanwhile other industry sectors in Wales are experiencing shortages of CO2 e.g. food production.<br/>Net Zero commitments will require dealing with CO2 emissions from agricultural and industrial sectors and from the production of blue and grey hydrogen during the transition time of switching to green hydrogen. Sequestration and shipping off of CO2 could be costly are not currently possible at large scale and are not sustainable. The use of CO2 by industry e.g. in construction materials and in food production processes can play a major role in addressing CO2 waste production from grey and blue hydrogen.<br/>In a Cradle-to-Cradle approach everything has a use. Is Wales missing out on creating and developing a new innovative industry around a CO2 circular economy?
Clean Hydrogen Monitor
Oct 2020
Publication
It’s the first of its kind overview showing the state of play with regards to hydrogen technologies in Europe. On an annual basis there will be an update serving as a basis for your investment or political decisions.<br/><br/>OUR MISSION IS – NO EMISSION!<br/>From day 1 Hydrogen Europe promoted clean hydrogen and clean hydrogen technologies as enablers of a decarbonised energy system. We strongly support the adoption of very ambitious climate targets for 2030 and the objective of carbon neutrality in the EU by 2050. Clean hydrogen can help to realise this transition of our energy system in multiple sectors from energy production storage and distribution to end-uses in transport industry heating and others.<br/><br/>CLEAN HYDROGEN TECHNOLOGIES CAN AND WILL REPLACE<br/>not just fossil-based hydrogen in current (industrial) uses but also other fossil-based energies such as petrol diesel and hydrocarbon fuels in the transport sector coal /coke in the steel sector natural gas in the heating sector and other polluting and emitting fuels and feedstocks. <br/><br/>WE ARE TALKING ABOUT A SYSTEMIC CHANGE.<br/>The use of clean hydrogen needs adaptations in production schemes in the infrastructure and in the deployment of hydrogen by the end users. This cannot – of course –be done in a day. Yet we should not wait for the implementation of the different hydrogen strategies on private municipal regional national or European level until other geographies worldwide race ahead.<br/><br/>
Net Zero Public Dialogue
Mar 2021
Publication
This research project brought together members of the public from across the UK to participate in online workshops to explore:
- public understanding and perceptions of what reaching climate targets in the UK will mean for them individually and for society as a whole
- public attitudes and preferences towards the role that individual behaviour change should have in reaching net zero
- public perceptions of the easiest and toughest areas of change to help reach net zero
- public views on how they would prefer to engage with net zero policies and relevant initiatives that they feel could support the delivery of net zero
Closing the Low-carbon Material Loop Using a Dynamic Whole System Approach
Feb 2017
Publication
The transition to low carbon energy and transport systems requires an unprecedented roll-out of new infrastructure technologies containing significant quantities of critical raw materials. Many of these technologies are based on general purpose technologies such as permanent magnets and electric motors that are common across different infrastructure systems. Circular economy initiatives that aim to institute better resource management practices could exploit these technological commonalities through the reuse and remanufacturing of technology components across infrastructure systems. In this paper we analyze the implementation of such processes in the transition to low carbon electricity generation and transport on the Isle of Wight UK. We model two scenarios relying on different renewable energy technologies with the reuse of Lithium-ion batteries from electric vehicles for grid-attached storage. A whole-system analysis that considers both electricity and transport infrastructure demonstrates that the optimal choice of renewable technology can be dependent on opportunities for component reuse and material recycling between the different infrastructure systems. Hydrogen fuel cell based transport makes use of platinum from obsolete catalytic converters whereas lithium-ion batteries can be reused for grid-attached storage when they are no longer useful in vehicles. Trade-offs exist between the efficiency of technology reuse which eliminates the need for new technologies for grid attached storage completely by 2033 and the higher flexibility afforded by recycling at the material level; reducing primary material demand for Lithium by 51% in 2033 compared to 30% achieved by battery reuse. This analysis demonstrates the value of a methodology that combines detailed representations of technologies and components with a systemic approach that includes multiple interconnected infrastructure systems.
