Hydrogen Blending
Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers
Oct 2021
Publication
Hydrogen mixed natural gas for combustion can improve combustion characteristics and reduce carbon emission which has important engineering application value. A casing swirl burner model is adopted to numerically simulate and research the natural gas hydrogen mixing technology for combustion in gas boilers in this paper. Under the condition of conventional air atmosphere and constant air excess coefficient the six working conditions for hydrogen mixing proportion into natural gas are designed to explore the combustion characteristics and the laws of pollution emissions. The temperature distributions composition and emission of combustion flue gas under various working conditions are analyzed and compared. Further investigation is also conducted for the variation laws of NOx and soot generation. The results show that when the boiler heating power is constant hydrogen mixing will increase the combustion temperature accelerate the combustion rate reduce flue gas and CO2 emission increase the generation of water vapor and inhibit the generation of NOx and soot. Under the premise of meeting the fuel interchangeability it is concluded that the optimal hydrogen mixing volume fraction of gas boilers is 24.7%.
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
Impact of Hydrogen Admixture on Combustion Processes – Part I: Theory
Jun 2020
Publication
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2 ) a greenhouse gas. However the transformation of the gas sector with its broad variety of technologies and end-use applications is a challenge as a fuel switch is related to changing physical properties. Today the residential and commercial sector is the biggest end user sector for natural gas in the EU both in terms of consumption and in the number of installed appliances. Natural gas is used to provide space heating as well as hot water and is used in cooking and catering appliances with in total about 200 million gas-fired residential and commercial end user appliances installed. More than 40 % of the EU gas consumption is accounted for by the residential and commercial sector. The most promising substitutes for natural gas are biogases and hydrogen. The carbon-free fuel gas hydrogen may be produced e.g. from water and renewable electricity; therefore it can be produced with a greatly lowered carbon footprint and on a very large scale. As a gaseous fuel it can be transported stored and utilised in all end-use sectors that are served by natural gas today: Power plants industry commercial appliances households and mobility. Technologies and materials however need to be suitable for the new fuel. The injection of hydrogen into existing gas distribution for example will impact all gas-using equipment in the grids since these devices are designed and optimized to operate safely efficiently and with low pollutant emissions with natural gas as fuel. The THyGA project1 focusses on all technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end user appliances with hydrogen / natural gas blends. The THyGA deliverables start with theoretical background from material science (D2.4) and combustion theory (this report) and extend to the project’s experimental campaign on hydrogen tolerance tests as well as reports on the status quo and potential future developments on rules and standards as well as mitigation strategies for coping with high levels of hydrogen admixture. By this approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies to which extent and to identify the regime in which a safe efficient and low-polluting operation is possible. As this is in many ways a question of combustion this report focuses on theoretical considerations about the impact of hydrogen admixture on combustion processes. The effects of hydrogen admixture on main gas quality properties as well as combustion temperatures laminar combustion velocities pollutant formation (CO NOx) safety-related aspects and the impact of combustion control are discussed. This overview provides a basis for subsequent steps of the project e.g. for establishing the testing program. A profound understanding of the impact on hydrogen on natural gas combustion is also essential for the development of mitigation strategies to reduce potential negative consequences of hydrogen admixture on appliances.
This is part one. Part two of this project can be found at this link
This is part one. Part two of this project can be found at this link
Burning Velocity and Markstein Length Blending Laws for Methane/Air and Hydrogen/Air Blends
Sep 2016
Publication
"Because of the contrasting chemical kinetics of methane and hydrogen combustion the development of blending laws for laminar burning velocity ul and Markstein length for constituent mixtures of CH4/air and H2/air presents a formidable challenge. Guidance is sought through a study of analytical expressions for laminar burning velocity. For the prediction of burning velocities of blends six blending laws were scrutinised. The predictions were compared with the measured burning velocities made by Hu et al. under atmospheric conditions. These covered equivalence ratios ranging from 0.6 to 1.3 and the full fuel range for H2 addition to CH4. This enabled assessments to be made of the predictive accuracy of the six laws. The most successful law is one developed in the course of the present study involving the mass fraction weighting of the product of ul density heat of reaction and specific heat divided by the thermal conductivity of the mixture. There was less success from attempts to obtain a comparably successful blending law for the flame speed Markstein length Lb despite scrutiny of several possibilities. Details are given of two possible approaches one based on the fractional mole concentration of the deficient reactant. A satisfactory empirical law employs mass fraction weighting of the product ulLb.
