Policy & Socio-Economics
Decarbonisation of Heat and the Role of ‘Green Gas’ in the United Kingdom
May 2018
Publication
This paper looks at the possible role of ‘green gas’ in the decarbonisation of heat in the United Kingdom. The option is under active discussion at the moment because of the UK’s rigorous carbon reduction targets and the growing realisation that there are problems with the ‘default’ option of electrifying heat. Green gas appears to be technically and economically feasible. However as the paper discusses there are major practical and policy obstacles which make it unlikely that the government will commit itself to developing ‘green gas’ in the foreseeable future.
A Techno-economic Analysis of Cross-regional Renewable Hydrogen Supply Routes in China
Jun 2023
Publication
The cross-regional renewable hydrogen supply is significant for China to resolve the uneven distribution of renewable energy and decarbonize the transportation sector. Yet the economic comparison of various hydrogen supply routes remains obscure. This paper conducts a techno-economic analysis on six hydrogen supply routes for hydrogen refueling stations including gas-hydrogen tube-trailer gas-hydrogen pipeline liquid-hydrogen truck natural gas pipeline MeOH truck and NH3 truck. Furthermore the impacts of three critical factors are examined including electrolyzer selection transportation distance and electricity price. The results indicate that with a transport distance of 2000 km the natural gas pipeline route offers the lowest cost while the gas-hydrogen tube-trailer route is not economically feasible. The gas-hydrogen pipeline route shows outstanding cost competitiveness between 200 and 2000 km while it is greatly influenced by the utilization rate. The liquid-hydrogen truck route demonstrates great potential with the electricity price decreasing. This study may provide guidance for the development of the cross-regional renewable hydrogen supply for hydrogen refueling stations in China.
Impact of International Transportation Chains on Cost of Green E-hydrogen: Global Cost of Hydrogen and Consequences for Germany and Finland
Jun 2023
Publication
Widely available and low-cost solar photovoltaics and wind power can enable production of renewable electricity-based hydrogen at many locations throughout the world. Hydrogen is expected to emerge as an important energy carrier constituting some of the final energy demand; however its most important role will be as feedstock for further processing to e-fuels e-chemicals and e-steel. Apart from meeting their own hydrogen demand countries may have opportunities to export hydrogen to countries with area limitations or higher production costs. This paper assesses the feasibility of e-hydrogen imports to Germany and Finland from two case regions with a high availability of low-cost renewable electricity Chile and Morocco in comparison to domestic supply. Special attention is paid to the transport infrastructure which has a crucial impact on the economic viability of imports via two routes shipping and pipelines. This study has found that despite lower e-hydrogen production costs in Morocco and Chile compared to Germany and Finland additional transportation costs make imports of e-hydrogen economically unattractive. In early 2020s imported fuel costs are 39–79% and 34–100% higher than e-hydrogen produced in Germany and Finland respectively. In 2050 imported e-hydrogen is projected to be 39–70% more expensive than locally produced e-hydrogen in Germany and 43–54% in the case of Finland. e-Hydrogen may become a fuel that is mostly produced domestically and may be feasible for imports only in specific locations. Local e-hydrogen production may also lower dependence on imports enhance energy security and add jobs.
Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy
Jan 2023
Publication
Hydrogen can be considered an innovative fuel that will revolutionize the energy sector and enable even more complete use of the potential of renewable sources. The aim of the paper is to present the challenges faced by companies and economies that will produce and use hydrogen. Thanks to the use of hydrogen in the energy transport and construction sectors it will be possible to achieve climate neutrality by 2050. By 2050 global demand for hydrogen will increase to 614 million metric tons a year and thanks to the use of hydrogen in energy transport and construction it will be possible to achieve climate neutrality. Depending on the method of hydrogen production the processes used and the final effects several groups can be distinguished marked with different colors. It is in this area of obtaining friendly hydrogen that innovative possibilities for its production open up. The costs of hydrogen production are also affected by network fees national tax systems availability and prices of carbon capture utilization and storage installations energy consumption rates by electrolyzers and transport methods. It is planned that 1 kg of hydrogen will cost USD 1. The study used the desk research method which made it possible to analyze a huge amount of descriptive data and numerical data.