Oxford Energy Podcast – Hydrogen in Europe
Apr 2021
Publication
The EU and a number of its member states have now published hydrogen strategies and Europe continues to lead the way in the decarbonisation of its gas sector. In this latest OIES Energy Podcast James Henderson talks with Martin Lambert and Simon Schulte about their latest paper entitled “Contrasting European Hydrogen Pathways” which examines the plans in six major EU countries. They discuss the outlook for various forms of hydrogen supply contrasting the potential for green hydrogen from renewable energy with the outlook for blue hydrogen using steam-reforming of methane as well as hydrogen generated from surplus nuclear energy. They also examine the potential sources of demand considering existing use of hydrogen in industrial processes as well as the potential for hydrogen to displace hydrocarbons in the steel and cement industries. Finally the podcast also looks at the potential for imports of hydrogen and its distribution within Europe while also considering some key milestones that can provide indicators of how the region’s hydrogen plans are playing out.
The podcast can be found on their website
The podcast can be found on their website
Options for Producing Low-carbon Hydrogen at Scale
Feb 2018
Publication
Low-carbon hydrogen has the potential to play a significant role in tackling climate change and poor air quality. This policy briefing considers how hydrogen could be produced at a useful scale to power vehicles heat homes and supply industrial processes.
Four groups of hydrogen production technologies are examined:
Thermochemical Routes to Hydrogen
These methods typically use heat and fossil fuels. Steam methane reforming is the dominant commercial technology and currently produces hydrogen on a large scale but is not currently low carbon. Carbon capture is therefore essential with this process. Innovative technology developments may also help and research is underway. Alternative thermal methods of creating hydrogen indicate biomass gasification has potential. Other techniques at a low technology readiness level include separation of hydrogen from hydrocarbons using microwaves.
Electrolytic Routes to Hydrogen
Electrolytic hydrogen production also known as electrolysis splits water into hydrogen and oxygen using electricity in an electrolysis cell. Electrolysis produces pure hydrogen which is ideal for low temperature fuel cells for example in electric vehicles. Commercial electrolysers are on the market and have been in use for many years. Further technology developments will enable new generation electrolysers to be commercially competitive when used at scale with fluctuating renewable energy sources.
Biological Routes to Hydrogen
Biological routes usually involve the conversion of biomass to hydrogen and other valuable end products using microbial processes. Methods such as anaerobic digestion are feasible now at a laboratory and small pilot scale. This technology may prove to have additional or greater impact and value as route for the production of high value chemicals within a biorefinery concept.
Solar to Fuels Routes to Hydrogen
A number of experimental techniques have been reported the most developed of which is ‘solar to fuels’ - a suite of technologies that typically split water into hydrogen and oxygen using solar energy. These methods have close parallels with the process of photosynthesis and are often referred to as ‘artificial photosynthesis’ processes. The research is promising though views are divided on its ultimate utility. Competition for space will always limit the scale up of solar to fuels.
The briefing concludes that steam methane reforming and electrolysis are the most likely technologies to be deployed to produce low-carbon hydrogen at volume in the near to mid-term providing that the challenges of high levels of carbon capture (for steam methane reforming) and cost reduction and renewable energy sources (for electrolysis) can be overcome.
Four groups of hydrogen production technologies are examined:
Thermochemical Routes to Hydrogen
These methods typically use heat and fossil fuels. Steam methane reforming is the dominant commercial technology and currently produces hydrogen on a large scale but is not currently low carbon. Carbon capture is therefore essential with this process. Innovative technology developments may also help and research is underway. Alternative thermal methods of creating hydrogen indicate biomass gasification has potential. Other techniques at a low technology readiness level include separation of hydrogen from hydrocarbons using microwaves.
Electrolytic Routes to Hydrogen
Electrolytic hydrogen production also known as electrolysis splits water into hydrogen and oxygen using electricity in an electrolysis cell. Electrolysis produces pure hydrogen which is ideal for low temperature fuel cells for example in electric vehicles. Commercial electrolysers are on the market and have been in use for many years. Further technology developments will enable new generation electrolysers to be commercially competitive when used at scale with fluctuating renewable energy sources.
