Applications & Pathways
A Review of Decarbonization Options for the Glass Industry
May 2021
Publication
The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry e.g. container or flat glass are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry firstly an inventory of current glass products processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly decarbonization options are identified and structured according to fuel substitution waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions electrical melting and hydrogen combustion or a combination of both are the most promising options to decarbonize the glass industry but further research design adjustments and process improvements are necessary. Furthermore electricity and hydrogen prices have to decrease or fossil fuels must become more expensive to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
Reaching Zero with Renewables
Sep 2020
Publication
Patrick Akerman,
Pierpaolo Cazzola,
Emma Skov Christiansen,
Renée Van Heusden,
Joanna Kolomanska-van Iperen,
Johannah Christensen,
Kilian Crone,
Keith Dawe,
Guillaume De Smedt,
Alex Keynes,
Anaïs Laporte,
Florie Gonsolin,
Marko Mensink,
Charlotte Hebebrand,
Volker Hoenig,
Chris Malins,
Thomas Neuenhahn,
Ireneusz Pyc,
Andrew Purvis,
Deger Saygin,
Carol Xiao and
Yufeng Yang
Eliminating CO2 emissions from industry and transport in line with the 1.5⁰C climate goal
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
A Modeling Study of Lifetime and Performance Improvements of Solid Oxide Fuel Cell by Reversed Pulse Operation
Jan 2022
Publication
Chromium poisoning of the air electrode is a primary degradation mechanism for solid oxide cells (SOCs) operating under fuel cell mode. Recent experimental findings show that reversed pulse operation for SOCs operated as electrolyser cells can reverse this degradation and extend the lifetime. Here we use a multiphysics model of an SOC to investigate the effects of reversed pulse operation for alleviating chromium poisoning of the air electrode. We study the effects of time fraction of the operation under fuel cell and electrolysis modes cyclic operation starting after a certain duration and fuel cell and electrolysis current densities on the cell lifetime total power and hydrogen production. Our modeling shows that reversed pulse operation enhances cell lifetime and total power for all different cases considered in this study. Moreover results suggest that the cell lifetime total power and hydrogen production can be increased by reversed pulse operation at longer operation times under electrolysis mode cyclic operation starting from the beginning and lower electrolysis current densities. All in all this paper documents and establishes a computational framework that can serve as a platform to assess and quantify the increased profitability of SOCs operating under a co-production operation through reversed pulse operation.
Heat Pumps for Space Heating and Domestic Hot Water Production in Residential Buildings, an Environmental Comparison in a Present and Future Scenario
Nov 2022
Publication
The hydrogen vector stands as a potentially important tool to achieve the decarbonization of the energy sector. It represents an option to store the periodic excesses of energy generation from renewable electrical sources to be used as it is as a substitute for fossil fuels in some applications or reconverted into electricity when needed. In this context hydrogen can significantly decarbonize the building sector as an alternative fuel for gas-driven devices. Along with hydrogen the European strategic vision indicates the electrification of heat among the main energy transition pathways. The potential environmental benefits achievable from renewable hydrogen in thermally-driven appliances and the electrification of residential heat through electric heat pumps were evaluated and compared in this work. The novelty of the research consists of a consequential comparative life cycle assessment (16 impact categories) evaluation for three buildings (old old retrofitted and new) supplied by three different appliances (condensing boiler gas absorption heat pump and electric heat pump) never investigated before. The energy transition was evaluated for 2020 and 2030 scenarios considering the impact of gaseous fuels (natural gas and European green hydrogen) and electricity based on the pathway of the European electricity grid (27 European member states plus the United Kingdom). The results allowed to compare the environmental profile in deterministic and stochastic approaches and confirm if the increase of renewables reduces the impact in the operational phase of the appliances. The results demonstrate that despite the increased renewable share the use phase remains the most significant for both temporal scenarios contributing to 91% of the environmental profile. Despite the higher footprint in 2020 compared to the electric heat pump (198–200 vs. 170–196 gCO2eq/kWhth) the gas absorption heat pump offered a lower environmental profile than the others in all the scenarios analyzed.
World Energy Issues Monitor 2020: Decoding New Signals of Change
Oct 2020
Publication
ISSUES MONITOR 2020: DECODING NEW SIGNALS OF CHANGE
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
Expectations, Attitudes, and Preferences Regarding Support and Purchase of Eco-friendly Fuel Vehicles
Apr 2019
Publication
This study analyses public expectations attitudes and preferences to support and purchase eco-friendly fuel vehicles. The study used a telephone survey of a sample of residents in Greater Stavanger Norway. Two cluster analyses were conducted to group the individuals based on expectations and attitudes toward eco-friendly fuel vehicles. In addition two multivariate analyses were performed to explore the determinants of support and willingness to purchase eco-friendly fuel vehicles. The study found three components of expectation to support eco-friendly fuel vehicles namely cost comfort and safety. The analysis further found four components to explain attitudes to support eco-friendly fuel vehicles: personal norm pro-technology awareness of priority and environmental degradation. Multivariate analyses confirmed that age gender and the number of cars in the household are likely to influence public preferences to support and purchase eco-friendly fuel vehicles. The results reveal that individuals tend to support the eco-friendly vehicles when the technologies meet their expectations towards cost and safety but the cost expectation is the significant factor that results in the decision to purchase the eco-friendly vehicles. The study also found that the pro-technology attitude has influenced the propensity to support and purchase the eco-friendly fuel vehicles.
New Integrated Process for the Efficient Production of Methanol, Electrical Power, and Heating
Jan 2022
Publication
In this paper a novel process is developed to cogenerate 4741 kg/h of methanol 297.7 kW of electricity and 35.73 ton/h of hot water including a hydrogen purification system an absorption– compression refrigeration cycle (ACRC) a regenerative Organic Rankine Cycle (ORC) and parabolic solar troughs. The heat produced in the methanol reactor is recovered in the ORC and ACRC. Parabolic solar troughs provide thermal power to the methanol distillation tower. Thermal efficiencies of the integrated structure and the liquid methanol production cycle are 78.14% and 60.91% respectively. The process’s total exergy efficiency and irreversibility are 89.45% and 16.89 MW. The solar thermal collectors take the largest share of exergy destruction (34%) followed by heat exchangers (30%) and mixers (19%). Based on the sensitivity analysis D17 (mixture of H2 and low-pressure fuel gas before separation) was the most influential stream affecting the performance of the process. With the temperature decline of stream D17 from −139 to −149 °C the methanol production rate and the total thermal efficiency rose to 4741.2 kg/h and 61.02% respectively. Moreover the growth in the hydrogen content from 55% to 80% molar of the feed gas the flow rate of liquid methanol and the total exergy efficiency declined to 4487 kg/h and 86.05%.