Benefits of an Integrated Power and Hydrogen Offshore Grid in a Net-zero North Sea Energy System
Jun 2022
Publication
The North Sea Offshore Grid concept has been envisioned as a promising alternative to: 1) ease the integration of offshore wind and onshore energy systems and 2) increase the cross-border capacity between the North Sea region countries at low cost. In this paper we explore the techno-economic benefits of the North Sea Offshore Grid using two case studies: a power-based offshore grid where only investments in power assets are allowed (i.e. offshore wind HVDC/HVAC interconnectors); and a power-and-hydrogen offshore grid where investments in offshore hydrogen assets are also permitted (i.e. offshore electrolysers new hydrogen pipelines and retrofitted natural gas pipelines). In this paper we present a novel methodology in which extensive offshore spatial data is analysed to define meaningful regions via data clustering. These regions are incorporated to the Integrated Energy System Analysis for the North Sea region (IESA-NS) model. In this optimization model the scenarios are run without any specific technology ban and under open optimization. The scenario results show that the deployment of an offshore grid provides relevant cost savings ranging from 1% to 4.1% of relative cost decrease (2.3 bn € to 8.7 bn €) in the power-based and ranging from 2.8% to 7% of relative cost decrease (6 bn € to 14.9 bn €) in the power-and-hydrogen based. In the most extreme scenario an offshore grid permits to integrate 283 GW of HVDC connected offshore wind and 196 GW of HVDC meshed interconnectors. Even in the most conservative scenario the offshore grid integrates 59 GW of HVDC connected offshore wind capacity and 92 GW of HVDC meshed interconnectors. When allowed the deployment of offshore electrolysis is considerable ranging from 61 GW to 96 GW with capacity factors of around 30%.
Climate Change Committee: Progress in Reducing Emissions, 2022 Report to Parliament
Jun 2022
Publication
This statutory report provides a comprehensive overview of the UK Government’s progress to date in reducing emissions. It is accompanied by a new Monitoring Framework which details the CCC’s updated approach to tracking real-world progress through a host of new indicators.<br/>This is a pivotal point in the UK’s journey to Net Zero. The UK is one of the few countries with emissions targets in line with the long-term temperature goal of the Paris Agreement. Policy ambition has moved substantially with the publication of the UK’s Net Zero Strategy. Now is the time to deliver the promised action.
Everything About Hydrogen Podcast: Using the Law and Regulation to Facilitate Hydrogen Development
Jun 2022
Publication
Burges Salmon’s energy lawyers are known for ground-breaking work in the energy power and utilities sector. They understand the opportunities the technologies and the challenges which the sector presents. Their reputation has been built upon first-of-a-kind projects and deals and an intimate knowledge of energy regulation. Burges Salmon specialists provide expert advice throughout the project/plant life cycle. Over the years this has in turn led to investors and funders requesting their services in the knowledge that they understand the key issues technologies face. They have a team of over 80 lawyers who focus on helping developers investors and funders achieve their aims in the sector. The team has won or been shortlisted for all the key industry awards in energy over the last decade.
The podcast can be found on their website
The podcast can be found on their website
Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain
Oct 2022
Publication
Hydrogen energy one of the energy sources of the future represents a substantial issue which affects the industries and national technologies that will develop in the future. In order to utilize hydrogen energy a hydrogen supply chain is required so that hydrogen can be processed and transported to vehicles. It is helpful for technology and policy development to analyze technologies necessary to charge the hydrogen energy generated into vehicles through the supply chain to discover technologies with high potential for future development. The purpose of this paper is to identify promising technologies required in storing transporting and charging vehicles generated by the hydrogen fuel supply chain. Afterward the promising technologies identified are expected to help researchers set a direction in researching technologies and developing related policies. Therefore we provide technology information that can be used promisingly in the future so that researchers in the related field can utilize it effectively. In this paper data analysis is performed using related patents and research papers for technical analysis. Promising technologies that will be the core of the hydrogen fuel supply chain in the future were identified using the published patents and research paper database (DB) in Korea the United States Europe China and Japan. A text mining technique was applied to preprocess data and then a generic topographic map (GTM) analysis discovered promising technologies. Then a technology roadmap was identified by analyzing the promising technology derived from patents and research papers in parallel. In this study through the analysis of patents and research papers related to the hydrogen supply chain the development status of hydrogen storage/transport/charging technology was analyzed and promising technologies with high potential for future development were found. The technology roadmap derived from the analysis can help researchers in the field of hydrogen research establish policies and research technologies.
Everything About Hydrogen Podcast: Electron Stewardship in the Orkney Islands
Nov 2019
Publication
On this weeks episode the team are talking all things hydrogen in the Orkneys with Adele Lidderdale (Hydrogen Officer for Orkney Island Council) and Jon Clipsham (Hydrogen Manager EMEC). While the islands are best known for their exceptional wildlife whisky and cruise ships the Orkney islands have also emerged as a hub for the green hydrogen economy. Working alongside local government community groups research agencies and private sector partners the islands have deployed hydrogen solutions to heat a school power ferries in port move local council workers from A to B and in the future perhaps make Gin?! All this and more on the show.