Biological Routes to Hydrogen
Biological routes usually involve the conversion of biomass to hydrogen and other valuable end products using microbial processes. Methods such as anaerobic digestion are feasible now at a laboratory and small pilot scale. This technology may prove to have additional or greater impact and value as route for the production of high value chemicals within a biorefinery concept.
Solar to Fuels Routes to Hydrogen
A number of experimental techniques have been reported the most developed of which is ‘solar to fuels’ - a suite of technologies that typically split water into hydrogen and oxygen using solar energy. These methods have close parallels with the process of photosynthesis and are often referred to as ‘artificial photosynthesis’ processes. The research is promising though views are divided on its ultimate utility. Competition for space will always limit the scale up of solar to fuels.
The briefing concludes that steam methane reforming and electrolysis are the most likely technologies to be deployed to produce low-carbon hydrogen at volume in the near to mid-term providing that the challenges of high levels of carbon capture (for steam methane reforming) and cost reduction and renewable energy sources (for electrolysis) can be overcome.
Impacts of Variation Management on Cost-optimal Investments in Wind Power and Solar Photovoltaics
Dec 2019
Publication
This work investigates the impacts of variation management on the cost-optimal electricity system compositions in four regions with different pre-requisites for wind and solar generation. Five variation management strategies involving electric boilers batteries hydrogen storage low-cost biomass and demand-side management are integrated into a regional investment model that is designed to account for variability. The variation management strategies are considered one at a time as well as combined in four different system contexts. By investigating how the variation management strategies interact with each other as well as with different electricity generation technologies in a large number of cases this work support policy-makers in identifying variation management portfolios relevant to their context. It is found that electric boilers demand-side management and hydrogen storage increase the cost-optimal variable renewable electricity (VRE) investments if the VRE share is sufficiently large to reduce its marginal system value. However low-cost biomass and hydrogen storage are found to increase cost-optimal investments in wind power in systems with a low initial wind power share. In systems with low solar PV share variation management reduce the cost-optimal solar PV investments. In two of the regions investigated a combination of variation management strategies results in a stronger increase in VRE capacity than the sum of the single variation management efforts.
Webinar to Launch New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
On 26 June the World Energy Council held a webinar presenting the results of its latest Innovation Insights Brief on hydrogen engaging three key experts on the topic:
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives
Dec 2019
Publication
This work investigates the connection between electrification of the industry transport and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry passenger vehicles and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem the impact of flexibility provision throughout the north European electricity system transition is investigated. It is found that a strategic collaboration between the electricity system an electrified steel industry an electrified transport sector in the form of passenger electric vehicles (EVs) and residential heat supply can reduce total system cost by 8% in the north European electricity system compared to if no collaboration is achieved. The flexibility provision by new electricity consumers enables a faster transition from fossil fuels in the European electricity system and reduces thermal generation. From a sector perspective strategic consumption of electricity for hydrogen production and EV charging and discharging to the grid reduces the number of hours with very high electricity prices resulting in a reduction in annual electricity prices by up to 20%.
The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society
Jun 2021
Publication
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective without considering hydrogen export. The second uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy impacts of new technologies and key enablers and barriers in this transition are discussed.
Powering a climate-neutral economy: An EU Strategy for Energy System Integration
Jul 2020
Publication
To become climate-neutral by 2050 Europe needs to transform its energy system which accounts for 75% of the EU's greenhouse gas emissions. The EU strategies for energy system integration and hydrogen adopted today will pave the way towards a more efficient and interconnected energy sector driven by the twin goals of a cleaner planet and a stronger economy.<br/><br/>The two strategies present a new clean energy investment agenda in line with the Commission's Next Generation EU recovery package and the European Green Deal. The planned investments have the potential to stimulate the economic recovery from the coronavirus crisis. They create European jobs and boost our leadership and competitiveness in strategic industries which are crucial to Europe's resilience.
No more items...