Prediction of Hydrogen-Heavy Fuel Combustion Process with Water Addition in an Adapted Low Speed Two Stroke Diesel Engine: Performance Improvement
Jun 2021
Publication
Despite their high thermal efficiency (>50%) large two-stroke (2 T) diesel engines burning very cheap heavy fuel oil (HFO) produce a high level of carbon dioxide (CO2). To achieve the low emission levels of greenhouse gases (GHG) that will be imposed by future legislation the use of hydrogen (H2) as fuel in 2 T diesel engines is a viable option for reducing or almost eliminate CO2 emissions. In this work from experimental data and system modelling an analysis of dual combustion is carried out considering different strategies to supply H2 to the engine and for different H2 fractions in energy basis. Previously a complete thermodynamic model of a 2 T diesel engine with an innovative scavenging model is developed and validated. The most important drawbacks of this type of engines are controlled in this work using dual combustion and water injection reducing nitrogen oxides emissions (NOx) self-ignition and combustion knocking. The results show that the developed model matches engine performance data in diesel mode achieving a higher efficiency and mean effective pressure (MEP) in hydrogen mode of 53% and 14.62 bar respectively.
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Why Can’t We Just Burn Hydrogen? Challenges When Changing Fuels in an Existing Infrastructure
Feb 2021
Publication
The current global consumption of natural gas as a fuel is roughly 4 trillion cubic meters per year. In terms of energy the demand for natural gas exceeds the global demand for fossil fuels for transportation. Despite this observation the challenges to natural gas end use that arise when changing the composition of the fuel are largely absent from public policy and research agendas whereas for transportation fuels the issues are more appreciated. Natural gas is delivered via complex networks of interconnected pipelines to end users for direct and indirect heating in household and industrial sectors and for power generation. This interconnectedness is a crucial aspect of the challenge for introducing new fuels.<br/>In this paper we discuss the issues that arise from changing fuel properties for an existing population of end-use equipment. To illustrate the issues we will consider the changes in (combustion) performance of domestic combustion equipment and gas engines for power generation in response to substituting natural gas by hydrogen or hydrogen/natural gas blends. During the discussion we shall also indicate methods for characterizing the properties of the fuel and identify the combustion challenges that must be addressed for a successful transition from the current fuel mix to whatever the future mix may be.
Sequential Combustion in Steam Methane Reformers for Hydrogen and Power Production With CCUS in Decarbonized Industrial Clusters
Aug 2020
Publication
In future energy supply systems hydrogen and electricity may be generated in decarbonized industrial clusters using a common infrastructure for natural gas supply electricity grid and transport and geological storage of CO2. The novel contribution of this article consists of using sequential combustion in a steam methane reforming (SMR) hydrogen plant to allow for capital and operating cost reduction by using a single post-combustion carbon capture system for both the hydrogen process and the combined cycle gas turbine (CCGT) power plant plus appropriate integration for this new equipment combination. The concept would be widely applied to any post-combustion CO2 capture process. A newly developed rigorous gPROMs model of two hydrogen production technologies covering a wide range of hydrogen production capacities thermodynamically integrated with commercially available gas turbine engines quantifies the step change in thermal efficiency and hydrogen production efficiency. It includes a generic post-combustion capture technology – a conventional 30%wt MEA process - to quantify the reduction in size of CO2 absorber columns the most capital intensive part of solvent-based capture systems. For a conventional SMR located downstream of an H-class gas turbine engine followed by a three-pressure level HRSG and a capture plant with two absorbers the integrated system produces ca. 696400 Nm3/h of H2 with a net power output of 651 MWe at a net thermal efficiency of 38.9%LHV. This corresponds to 34 MWe of additional power increasing efficiency by 4.9% points and makes one absorber redundant compared to the equivalent non-integrated system producing the same volume of H2. For a dedicated gas heated reformer (GHR) located downstream of an aeroderivative gas turbine engine followed by a two-pressure level HRSG and a capture plant with one absorber the integrated system produces ca. 80750 Nm3/h of H2 with a net power output of 73 MWe and a net thermal efficiency of 54.7%LHV. This corresponds to 13 MWe of additional power output increasing efficiency by 13.5% points and also makes one absorber redundant. The article also presents new insights for the design and operation of reformers integrated with gas turbines and with CO2 capture.
World Energy Issues Monitor 2018: Perspectives on the Grand Energy Transition
May 2018
Publication
The World Energy Issues Monitor provides the views of energy leaders from across the globe to highlight the key issues of uncertainty importance and developing signals for the future.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
- The geographical views can now be broken out into a country level.
- The time view allows you to see how specific issues have developed whether globally at a regional or country level
- Issues can also be viewed according to certain categories such as OECD non-OECD G20 countries innovators
Energy Management of Heavy-duty Fuel Cell Vehicles in Real-world Driving Scenarios: Robust Design of Strategies to Maximize the Hydrogen Economy and System Lifetime
Feb 2021
Publication
Energy management is a critical issue for the advancement of fuel cell vehicles because it significantly influences their hydrogen economy and lifetime. This paper offers a comprehensive investigation of the energy management of heavy-duty fuel cell vehicles for road freight transportation. An important and unique contribution of this study is the development of an extensive and realistic representation of the vehicle operation which includes 1750 hours of real-world driving data and variable truck loading conditions. This framework is used to analyze the potential benefits and drawbacks of heuristic optimal and predictive energy management strategies to maximize the hydrogen economy and system lifetime of fuel cell vehicles for road freight transportation. In particular the statistical evaluation of the effectiveness and robustness of the simulation results proves that it is necessary to consider numerous and realistic driving scenarios to validate energy management strategies and obtain a robust design. This paper shows that the hydrogen economy can be maximized as an individual target using the available driving information achieving a negligible deviation from the theoretical limit. Furthermore this study establishes that heuristic and optimal strategies can significantly reduce fuel cell transients to improve the system lifetime while retaining high hydrogen economies. Finally this investigation reveals the potential benefits of predictive energy management strategies for the multi-objective optimization of the hydrogen economy and system lifetime.