Non-combustion Related Impact of Hydrogen Admixture - Material Compatibility
Jun 2020
Publication
The present document is part of a larger literature survey of this WP aiming to establish the current status of gas utilisation technologies in order to determine the impact of hydrogen (H2) admixture on natural gas (NG) appliances. This part focuses on the non-combustion related aspects of injecting hydrogen in the gas distribution networks within buildings including hydrogen embrittlement of metallic materials chemical compatibility and leakage issues. In the particular conditions of adding natural gas and hydrogen (NG / H2) mixture into a gas distribution network hydrogen is likely to reduce the mechanical properties of metallic components. This is known as hydrogen embrittlement (HE) (Birnbaum 1979). This type of damage takes place once a critical level of stress / strain and hydrogen content coexist in a susceptible microstructure. Currently four mechanisms were identified and will be discussed in detail. The way those mechanisms act independently or together is strongly dependent on the material the hydrogen charging procedure and the mechanical loading type. The main metallic materials used in gas appliances and gas distribution networks are: carbon steels stainless steels copper brass and aluminium alloys (Thibaut 2020). The presented results showed that low alloy steels are the most susceptible materials to hydrogen embrittlement followed by stainless steels aluminium copper and brass alloys. However the relative pressures of the operating conditions of gas distribution network in buildings are low i.e. between 30 to 50 mbar. At those low hydrogen partial pressures it is assumed that a gas mixture composed of NG and up to 50% H2 should not be problematic in terms of HE for any of the metallic materials used in gas distribution network unless high mechanical stress / strain and high stress concentrations are applied. The chemical compatibility of hydrogen with other materials and specifically polyethylene (PE) which is a reference material for the gas industry is also discussed. PE was found to have no corrosion issues and no deterioration or ageing was observed after long term testing in hydrogen gas. The last non-combustion concern related to the introduction of hydrogen in natural gas distribution network is the propensity of hydrogen toward leakage. Indeed the physical properties of hydrogen are different from other gases such as methane or propane and it was observed that hydrogen leaks 2.5 times quicker than methane. This bibliographical report on material deterioration chemical compatibility and leakage concerns coming with the introduction of NG / H2 mixture in the gas distribution network sets the basis for the upcoming experimental work where the tightness of gas distribution network components will be investigated (Task 3.2.3 WP3). In addition tightness of typical components that connect end-user appliances to the local distribution line shall be evaluated as well.
Indicative Analysis of Blending Hydrogen in Gas Networks
May 2020
Publication
Frontier Economics has been engaged by the Commonwealth Department of the Environment and Energy (now Industry Science Energy and Resources) (the Department) to undertake an indicative analysis of the economics of blending hydrogen in Australian natural gas distribution networks. Our analysis is limited to a specific gas distribution network servicing urban areas of Melbourne.
We have investigated the economics of blending hydrogen in a natural gas distribution network by examining a number of energy supply options including options that involve blending hydrogen. While we consider that these cases we have examined are useful for understanding the economics of hydrogen blending at low rates in Victoria and for understanding the factors that are likely to drive the economics of blending at higher rates or in other regions it cannot be assumed that the results we find for the cases we investigate will necessarily apply in other regions or for blending at other rates. This report should be read as an assessment of the specific cases we have investigated and our findings cannot necessarily be extended to other cases (such as other locations or other rates of blending)"
The full report can be found via the website of the Australian government at this link
We have investigated the economics of blending hydrogen in a natural gas distribution network by examining a number of energy supply options including options that involve blending hydrogen. While we consider that these cases we have examined are useful for understanding the economics of hydrogen blending at low rates in Victoria and for understanding the factors that are likely to drive the economics of blending at higher rates or in other regions it cannot be assumed that the results we find for the cases we investigate will necessarily apply in other regions or for blending at other rates. This report should be read as an assessment of the specific cases we have investigated and our findings cannot necessarily be extended to other cases (such as other locations or other rates of blending)"
The full report can be found via the website of the Australian government at this link
Operation of UK Gas Appliances with Hydrogen Blended Natural Gas
Sep 2019
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Number and hydrogen concentrations up to 28.4 % mol/mol. Tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen and further studies in this area are planned. A laboratory based study was supported by an onsite testing programme where 133 installations were assessed for gas tightness appliance combustion safety and operation against normal line natural gas G20 reference gas and two hydrogen blended gases. Where installations were gas tight for natural gas analysis showed that no additional leakage occurred with hydrogen blended gases. There were also no issues identified with the combustion performance of appliances and onsite results were in line with those obtained in the laboratory testing programme.