The podcast can be found on their website
The podcast can be found on their website
100% Renewable Energy in Japan
Feb 2022
Publication
Low-cost solar photovoltaics and wind offer a reliable and affordable pathway to deep decarbonization of energy which accounts for three quarters of global emissions. However large-scale deployment of solar photovoltaics and wind requires space and may be challenging for countries with dense population and high per capita energy consumption. This study investigates the future role of renewable energy in Japan as a case study. A 40-year hourly energy balance model is presented of a hypothetical 100% renewable Japanese electricity system using representative demand data and historical meteorological data. Pumped hydro energy storage high voltage interconnection and dispatchable capacity (existing hydro and biomass and hydrogen energy produced from curtailed electricity) are included to balance variable generation and demand. Differential evolution is used to find the least-cost solution under various constraints. This study shows that Japan has 14 times more solar and offshore wind resources than needed to supply 100% renewable electricity and vast capacity for off-river pumped hydro energy storage. Assuming significant cost reductions of solar photovoltaics and offshore wind towards global norms in the coming decades driven by large-scale deployment locally and global convergence of renewable generation costs the levelized cost of electricity is found to be US$86/Megawatt-hour for a solar-dominated system and US$110/Megawatt-hour for a wind-dominated system. These costs can be compared with 2020 average system prices on the spot market in Japan of US$102/Megawatt-hour. Cost of balancing 100% renewable electricity in Japan ranges between US$20–27/Megawatt-hour for a range of scenarios. In summary Japan can be self-sufficient for electricity supply at competitive costs provided that the barriers to the mass deployment of solar photovoltaics and offshore wind in Japan are overcome.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
Everything About Hydrogen Podcast: Decarbonising the Gas Grid with Cadent
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Lorna Millington Future Networks Manager in the Safety and Network Strategy team at Cadent. On the show we discuss the role that Cadent and other gas distribution network operators (GDNOs) are playing in supporting the transition towards a low (and eventually zero) carbon gas grid through the use of hydrogen. The potential for hydrogen to support decarbonisation of heat through the gas network is one of the most exciting emerging themes for countries that have large existing gas networks and who are looking to repurpose those assets towards national net zero objectives. As a leader on hydrogen into the gas grid projects Cadent offer a wealth of knowledge around the potential opportunities and considerations for displacing natural gas with hydrogen over time. And given the chance to reduce up to 6 million tonnes of CO2 a year through using more hydrogen in the gas grid this is a show you won’t want to miss! All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
Heat and Buildings Strategy
Oct 2021
Publication
The heat and buildings strategy sets out the government’s plan to significantly cut carbon emissions from the UK’s 30 million homes and workplaces in a simple low-cost and green way whilst ensuring this remains affordable and fair for households across the country. Like the transition to electric vehicles this will be a gradual transition which will start by incentivizing consumers and driving down costs.<br/>There are about 30 million buildings in the UK. Heating these buildings contributes to almost a quarter of all UK emissions. Addressing the carbon emissions produced in heating and powering our homes workplaces and public buildings can not only save money on energy bills and improve lives but can support up to 240000 skilled green jobs by 2035 boosting the economic recovery levelling up across the country and ensuring we build back better.<br/>The heat and buildings strategy builds on the commitments made in Clean growth: transforming heating our Energy white paper and the Prime Minister’s 10 point plan. This strategy aims to provide a clear direction of travel for the 2020s set out the strategic decisions that need to be taken this decade and demonstrate how we plan to meet our carbon targets and remain on track for net zero by 2050.
Alberta Hydrogen Roadmap
Nov 2021
Publication
Alberta is preparing for a lower emission future. The Hydrogen Roadmap is a key part of that future and Alberta's Recovery Plan. The roadmap is our path to building a provincial hydrogen economy and accessing global markets. It contains several policy actions that will be introduced in the coming months and years and it provides support to the sector as technology and markets develop.<br/>Alberta is already the largest hydrogen producer in Canada. We have all the resources expertise and technology needed to quickly become a global supplier of clean low-cost hydrogen. With a worldwide market estimated to be worth over $2.5 trillion a year by 2050 hydrogen can be the next great energy export that fuels jobs investment and economic opportunity across our province.