Alternative Marine Fuels: Prospects Based on Multi-criteria Decision Analysis Involving Swedish Stakeholders
May 2019
Publication
There is a need for alternative marine fuels in order to reduce the environmental and climate impacts of shipping in the short and long term. This study assesses the prospects for seven alternative fuels for the shipping sector in 2030 including biofuels by applying a multi-criteria decision analysis approach that is based on the estimated fuel performance and on input from a panel of maritime stakeholders and by considering explicitly the influence of stakeholder preferences. Seven alternative marine fuels—liquefied natural gas (LNG) liquefied biogas (LBG) methanol from natural gas renewable methanol hydrogen for fuel cells produced from (i) natural gas or (ii) electrolysis based on renewable electricity and hydrotreated vegetable oil (HVO)—and heavy fuel oil (HFO) as benchmark are included and ranked by ten performance criteria and their relative importance. The criteria cover economic environmental technical and social aspects. Stakeholder group preferences (i.e. the relative importance groups assign to the criteria) influence the ranking of these options. For ship-owners fuel producers and engine manufacturers economic criteria in particular the fuel price are the most important. These groups rank LNG and HFO the highest followed by fossil methanol and then various biofuels (LBG renewable methanol and HVO). Meanwhile representatives from Swedish government authorities prioritize environmental criteria specifically GHG emissions and social criteria specifically the potential to meet regulations ranking renewable hydrogen the highest followed by renewable methanol and then HVO. Policy initiatives are needed to promote the introduction of renewable marine fuels.
Integrated Electricity, Hydrogen and Methane System Modelling Framework: Application to the Dutch Infrastructure Outlook 2050
Mar 2021
Publication
The future energy system is widely expected to show increasing levels of integration across differing energy carriers. Electricity hydrogen methane and heat systems may become increasingly interdependent due to coupling through conversion and hybrid energy technologies. Market parties network operators policy makers and regulators require tools to capture implications of possible techno-economic and institutional developments in one system for the operation of others. In this article we provide an integrated electricity hydrogen and methane systems modelling framework focusing on interdependencies between them. The proposed integrated electricity and (renewable) gas system model is a market equilibrium model with hourly price and volume interactions considering ramp rates of conventional units variability of intermittent renewables conversion transport as well as storage of electricity hydrogen and methane. The integrated model is formulated as a linear program under the assumption of perfect competition. As proof-of-concept the model has been applied to a test case consisting of 34 electricity nodes 19 hydrogen nodes and 22 methane nodes reflecting the regional governance scenario in the Dutch Infrastructure Outlook 2050 study. The case study also includes different sensitivity analyses with regard to variable renewable capacity energy demand and biomass prices to illustrate model response to perturbations of its main drivers. This article demonstrates that the interweaving of electricity hydrogen and methane systems can provide the required flexibility in the future energy system.
Advanced Sizing Methodology for a Multi-Mode eVTOL UAV Powered by a Hydrogen Fuel Cell and Battery
Jan 2022
Publication
A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance and this drawback could be solved by using a combination of hydrogen fuel cells and batteries. The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method for forward flight/VTOL multi-mode UAV the regression model for electric propulsion system sizing a sizing method for an electric propulsion system and hydrogen fuel cell system and a transition analysis method. The total mass of the UAV is iteratively calculated until convergence and the optimization method is used to ensure that the sizing results satisfy the design requirements. The sizing results are the UAV’s geometry mass and power data. To verify the accuracy of the proposed sizing methodology the sizing and the conceptual design phase results of a 25 kg hydrogen fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the design requirements.
Hydrogen from Natural Gas – The Key to Deep Decarbonisation
Jul 2019
Publication
This Discussion Paper was commissioned by Zukunft ERDGAS to contribute to the debate concerning the deep decarbonisation of the European energy sector required to meet the Paris Agreement targets. Previous discussion papers have put forward decarbonisation pathways that rely heavily on ‘All-Electric’ solutions. These depend predominantly on renewable electricity to deliver decarbonisation of all sectors. This paper offers an alternative to an ‘All-Electric’ solution by building an alternative pathway that allows the inclusion of gas based technologies alongside the ‘All-Electric’ pathway technologies. The new pathway demonstrates that hydrogen from natural gas can be an essential complement to renewable electricity. The pathway also considers the benefits of utilising methane pyrolysis technology in Europe to produce zero carbon hydrogen.
Read the full report at this link
Read the full report at this link
Gaseous Fueling of an Adapted Commercial Automotive Spark-ignition Engine: Simplified Thermodynamic Modeling and Experimental Study Running on Hydrogen, Methane, Carbon Monoxide and their Mixtures
Dec 2022
Publication
In the present work methane carbon monoxide hydrogen and the binary mixtures 20 % CH4–80 % H2 80 % CH4–20 % H2 25 % CO–75 % H2 (by volume) were considered as fuels of a naturally aspirated port-fuel injection four-cylinder Volkswagen 1.4 L spark-ignition (SI) engine. The interest in these fuels lies in the fact that they can be obtained from renewable resources such as the fermentation or gasification of residual biomasses as well as the electrolysis of water with electricity of renewable origin in the case of hydrogen. In addition they can be used upon relatively easy modifications of the engines including the retrofitting of existing internal combustion engines. It has been found that the engine gives similar performance regardless the gaseous fuel nature if the air–fuel equivalence ratio (λ) is the same. Maximum brake torque and mean effective pressure values within 45–89 N⋅m and 4.0–8.0 bar respectively have been obtained at values of λ between 1 and 2 at full load engine speed of 2000 rpm and optimum spark-advance. In contrast the nature of the gaseous fuel had great influence upon the range of λ values at which a fuel (either pure or blend) could be used. Methane and methane-rich mixtures with hydrogen or carbon monoxide allowed operating the engine at close to stoichiometric conditions (i.e. 1 < λ < 1.5) yielding the highest brake torque and mean effective pressure values. On the contrary hydrogen and hydrogen-rich mixtures with methane or carbon monoxide could be employed only in the very fuel-lean region (i.e. 1.5 < λ < 2). The behavior of carbon monoxide was intermediate between that of methane and hydrogen. The present study extends and complements previous works in which the aforementioned fuels were compared only under stoichiometric conditions in air (λ = 1). In addition a simple zero-dimensional thermodynamic combustion model has been developed that allows describing qualitatively the trends set by the several fuels. Although the model is useful to understand the influence of the fuels properties on the engine performance its predictive capability is limited by the simplifications made.
Zero-Emission Pathway for the Global Chemical and Petrochemical Sector
Jun 2021
Publication
The chemical and petrochemical sector relies on fossil fuels and feedstocks and is a major source of carbon dioxide (CO2 ) emissions. The techno-economic potential of 20 decarbonisation options is assessed. While previous analyses focus on the production processes this analysis covers the full product life cycle CO2 emissions. The analysis elaborates the carbon accounting complexity that results from the non-energy use of fossil fuels and highlights the importance of strategies that consider the carbon stored in synthetic organic products—an aspect that warrants more attention in long-term energy scenarios and strategies. Average mitigation costs in the sector would amount to 64 United States dollars (USD) per tonne of CO2 for full decarbonisation in 2050. The rapidly declining renewables cost is one main cause for this low-cost estimate. Renewable energy supply solutions in combination with electrification account for 40% of total emissions reductions. Annual biomass use grows to 1.3 gigatonnes; green hydrogen electrolyser capacity grows to 2435 gigawatts and recycling rates increase six-fold while product demand is reduced by a third compared to the reference case. CO2 capture storage and use equals 30% of the total decarbonisation effort (1.49 gigatonnes per year) where about one-third of the captured CO2 is of biogenic origin. Circular economy concepts including recycling account for 16% while energy efficiency accounts for 12% of the decarbonisation needed. Achieving full decarbonisation in this sector will increase energy and feedstock costs by more than 35%. The analysis shows the importance of renewables-based solutions accounting for more than half of the total emissions reduction potential which was higher than previous estimates.