Blending Ammonia into Hydrogen to Enhance Safety through Reduced Burning Velocity
Sep 2019
Publication
Laminar burning velocities (SL) of hydrogen/ammonia mixtures in air at atmospheric pressure were studied experimentally and numerically. The blending of hydrogen with ammonia two fuels that have been proposed as promising carriers for renewable energy causes the laminar flame speed of the mixture SL to decrease significantly. However details of this have not previously available. Systematic measurements were therefore performed for a series of hydrogen/ammonia mixtures with wide ranges of mole fractions of blended ammonia (XNH3) and equivalence ratio using a heat flux method based on heat flux of a flat flame transferred to the burner surface. It was found that the mixture of XNH3 = 40% has a value of SL close to that of methane which is the dominant component of natural gas. Using three chemical kinetic mechanisms available in the literature i.e. the well-known GRI-Mech 3.0 mechanism and two mechanisms recently released SL were also modelled for the cases studied. However the discrepancies between the experimental and numerical results can exceed 50% with the GRI-Mech 3.0 mechanism. Discrepancies were also found between the numerical results obtained with different mechanisms. These results can contribute to an increase in both the safety and efficiency of the coutilization of these two types of emerging renewable fuel and to guiding the development of better kinetic models.
Injecting Hydrogen into the Gas Network- A Literature Search
Jan 2015
Publication
Hydrogen injection into the GB gas network is a likely consequence of using excess offshore wind generated electricity to power large-scale onshore electrolysis plants. Government and DECC in particular now have a keen interest in supporting technologies that can take advantage of the continued use of the gas networks. HSE can contribute to the government’s Growth and Green agendas by effectively regulating and safely enabling this technology.
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
- conveyance of H2/CH4 mixtures in network pipes
- use of H2/CH4 mixtures in consumer appliances (domestic/commercial/industrial)
- explosion and damage characteristics (and ignition likelihood) of H2/CH4 mixtures
- effects on odourisation
A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network
Oct 2020
Publication
The growing rate of electricity generation from renewables is leading to new operational and management issues on the power grid because the electricity generated exceeds local requirements and the transportation or storage capacities are inadequate. An interesting option that is under investigation by several years is the opportunity to use the renewable electricity surplus to power electrolyzers that split water into its component parts with the hydrogen being directly injected into natural gas pipelines for both storage and transportation. This innovative approach merges together the concepts of (i) renewable power-to-hydrogen (P2H) and of (ii) hydrogen blending into natural gas networks. The combination of renewable P2H and hydrogen blending into natural gas networks has a huge potential in terms of environmental and social benefits but it is still facing several barriers that are technological economic legislative. In the framework of the new hydrogen strategy for a climate-neutral Europe Member States should design a roadmap moving towards a hydrogen ecosystem by 2050. The blending of “green hydrogen” that is hydrogen produced by renewable sources in the natural gas network at a limited percentage is a key element to enable hydrogen production in a preliminary and transitional phase. Therefore it is urgent to evaluate at the same time (i) the potential of green hydrogen blending at low percentage (up to 10%) and (ii) the maximum P2H capacity compatible with low percentage blending. The paper aims to preliminary assess the green hydrogen blending potential into the Italian natural gas network as a tool for policy makers grid and networks managers and energy planners.
HyDeploy Overview
May 2020
Publication
An overview of the HyDeploy project at Keele University where hydrogen is being blended with natural gas to demonstrate the feasibility of using hydrogen to heat our homes.