Investigating the Implications of a New-build Hybrid Power System for Roll-on/Roll-off Cargo Ships from a Sustainability Perspective – A Life Cycle Assessment Case Study
Aug 2016
Publication
Marine transport has been essential for international trade. Concern for its environmental impact was growing among regulators classification societies ship operators ship owners and other stakeholders. By applying life cycle assessment this article aimed to assess the impact of a new-build hybrid system (i.e. an electric power system which incorporated lithium ion batteries photovoltaic systems and cold-ironing) designed for Roll-on/Roll-off cargo ships. The study was carried out based on a bottom-up integrated system approach using the optimised operational profile and background information for manufacturing processes mass breakdown and end of life management plans. Resources such as metallic and non-metallic materials and energy required for manufacture operation maintenance dismantling and scrap handling were estimated. During operation 1.76 x 10^8 kg of marine diesel oil was burned releasing carbon monoxide carbon dioxide particulate matter hydrocarbons nitrogen oxides and sulphur dioxide which ranged 5–8 orders of magnitude. The operation of diesel gensets was the primary cause of impact categories that were relevant to particulate matter or respiratory inorganic health issues photochemical ozone creation eutrophication acidification global warming and human toxicity. Disposing metallic scrap was accountable for the most significant impact category ecotoxicity potential. The environmental benefits of the hybrid power system in most impact categories were verified in comparison with a conventional power system onboard cargo ships. The estimated results for individual impact categories were verified using scenario analysis. The study concluded that the life cycle of a new-build hybrid power system would result in significant impact on the environment human beings and natural reserves and therefore proper management of such a system was imperative.
Willingness to Pay and Public Acceptance for Hydrogen Buses: A Case Study of Perugia
Sep 2015
Publication
Sustainability transportation is characterized by a positive externality on the environment health social security land use and social inclusion. The increasing interest in global warming has caused attention to be paid to the introduction of the hydrogen bus (H2B). When introducing new environmental technologies such as H2B it is often necessary to assess the environmental benefits related to this new technology. However such benefits are typically non-priced due to their public good nature. Therefore we have to address this problem using the contingent valuation (CV) method. This method has been developed within environmental economics as a means to economically assess environmental changes which are typically not traded in the market. So far several big cities have been analyzed to evaluate the perceived benefit related to H2B introduction but to the best of our knowledge no one has performed a CV analysis of a historical city where smog also damages historical buildings. This paper presents the results obtained using a multi-wave survey. We have investigated user preferences to elicit their willingness to pay for H2B introduction in Perugia taking into account all types of negative externalities due to the traffic pollution. The results confirm that residents in Perugia are willing to pay extra to support the introduction of H2B.
Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs
Mar 2022
Publication
Recently smart energy hubs with hydrogen conversion and storage have received increased attention in the Netherlands. The hydrogen is to be used for vehicle filling stations industrial processes and heating. The scientific problem addressed in this paper is the proper sizing of capacities for renewable energy generation hydrogen conversion and storage in relation to a feasible business case for the energy hub while achieving security of supply. Scenario analysis is often used during the early stages of the energy planning process and for this an easy-to-use analysis model is required. This paper investigates available modelling approaches and develops an algorithmic modelling method which is worked out in Microsoft Excel and offers ease of use for scenario analysis purposes. The model is applied to case study which leads to important insights such as the expected price of hydrogen and the proper sizing of electrolyser and hydrogen storage for that case. The model is made available open-source. Future work is proposed in the direction of application of the model for other project cases and comparison of results with other available modelling tools.
Green Ammonia as a Spatial Energy Vector: A Review
May 2021
Publication
Green hydrogen is considered a highly promising vector for deep decarbonisation of energy systems and is forecast to represent 20% of global energy use by 2050. In order to secure access to this resource Japan Germany and South Korea have announced plans to import hydrogen; other major energy consumers are sure to follow. Ammonia a promising hydrogen derivative may enable this energy transport by densifying hydrogen at relatively low cost using well-understood technologies. This review seeks to describe a global green ammonia import/export market: it identifies benefits and limitations of ammonia relative to other hydrogen carriers the costs of ammonia production and transport and the constraints on both supply and demand. We find that green ammonia as an energy vector is likely to be critical to future energy systems but that gaps remain in the literature. In particular rigorous analysis of production and transport costs are rarely paired preventing realistic assessments of the delivered cost of energy or the selection of optimum import/export partners to minimise the delivered cost of ammonia. Filling these gaps in the literature is a prerequisite to the development of robust hydrogen and ammonia strategies and to enable the formation of global import and export markets of green fuel
Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus
May 2018
Publication
The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production hydrogen storage and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80 which is above the value of conventional district energy systems and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 ◦C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.
No more items...