Porosity and Thickness Effect of Pd–Cu–Si Metallic Glasses on Electrocatalytic Hydrogen Production and Storage
Aug 2021
Publication
This contribution places emphasis on tuning pore architecture and film thickness of mesoporous Pd–Cu–Si thin films sputtered on Si/SiO2 substrates for enhanced electrocatalytic and hydrogen sorption/desorption activity and their comparison with the state-of-the-art thin film electrocatalysts. Small Tafel slope of 43 mV dec–1 for 1250 nm thick coatings with 2 µm diameter pores with 4.2 µm interspacing (H2) electrocatalyst with comparable hydrogen overpotentials to the literature suggests its use for standard fuel cells. The largest hydrogen sorption has been attained for the 250 nm thick electrocatalyst on 5 µm pore diameter and 12 µm interspacing (2189 µC cm–2 per CV cycle) making it possible for rapid storage systems. Moreover the charge transfer resistance described by an equivalent circuit model has an excellent correlation with Tafel slopes. Along with its very low Tafel slope of 42 mV dec–1 10 nm thick H2 pore design electrocatalyst has the highest capacitive response of ∼0.001 S sn cm–2 and is promising to be used as a nano-charger and hydrogen sensor.
Van der Waals Heterostructures - Recent Progress in Electrode Materials for Clean Energy Applications
Jul 2021
Publication
The unique layered morphology of van der Waals (vdW) heterostructures give rise to a blended set of electrochemical properties from the 2D sheet components. Herein an overview of their potential in energy storage systems in place of precious metals is conducted. The most recent progress on vdW electrocatalysis covering the last three years of research is evaluated with an emphasis on their catalytic activity towards the oxygen reduction reaction (ORR) oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). This analysis is conducted in pair with the most active Pt-based commercial catalyst currently utilized in energy systems that rely on the above-listed electrochemistry (metal–air battery fuel cells and water electrolyzers). Based on current progress in HER catalysis that employs vdW materials several recommendations can be stated. First stacking of the two types vdW materials with one being graphene or its doped derivatives results in significantly improved HER activity. The second important recommendation is to take advantage of an electronic coupling when stacking 2D materials with the metallic surface. This significantly reduces the face-to-face contact resistance and thus improves the electron transfer from the metallic surface to the vdW catalytic plane. A dual advantage can be achieved from combining the vdW heterostructure with metals containing an excess of d electrons (e.g. gold). Despite these recent and promising discoveries more studies are needed to solve the complexity of the mechanism of HER reaction in particular with respect to the electron coupling effects (metal/vdW combinations). In addition more affordable synthetic pathways allowing for a well-controlled confined HER catalysis are emerging areas.
A Hydrogen Fuelled LH2 Tanker Ship Design
May 2021
Publication
This study provides a detailed philosophical view and evaluation of a viable design for a large liquid hydrogen tanker fuelled by liquid hydrogen. Established methods for determining tank sizing ship stability and ship characteristics were used to evaluate the preliminary design and performance of the liquefied hydrogen tanker named ‘JAMILA’ designed specifically to transport liquid hydrogen. JAMILA is designed around four large liquid hydrogen tanks with a total capacity of ∼280000 m3 and uses the boil-off gas for propulsion for the loaded leg of the journey. The ship is 370 m long 75 m wide and draws 10.012 m at full load. It has a fully loaded displacement tonnage of 232000 tonnes to carry 20000 tonnes of hydrogen. Its propulsion system contains a combined-cycle gas turbine of approximately 50 MW. The volume of the hydrogen cargo pressurised to 0.5 MPa primarily determines the size and displacement of the ship.
Performance of Common Rail Direct Injection (CRDi) Engine Using Ceiba Pentandra Biodiesel and Hydrogen Fuel Combination
Nov 2021
Publication
An existing diesel engine was fitted with a common rail direct injection (CRDi) facility to inject fuel at higher pressure in CRDi mode. In the current work rotating blades were incorporated in the piston cavity to enhance turbulence. Pilot fuels used are diesel and biodiesel of Ceiba pentandra oil (BCPO) with hydrogen supply during the suction stroke. Performance evaluation and emission tests for CRDi mode were carried out under different loading conditions. In the first part of the work maximum possible hydrogen substitution without knocking was reported at an injection timing of 15◦ before top dead center (bTDC). In the second part of the work fuel injection pressure (IP) was varied with maximum hydrogen fuel substitution. Then in the third part of the work exhaust gas recirculation (EGR) was varied to study the nitrogen oxides (NOx) generated. At 900 bar HC emissions in the CRDi engine were reduced by 18.5% and CO emissions were reduced by 17% relative to the CI mode. NOx emissions from the CRDi engine were decreased by 28% relative to the CI engine mode. At 20% EGR lowered the BTE by 14.2% and reduced hydrocarbons nitrogen oxide and carbon monoxide by 6.3% 30.5% and 9% respectively compared to the CI mode of operation.