Detecting Hydrogen Concentrations During Admixing Hydrogen in Natural Gas Grids
Aug 2021
Publication
The first applications of hydrogen in a natural gas grid will be the admixing of low concentrations in an existing distribution grid. For easy quality and process control it is essential to monitor the hydrogen concentration in real time preferably using cost effective monitoring solutions. In this paper we introduce the use of a platinum based hydrogen sensor that can accurately (at 0.1 vol%) and reversibly monitor the concentration of hydrogen in a carrier gas. This carrier gas that can be nitrogen methane or natural gas has no influence on the accuracy of the hydrogen detection. The hydrogen sensor consists of an interdigitated electrode on a chip coated with a platinum nanocomposite layer that interacts with the gas. This chip can be easily added to a gas sensor for natural gas and biogas that was already developed in previous research. Just by the addition of an extra chip we extended the applicability of the natural gas sensor to hydrogen admixing. The feasibility of the sensor was demonstrated in our own (TNO) laboratory and at a field test location of the HyDeploy program at Keele University in the U.K
HyDeploy: Demonstrating Non-destructive Carbon Savings Through Hydrogen Blending
Aug 2021
Publication
The project has successfully developed the safety case and delivered a hydrogen blend via the gas network into customers’ homes. The demonstration of safety for the specific network was based on robust evidence and clear operational procedures. Alongside the enabling safety case the HyDeploy project has demonstrated the first steps of hydrogen deployment are safe technically feasible and non-disruptive both for the network and domestic users.
The key outcomes of the HyDeploy project were:
The key outcomes of the HyDeploy project were:
- Successful achievement of the first regulatory approval from the HSE to operate a live gas network above the current hydrogen limit of 0.1 vol%. The approval allowed blending up to 20 vol%.
- Development of the technical and procedural precedents to generate evidence for review by the HSE which have informed subsequent safety case submissions through HyDeploy2 and the wider hydrogen safety case industry.
- The design fabrication installation and operation of the UK’s first hydrogen grid entry unit.
- Integration of novel hydrogen production and blending technologies to create the first hydrogen delivery system based on electrolytic generation into a live gas grid.
- Safe delivery of the UK’s first hydrogen blend trial to 100 homes and 30 faculty buildings. The trial delivered over 42000 cubic metres of hydrogen and abated over 27 tonnes of CO2.
- Collaboration with appliance and equipment providers to build a robust evidence base to demonstrate equipment suitability.
- Evidencing the suitability of hydrogen blends with domestic appliances as well as larger commercial appliances including catering equipment and boilers up to 600 kW.
- Evidencing the suitability of hydrogen blends with medium and low-pressure distribution systems relating to key performance metrics such as: pressure control; odour intensity and uniform gas compositions.
- Promotion of supply chain innovation through facilitating trials to develop gas detection and analysis technologies.
- Establishing a robust social science evidence base to understand the attitudes and experience of consumers actually using hydrogen blends.
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
Feb 2011
Publication
Lean premixed swirl combustion is widely used in gas turbines and many other combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NOx emissions. Although flashback is not generally a problem with natural gas combustion there are some reports of flashback damage with existing gas turbines whilst hydrogen enriched fuel blends especially those derived from gasification of coal and/or biomass/industrial processes such as steel making cause concerns in this area. Thus this paper describes a practical experimental approach to study and reduce the effect of flashback in a compact design of generic swirl burner representative of many systems. A range of different fuel blends are investigated for flashback and blow off limits; these fuel mixes include methane methane/hydrogen blends pure hydrogen and coke oven gas. Swirl number effects are investigated by varying the number of inlets or the configuration of the inlets. The well known Lewis and von Elbe critical boundary velocity gradient expression is used to characterise flashback and enable comparison to be made with other available data. Two flashback phenomena are encountered here. The first one at lower swirl numbers involves flashback through the outer wall boundary layer where the crucial parameter is the critical boundary velocity gradient Gf. Values of Gf are of similar magnitude to those reported by Lewis and von Elbe for laminar flow conditions and it is recognised that under the turbulent flow conditions pertaining here actual gradients in the thin swirl flow boundary layer are much higher than occur under laminar flow conditions. At higher swirl numbers the central recirculation zone (CRZ) becomes enlarged and extends backwards over the fuel injector to the burner baseplate and causes flashback to occur earlier at higher velocities. This extension of the CRZ is complex being governed by swirl number equivalence ratio and Reynolds Number. Under these conditions flashback occurs when the cylindrical flame front surrounding the CRZ rapidly accelerates outwards to the tangential inlets and beyond especially with hydrogen containing fuel mixes. Conversely at lower swirl numbers with a modified exhaust geometry hence restricted CRZ flashback occurs through the outer thin boundary layer at much lower flow rates when the hydrogen content of the fuel mix does not exceed 30%. The work demonstrates that it is possible to run premixed swirl burners with a wide range of hydrogen fuel blends so as to substantially minimise flashback behaviour thus permitting wider used of the technology to reduce NOx emissions.