Prospects for the Use of Hydrogen in the Armed Forces
Oct 2021
Publication
The energy security landscape that we envisage in 2050 will be different from that of today. Meeting the future energy needs of the armed forces will be a key challenge not least for military security. The World Energy Council’s World Energy Scenarios forecast that the world’s population will rise to 10 billion by 2050 which will also necessitate an increase in the size of the armed forces. In this context energy extraction distribution and storage become essential to stabilizing the imbalance between production and demand. Among the available solutions Power to Hydrogen (P2H) is one of the most appealing options. However despite the potential many obstacles currently hinder the development of the P2H market. This article aims to identify and analyse existing barriers to the introduction of P2H technologies that use hydrogen. The holistic approach used which was based on a literature survey identified obstacles and possible strategies for overcoming them. The research conducted presents an original research contribution at the level of hydrogen strategies considered in leading countries around the world. The research findings identified unresolved regulatory issues and sources of uncertainty in the armed forces. There is a lack of knowledge in the armed forces of some countries about the process of producing hydrogen energy and its benefits which raises concerns about the consistency of its exploitation. Negative attitudes towards hydrogen fuel energy can be a significant barrier to its deployment in the armed forces. Possible approaches and solutions have also been proposed to eliminate obstacles and to support decision makers in defining and implementing a strategy for hydrogen as a clean energy carrier. There are decisive and unresolved obstacles to its deployment not only in the armed forces
An Intelligent Site Selection Model for Hydrogen Refueling Stations Based on Fuzzy Comprehensive Evaluation and Artificial Neural Network—A Case Study of Shanghai
Feb 2022
Publication
With the gradual popularization of hydrogen fuel cell vehicles (HFCVs) the construction and planning of hydrogen refueling stations (HRSs) are increasingly important. Taking operational HRSs in China’s coastal and major cities as examples we consider the main factors affecting the site selection of HRSs in China from the three aspects of economy technology and society to establish a site selection evaluation system for hydrogen refueling stations and determine the weight of each index through the analytic hierarchy process (AHP). Then combined with fuzzy comprehensive evaluation (FCE) method and artificial neural network model (ANN) FCE method is used to evaluate HRS in operation in China's coastal areas and major cities and we used the resulting data obtained from the comprehensive evaluation as the training data to train the neural network. So an intelligent site selection model for HRSs based on fuzzy comprehensive evaluation and artificial neural network model (FCE-ANN) is proposed. The planned HRSs in Shanghai are evaluated and an optimal site selection of the HRS is obtained. The results show that the optimal HRSs site selected by the FCE-ANN model is consistent with the site selection obtained by the FCE method and the accuracy of the FCE-ANN model is verified. The findings of this study may provide some guidelines for policy makers in planning the hydrogen refueling stations
Experimental Study on Tri-fuel Combustion Using Premixed Methane-hydrogen Mixtures Ignited by a Diesel Pilot
Apr 2021
Publication
A comprehensive investigation on diesel pilot spray ignited methane-hydrogen (CH4–H2) combustion tri-fuel combustion (TF) is performed in a single-cylinder compression ignition (CI) engine. The experiments provide a detailed analysis of the effect of H2 concentration (based on mole fraction MH2) and charge-air temperature (Tair) on the ignition behavior combustion stability cycle-to-cycle (CCV) and engine performance. The results indicate that adding H2 from 0 to 60% shortens the ignition delay time (IDT) and combustion duration (based on CA90) up to 33% and 45% respectively. Thereby H2 helps to increase the indicated thermal efficiency (ITE) by as much as 10%. Furthermore to gain an insight into the combustion stability and CCV the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) methodologies are applied to estimate the combustion stability and CCV of the TF combustion process. The results reveal that the pressure oscillation can be reduced up to 4 dB/Hz and the CCV by 50% when MH2 < 60% and Tair < 55 °C. However when MH2 > 60% and Tair > 40 °C abnormal combustion and knocking are observed.
Constrained Extended Kalman Filter Design and Application for On-line State Estimation of High-order Polymer Electrolyte Membrane Fuel Cell Systems
Jun 2021
Publication
In this paper an alternative approach to extended Kalman filtering (EKF) for polymer electrolyte membrane fuel cell (FC) systems is proposed. The goal is to obtain robust real-time capable state estimations of a high-order FC model for observer applications mixed with control or fault detection. The introduced formulation resolves dependencies on operating conditions by successive linearization and constraints allowing to run the nonlinear FC model at significantly lower sampling rates than with standard approaches. The proposed method provides state estimates for challenging operating conditions such as shut-down and start-up of the fuel cell for which the unconstrained EKF fails. A detailed comparison with the unscented Kalman filter shows that the proposed EKF reconstructs the outputs equally accurate but nine times faster. An application to measured data from an FC powered passenger car is presented yielding state estimates of a real FC system which are validated based on the applied model.
Fuel Cells and Hydrogen Observatory Technology and Market Report
Sep 2021
Publication
The information in this report covers the period January 2019 – December 2019. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this first edition data to the end of 2019 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: • Application: Total system shipments are divided into Transport Stationary and Portable applications • Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types • Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product • Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies.
Energy Saving in Public Transport Using Renewable Energy
Jan 2017
Publication
Hydrogen produced by renewable sources represents an interesting way to reduce the energetic dependence on fossil fuels in the transportation sector. This paper shows a feasibility study for the production storage and distribution of hydrogen in the western Sicilian context using three different renewable sources: wind biomass and sea wave. The objective of this study is the evaluation of the hydrogen demand needed to replace all diesel supplied buses with electrical buses equipped with fuel cells. An economic analysis is presented with the evaluation of the avoidable greenhouse gas emissions. Four different scenarios correlate the hydrogen demand for urban transport to the renewable energy resources present in the territories and to the modern technologies available for the production of hydrogen. The study focuses on the possibility of tapping into the potential of renewable energies (wind biomass and sea wave) for the production of hydrogen by electrolysis. The use of hydrogen would reduce significantly the emissions of particulate and greenhouse gases in the urban districts under analysis.
Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells
Sep 2021
Publication
Temperature and humidity are two important interconnected factors in the performance of PEMFCs (Proton Exchange Membrane Fuel Cells). The fuel and oxidant humidity and stack temperature in a fuel cell were analyzed in this study. There are many factors that affect the temperature and humidity of the stack. We adopt the fuzzy control method of multi-input and multi-output to control the temperature and humidity of the stack. A model including a driver vehicle transmission motor air feeding electrical network stack hydrogen supply and cooling system was established to study the fuel cell performance. A fuzzy controller is proven to be better in improving the output power of fuel cells. The three control objectives are the fan speed control for regulating temperature the solenoid valve on/off control of the bubble humidifier for humidity variation and the speed of the pump for regulating temperature difference. In addition the results from the PID controller stack model and the fuzzy controller stack model are compared in this research. The fuel cell bench test has been built to validate the effectiveness of the proposed fuzzy control. The maximum temperature of the stack can be reduced by 5 ◦C with the fuzzy control in this paper so the fuel cell output voltage (power) increases by an average of approximately 5.8%.
Hydrogen as a Maritime Fuel–Can Experiences with LNG Be Transferred to Hydrogen Systems?
Jul 2021
Publication
As the use of fossil fuels becomes more and more restricted there is a need for alternative fuels also at sea. For short sea distance travel purposes batteries may be a solution. However for longer distances when there is no possibility of recharging at sea batteries do not have sufficient capacity yet. Several projects have demonstrated the use of compressed hydrogen (CH2) as a fuel for road transport. The experience with hydrogen as a maritime fuel is very limited. In this paper the similarities and differences between liquefied hydrogen (LH2) and liquefied natural gas (LNG) as a maritime fuel will be discussed based on literature data of their properties and our system knowledge. The advantages and disadvantages of the two fuels will be examined with respect to use as a maritime fuel. Our objective is to discuss if and how hydrogen could replace fossil fuels on long distance sea voyages. Due to the low temperature of LH2 and wide flammability range in air these systems have more challenges related to storage and processing onboard than LNG. These factors result in higher investment costs. All this may also imply challenges for the LH2 supply chain.
Mobility from Renewable Electricity: Infrastructure Comparison for Battery and Hydrogen Fuel Cell Vehicles
May 2018
Publication
This work presents a detailed breakdown of the energy conversion chains from intermittent electricity to a vehicle considering battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). The traditional well-to-wheel analysis is adapted to a grid to mobility approach by introducing the intermediate steps of useful electricity energy carrier and on-board storage. Specific attention is given to an effective coupling with renewable electricity sources and associated storage needs. Actual market data show that compared to FCEVs BEVs and their infrastructure are twice as efficient in the conversion of renewable electricity to a mobility service. A much larger difference between BEVs and FCEVs is usually reported in the literature. Focusing on recharging events this work additionally shows that the infrastructure efficiencies of both electric vehicle (EV) types are very close with 57% from grid to on-board storage for hydrogen refilling stations and 66% for fast chargers coupled with battery storage. The transfer from the energy carrier at the station to on-board storage in the vehicle accounts for 9% and 12% of the total energy losses of these two modes respectively. Slow charging modes can achieve a charging infrastructure efficiency of 78% with residential energy storage systems coupled with AC chargers.
Combined Ammonia Recovery and Solid Oxide Fuel Cell Use at Wastewater Treatment Plants for Energy and Greenhouse Gas Emission Improvements
Feb 2019
Publication
Current standard practice at wastewater treatment plants (WWTPs) involves the recycling of digestate liquor produced from the anaerobic digestion of sludge back into the treatment process. However a significant amount of energy is required to enable biological breakdown of ammonia present in the liquor. This biological processing also results in the emission of damaging quantities of greenhouse gases making diversion of liquor and recovery of ammonia a noteworthy option for improving the sustainability of wastewater treatment. This study presents a novel process which combines ammonia recovery from diverted digestate liquor for use (alongside biomethane) in a solid oxide fuel cell (SOFC) system for implementation at WWTPs. Aspen Plus V.8.8 and numerical steady state models have been developed using data from a WWTP in West Yorkshire (UK) as a reference facility (750000p.e.). Aspen Plus simulations demonstrate an ability to recover 82% of ammoniacal nitrogen present in digestate liquor produced at the WWTP. The recovery process uses a series of stripping absorption and flash separation units where water is recovered alongside ammonia. This facilitates effective internal steam methane as a case of study has the potential to make significant impacts energetically and environmentally; findings suggest the treatment facility could transform from a net consumer of electricity to a net producer. The SOFC has been demonstrated to run at an electrical efficiency of 48% with NH3 contributing 4.6% of its power output. It has also been demonstrated that 3.5 kg CO2e per person served by the WWTP could be mitigated a year due to a combination of emissions savings by diversion of ammonia from biological processing and lifecycle emissions associated with the lack of reliance on grid electricity.
Ammonia–methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
Feb 2016
Publication
Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were performed under atmospheric and medium pressurised conditions using gas analysis and chemiluminescence to quantify emission concentrations and OH production zones respectively. Numerical calculations using GASEQ and CHEMKIN-PRO were performed to complement compare with and extend experimental findings hence improving understanding concerning the evolution of species when fuelling on ammonia blends. It is concluded that a fully premixed injection strategy is not appropriate for optimised ammonia combustion and that high flame instabilities can be produced at medium swirl numbers hence necessitating lower swirl and a different injection strategy for optimised power generation utilising ammonia fuel blends.
Methodologies for Representing the Road Transport Sector in Energy System Models
Dec 2013
Publication
Energy system models are often used to assess the potential role of hydrogen and electric powertrains for reducing transport CO2 emissions in the future. In this paper we review how different energy system models have represented both vehicles and fuel infrastructure in the past and we provide guidelines for their representation in the future. In particular we identify three key modelling decisions: the degree of car market segmentation the imposition of market share constraints and the use of lumpy investments to represent infrastructure. We examine each of these decisions in a case study using the UK MARKAL model. While disaggregating the car market principally affects only the transition rate to the optimum mix of technologies market share constraints can greatly change the optimum mix so should be chosen carefully. In contrast modelling infrastructure using lumpy investments has little impact on the model results. We identify the development of new methodologies to represent the impact of behavioural change on transport demand as a key challenge for improving energy system models in the future.
A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle
May 2022
Publication
The development of hydrogen energy is an effective solution to the energy and environmental crisis. Hydrogen fuel cells and energy storage cells as hybrid power have broad application prospects in the field of vehicle power. Energy management strategies are key technologies for fuel cell hybrid systems. The traditional optimization strategy is generally based on optimization under the global operating conditions. The purpose of this project is to develop a power allocation optimization method based on real-time load forecasting for fuel cell/lithium battery hybrid electric vehicles which does not depend on specific working conditions or causal control methods. This paper presents an energy-management algorithm based on real-time load forecasting using GRU neural networks to predict load requirements in the short time domain and then the local optimization problem for each predictive domain is solved using a method based on Pontryagin’s minimum principle (PMP). The algorithm adopts the idea of model prediction control (MPC) to transform the global optimization problem into a series of local optimization problems. The simulation results show that the proposed strategy can achieve a good fuel-saving control effect. Compared with the rule-based strategy and equivalent hydrogen consumption strategy (ECMS) the fuel consumption is lower under two typical urban conditions. In the 1800 s driving cycle under WTCL conditions the fuel consumption under the MPC-PMP strategy is 22.4% lower than that based on the ECMS strategy and 10.3% lower than the rules-based strategy. Under CTLT conditions the fuel consumption of the MPC-PMP strategy is 13.12% lower than that of the rule-based strategy and 3.01% lower than the ECMS strategy.
Techno-economic Analysis of Freight Railway Electrification by Overhead Line, Hydrogen and Batteries: Case Studies in Norway and USA
Aug 2019
Publication
Two non-electrified railway lines one in Norway and the other in the USA are analysed for their potential to be electrified with overhead line equipment batteries hydrogen or hydrogen-battery hybrid powertrains. The energy requirements are established with single-train simulations including the altitude profiles of the lines air and rolling resistances and locomotive tractive-effort curves. The composition of the freight trains in terms of the number of locomotives battery wagons hydrogen wagons etc. is also calculated by the same model. The different technologies are compared by the criteria of equivalent annual costs benefit–cost ratio payback period and up-front investment based on the estimated techno-economic parameters for years 2020 2030 and 2050. The results indicate the potential of batteries and fuel cells to replace diesel on rail lines with low traffic volumes.