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that when targeted enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular we find battery electric vehicles to show great promise in the light- and medium-duty segments but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls fuel costs and CAPEX subsidies. Based on our analysis we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach increased efficiency and increased policy flexibility.
Hydrogen Blending in Gas Pipeline Networks—A Review
May 2022
Publication
Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions industry and governments globally are supporting research development and deployment of hydrogen blending projects such as HyDeploy GRHYD THyGA HyBlend and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density viscosity phase interactions and energy densities impact large-scale transportation via pipeline networks and enduse applications such as in modified engines oven burners boilers stoves and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050.
A Statistical Assessment of Blending Hydrogen into Gas Networks
Aug 2021
Publication
The deployment of low-carbon hydrogen in gas grids comes with strategic benefits in terms of energy system integration and decarbonization. However hydrogen thermophysical properties substantially differ from natural gas and pose concerns of technical and regulatory nature. The present study investigates the blending of hydrogen into distribution gas networks focusing on the steady-state fluid dynamic response of the grids and gas quality compliance issues at increasing hydrogen admixture levels. Two blending strategies are analyzed the first of which involves the supply of NG–H2 blends at the city gate while the latter addresses the injection of pure hydrogen in internal grid locations. In contrast with traditional case-specific analyses results are derived from simulations executed over a large number (i.e. one thousand) of synthetic models of gas networks. The responses of the grids are therefore analyzed in a statistical fashion. The results highlight that lower probabilities of violating fluid dynamic and quality restrictions are obtained when hydrogen injection occurs close to or in correspondence with the system city gate. When pure hydrogen is injected in internal grid locations even very low volumes (1% vol of the total) may determine gas quality violations while fluid dynamic issues arise only in rare cases of significant hydrogen injection volumes (30% vol of the total).
Hydrogen Blending and the Gas Commercial Framework - Report on Conclusions of NIA study
Sep 2020
Publication
Blending hydrogen into the gas grid could be an important stepping stone during the transition to a sustainable net zero system. In particular it may: provide a significant and reliable source of demand for hydrogen producers supporting the investment case for hydrogen; provide learnings and incremental change towards what could potentially become a 100% hydrogen grid; and immediately decarbonise a portion of the gas flowing through the grid. Technical questions relating to hydrogen blending are being taken forward by the industry (e.g. through the HyDeploy project in relation to the maximum potential blend of hydrogen that can be accommodated without end user appliances needing to be altered or replaced). But if blending is to take place changes to commercial arrangements will be necessary as today these assume a relatively uniform gas quality. In particular the commercial framework will need to ensure that limits on the percentage of hydrogen that can safely be blended (currently expected to be around 20% by volume) are not exceeded. We have been commissioned by Cadent to undertake a Network Innovation Allowance (NIA) project to identify the changes required to the gas commercial framework that will enable hydrogen blending in the GB gas grid and to set out a roadmap for how these can be delivered. This report sets out our recommendations.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Evaluation of the Impact of Green Hydrogen Blending Scenarios in the Italian Gas Network: Optimal Design and Dynamic Simulation of Operation Strategies
Apr 2022
Publication
Blending hydrogen (H2) produced from PEM electrolysis coupled to Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However blending H2 with NG significantly affects the thermophysical properties of the gas mixture changing the gas supply requirements to meet the demand. In this work different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at the national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy addressing both design requirements (RES and PEM electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for PEM electrolyzers and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analyzed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated at around 7.3 $/kg for yearly scenarios (best-case) although shorter temporal constraints entail significant excess hydrogen which would increase the LCOH if not deployed for other applications.
No more items...