Publication Handbook for Hydrogen Fuelled Vessels
Jun 2021
Publication
Green hydrogen could play a crucial role in the maritime industry’s journey towards decarbonization. Produced through electrolysis hydrogen is emission free and could be widely available across the globe in future – as a marine fuel or a key enabler for synthetic fuels. Many in shipping recognize hydrogen’s potential as a fuel but the barriers to realizing this potential are substantial.<br/>The 1st Edition of the ‘Handbook for Hydrogen-fuelled Vessels’ offers a road map towards safe hydrogen operations using fuel cells. It details how to navigate the complex requirements for design and construction and it covers the most important aspects of hydrogen operations such as safety and risk mitigation engineering details for hydrogen systems and implementation phases for maritime applications based on the current regulatory Alternative Design process framework.<br/>This publication is the result of the 1st phase of the DNV-led Joint Industry Project MarHySafe which has brought together a consortium of 26 leading company and associations. The project is ongoing and this publication will be continually updated to reflect the latest industry expertise on hydrogen as ship fuel.
Improved VSG Control Strategy Based on the Combined Power Generation System with Hydrogen Fuel Cells and Super Capacitors
Oct 2021
Publication
Due to their environmental protection and high power generation efficiency the control technology of hydrogen fuel cells (HFCs) connected to the microgrid has become a research hotspot. However when they encounter peak demand or transient events the lack of power cannot be compensated immediately by HFCs which results in sudden changes of the voltage and frequency. The improved virtual synchronous generator (VSG) control strategy based on HFCs and supercapacitors (SCs) combined power generation system is proposed to overcome this shortcoming in this paper. The small-signal model for designing the combined system parameters is provided which are in accordance with the system loop gain phase angle margin and adjustment time requirements. Besides the voltage and current double closed-loop based on sequence control is introduced in the VSG controller. The second-order generalized integrator (SOGI) is utilized to separate the positive and negative sequence components of the output voltage. At the same time a positive and negative sequence voltage outer loop is designed to suppress the negative sequence voltage under unbalanced conditions thereby reducing the unbalance of the output voltage. Finally simulation results in MATLAB/Simulink environment verify that the proposed method has better dynamic characteristics and higher steady-state accuracy compared with the traditional VSG control
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
Gas Goes Green: A System for All Seasons
Oct 2021
Publication
‘A System For All Seasons’ analyses Britain’s electricity generation and consumption trends concluding that the country’s wind and solar farms will have enough spare electricity generated in spring and summer when demand is lower to produce green hydrogen to the equivalent capacity of 25 Hinkley Point C nuclear power plants.
The hydrogen stored would provide the same amount of energy needed for every person in the UK to charge a Tesla Model S electric vehicle more than 21 times in the autumn and winter months when energy demand is highest creating a clean energy buffer that avoids having to manage limited energy supplies on the international markets.
Crucially the research finds that the UK has enough capacity to store the hydrogen in a combination of salt caverns and disused oil and gas fields in the North Sea as well other locations to meet this demand.
The research also finds that using renewable hydrogen will help reduce the total number of wind farms needed in 2050 by more than 75% because it will ensure electricity generated by Britain’s wind farms is used as efficiently as possible by avoiding surplus electricity going to waste.
‘A System For All Seasons’ finds that:
The hydrogen stored would provide the same amount of energy needed for every person in the UK to charge a Tesla Model S electric vehicle more than 21 times in the autumn and winter months when energy demand is highest creating a clean energy buffer that avoids having to manage limited energy supplies on the international markets.
Crucially the research finds that the UK has enough capacity to store the hydrogen in a combination of salt caverns and disused oil and gas fields in the North Sea as well other locations to meet this demand.
The research also finds that using renewable hydrogen will help reduce the total number of wind farms needed in 2050 by more than 75% because it will ensure electricity generated by Britain’s wind farms is used as efficiently as possible by avoiding surplus electricity going to waste.
‘A System For All Seasons’ finds that:
- Britain’s wind and solar farms could generate between 60-80GW of renewable hydrogen - the equivalent capacity of 25 Hinkley Point C nuclear power plants - from spare renewable electricity generated in the spring and summer months between May and October each year.
- Running the energy system this way will reduce the need for the total electricity generating capacity of UK wind farms from 500-600GW by 2050 down to 140-190GW – a reduction of up to 76%.
- It would mean Great Britain would be using spare renewable electricity that would otherwise go to waste to produce green hydrogen. Under the alternative scenario additional wind farms would need to be built to accommodate for autumn and wind energy demand peaks but be left unused during other times of the year.
- With 140-190GW of wind generation capacity 115 to 140TWh of green hydrogen would be stored – enough energy for every person in the UK to charge a Tesla Model S more than 21 times.
- The potential storage volume from Britain’s salt fields ranges from >1TWh up to 30TWh. For disused oil and gas fields the potential storage volume for individual sites ranges from ~1TWh up to 330TWh.
Optimal Facility Combination Set of Integrated Energy System Based on Consensus Point between Independent System Operator and Independent Power Producer
Dec 2022
Publication
In recent years the frequency of power demand imbalance and negative price phenomenon has risen due to the rapid expansion of renewable energy sources (RES). Because of this a means to reduce the curtailment of RES by utilizing surplus energy is essential. This paper focuses on reducing the curtailment of wind turbines (WT) with high output intermittency and minimizing the investment cost of IES via an integrated energy system (IES). The IES operation seeks to improve the acceptability and efficiency of the RES as it supports the integration of various energies mix such as electricity heat hydrogen. This paper proposes an optimal facility combination set (FCS) of IES that satisfies the requirements of ISO and IPP using Multi-Objective Optimization Programming (MOP). The case study is based on a wind farm in South Korea set in Aewol-eup Jeju-Island. The case study results provide the best configuration of the IES energy mix with the best economic value and efficiency while satisfying ISO and IPP perspectives.
Assessment of the Economic Efficiency of the Operation of Low-Emission and Zero-Emission Vehicles in Public Transport in the Countries of the Visegrad Group
Nov 2021
Publication
Transport is one of the key sectors of the European economy. However the intensive development of transport caused negative effects in the form of an increase in the emission of harmful substances. The particularly dramatic situation took place in the V4 countries. This made it necessary to implement solutions reducing emissions in transport including passenger transport. Such activities can be implemented in the field of implementation of low-emission and zero-emission vehicles for use. That is why the European Union and the governments of the Visegrad Group countries have developed numerous recommendations communications laws and strategies that order carriers to implement low- and zero-emission mobility. Therefore transport organizers and communication operators faced the choice of the type of buses. From an economic point of view each entrepreneur is guided by the economic efficiency of the vehicles used. Hence the main aim of the article was to conduct an economic evaluation of the operational efficiency of ecological vehicles. As more than 70% of vehicles in use in the European Union are still diesel driven the economic efficiency assessment was also made for vehicles with traditional diesel drive. To conduct the research the method of calculating the total cost of ownership of vehicles in operation was used. As a result of the research it was found that electric buses are the cheapest in the entire period of use (15 years) and then those powered by CNG. On the other hand the cost of using hydrogen buses is the highest. This is due to the high purchase prices of these vehicles. However the EU as well as the governments of individual countries support enterprises and communication operators by offering them financing for investments. The impact of the forecasted fuel and energy prices and the planned inflation on operating costs was also examined. In this case the analyses showed that the forecasted changes in fuel and energy prices as well as the expected inflation will significantly affect the costs of vehicle operation and the economic efficiency of using various types of drives. These changes will have a positive impact on the implementation of zero-emission vehicles into exploitation. Based on the analyses it was found that in 2035 hydrogen buses will have the lowest operating costs.
Hydrogen Power Focus Shifts from Cars to Heavy Vehicles
Oct 2020
Publication
Hydrogen has been hailed as a promising energy carrier for decades. But compared to the thriving success of hybrid and plug-in electric cars the prospects for cars powered by hydrogen fuel cells have recently diminished mostly due to challenges in bringing down the costs of fuel cells and developing a broad network of fuelling stations.<br/>Beginning in March 2020 three major auto manufacturers—Daimler AG] Volkswagen and General Motors (GM)]—followed the April 2019 move by Honda to back out of the hydrogen-powered passenger car market. Instead these companies and others are looking to develop the technology as an emission-free solution to power heavy commercial and military vehicles with refuelling taking place at centralized locations.
Hydrogen as Energy Sources—Basic Concepts
Sep 2021
Publication
This paper covers the hydrogen technologies regarding the role of hydrogen as an energy carrier and the possibilities of its production and use. It is initially presented the modalities and the efficiency of the current technologies of obtaining hydrogen detailing its obtaining by the electrolysis of the water the electrochemical efficiency and the specific consumption of electricity as well as the thermodynamics of the electrochemical processes. The following paragraph addresses hydrogen conversion possibilities. This paragraph details the thermodynamic analysis of the fuel cell the external characteristic of the fuel cell and the types of fuel cell. The last paragraph addresses the possibilities of using the fuel cells for electrical vehicles and cogeneration systems for buildings.In this context the traditional transport and distribution grid will have to adapt to the new realities as they will need to actively participate in the internal energy market by the transformation of the traditional electricity grid in energy flow from unidirectional to bidirectional through the production of hydrogen offering the same facilities as the gas grid.
Application of Hydrogen and Hydrogen-containing Gases in Internal Combustion Engines
Nov 2019
Publication
The results of studies of the influence of hydrogen and hydrogen-containing gas additives on the parameters of various types of internal combustion engines are analyzed and summarized. It made possible to identify the features of the effect on the combustion of fuel during internal combustion engine operation at partial loads. The dependences of reducing the toxicity and fuel consumption of internal combustion engine on the amount of addition of hydrogen and a hydrogen-containing gas to the air-fuel mixture were obtained. It allowed to establish quantitative effects of free hydrogen in particular to quantify the region of small hydrogen additives and the conditions under which hydrogen exhibits the qualities of a chemically active component of the mixture.
Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review
Sep 2021
Publication
This article provides an overview of modern technologies and implemented projects in the field of renewable energy systems for the electrification of railway transport. In the first part the relevance of the use of renewable energy on the railways is discussed. Various types of power-generating systems in railway stations and platforms along the track as well as in separate areas are considered. The focus is on wind and solar energy conversion systems. The second part is devoted to the analysis of various types of energy storage devices used in projects for the electrification of railway transport since the energy storage system is one of the key elements in a hybrid renewable energy system. Systems with kinetic storage electrochemical storage batteries supercapacitors hydrogen energy storage are considered. Particular attention is paid to technologies for accumulating and converting hydrogen into electrical energy as well as hybrid systems that combine several types of storage devices with different ranges of charge/discharge rates. A comparative analysis of various hybrid electric power plant configurations depending on the functions they perform in the electrification systems of railway transport has been carried out.
Optimization of Component Sizing for a Fuel Cell-Powered Truck to Minimize Ownership Cost
Mar 2019
Publication
In this study we consider fuel cell-powered electric trucks (FCETs) as an alternative to conventional medium- and heavy-duty vehicles. FCETs use a battery combined with onboard hydrogen storage for energy storage. The additional battery provides regenerative braking and better fuel economy but it will also increase the initial cost of the vehicle. Heavier reliance on stored hydrogen might be cheaper initially but operational costs will be higher because hydrogen is more expensive than electricity. Achieving the right tradeoff between these power and energy choices is necessary to reduce the ownership cost of the vehicle. This paper develops an optimum component sizing algorithm for FCETs. The truck vehicle model was developed in Autonomie a platform for modelling vehicle energy consumption and performance. The algorithm optimizes component sizes to minimize overall ownership cost while ensuring that the FCET matches or exceeds the performance and cargo capacity of a conventional vehicle. Class 4 delivery truck and class 8 linehaul trucks are shown as examples. We estimate the ownership cost for various hydrogen costs powertrain components ownership periods and annual vehicle miles travelled.
Potentials of Hydrogen Technologies for Sustainable Factory Systems
Mar 2021
Publication
The industrial sector is the world’s second largest emitter of greenhouse gases hence a methodology for decarbonizing factory systems is crucial for achieving global climate goals. Hydrogen is an important medium for the transition towards carbon neutral factories due to its broad applicability within the factory including its use in electricity and heat generation and as a process gas or fuel. One of the main challenges is the identification of economically and environmentally suitable design scenarios such as for the entire value chain for hydrogen generation and application. For example the infrastructure for renewable electricity hydrogen generation hydrogen conversion (e.g. into synthetic fuels) storage and transport systems as well as application in the factory. Due to the high volatility of energy generation and the related dynamic interdependencies within a factory system a valid technical economic and environmental evaluation of benefits induced by hydrogen technologies can only be achieved using digital factory models. In this paper we present a framework to integrate hydrogen technologies into factory systems. This enables decision makers to identify promising measures according to their expected impact and collect data for appropriate factory modelling. Furthermore a concept for factory modelling and simulation is presented and demonstrated in a case study from the electronics industry assessing the use of hydrogen for decentralized power and heat generation.
No more items...