Applications & Pathways
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
On-Board Liquid Hydrogen Cold Energy Utilization System for a Heavy-Duty Fuel Cell Hybrid Truck
Aug 2021
Publication
In this paper a kind of on-board liquid hydrogen (LH2 ) cold energy utilization system for a heavy-duty fuel cell hybrid truck is proposed. Through this system the cold energy of LH2 is used for cooling the inlet air of a compressor and the coolant of the accessories cooling system sequentially to reduce the parasitic power including the air compressor water pump and radiator fan power. To estimate the cold energy utilization ratio and parasitic power saving capabilities of this system a model based on AMESim software was established and simulated under different ambient temperatures and fuel cell stack loads. The simulation results show that cold energy utilization ratio can keep at a high level except under extremely low ambient temperature and light load. Compared to the original LH2 system without cold energy utilization the total parasitic power consumption can be saved by up to 15% (namely 1.8 kW).
Study of the Permeation Flowrate of an Innovative Way to Store Hydrogen in Vehicles
Oct 2021
Publication
With the global warming of the planet new forms of energy are being sought as an alternative to fossil fuels. Currently hydrogen (H2) is seen as a strong alternative for fueling vehicles. However the major challenge in the use of H2 arises from its physical properties. An earlier study was conducted on the storage of H2 used as fuel in road vehicles powered by spark ignition engines or stacks of fuel cells stored under high pressure inside small spheres randomly packed in an envelope tank. Additionally the study evaluated the performance of this new storage system and compared it with other storage systems already applied by automakers in their vehicles. The current study aims to evaluate the H2 leaks from the same storage system when inserted in any road vehicle parked in conventional garages and to show the compliance of these leaks with European Standards provided that an appropriate choice of materials is made. The system’s compliance with safety standards was proved. Regarding the materials of each component of the storage system the best option from the pool of materials chosen consists of aluminum for the liner of the spheres and the envelope tank CFEP for the structural layer of the spheres and Si for the microchip.
Combination of b-Fuels and e-Fuels—A Technological Feasibility Study
Aug 2021
Publication
The energy supply in Austria is significantly based on fossil natural gas. Due to the necessary decarbonization of the heat and energy sector a switch to a green substitute is necessary to limit CO2 emissions. Especially innovative concepts such as power-to-gas establish the connection between the storage of volatile renewable energy and its conversion into green gases. In this paper different methanation strategies are applied on syngas from biomass gasification. The investigated syngas compositions range from traditional steam gasification sorption-enhanced reforming to the innovative CO2 gasification. As the producer gases show different compositions regarding the H2/COx ratio three possible methanation strategies (direct sub-stoichiometric and over-stoichiometric methanation) are defined and assessed with technological evaluation tools for possible future large-scale set-ups consisting of a gasification an electrolysis and a methanation unit. Due to its relative high share of hydrogen and the high technical maturity of this gasification mode syngas from steam gasification represents the most promising gas composition for downstream methanation. Sub-stoichiometric operation of this syngas with limited H2 dosage represents an attractive methanation strategy since the hydrogen utilization is optimized. The overall efficiency of the sub-stoichiometric methanation lies at 59.9%. Determined by laboratory methanation experiments a share of nearly 17 mol.% of CO2 needs to be separated to make injection into the natural gas grid possible. A technical feasible alternative avoiding possible carbon formation in the methanation reactor is the direct methanation of sorption-enhanced reforming syngas with an overall process efficiency in large-scale applications of 55.9%.
The Implications of Ambitious Decarbonisation of Heat and Road Transport for Britain’s Net Zero Carbon Energy Systems
Oct 2021
Publication
Decarbonisation of heating and road transport are regarded as necessary but very challenging steps on the pathway to net zero carbon emissions. Assessing the most efficient routes to decarbonise these sectors requires an integrated view of energy and road transport systems. Here we describe how a national gas and electricity transmission network model was extended to represent multiple local energy systems and coupled with a national energy demand and road transport model. The integrated models were applied to assess a range of technologies and policies for heating and transport where the UK’s 2050 net zero carbon emissions target is met. Overall annual primary energy use is projected to reduce by between 25% and 50% by 2050 compared to 2015 due to ambitious efficiency improvements within homes and vehicles. However both annual and peak electricity demands in 2050 are more than double compared with 2015. Managed electric vehicle charging could save 14TWh/year in gas-fired power generation at peak times and associated emissions whilst vehicle-to-grid services could provide 10GW of electricity supply during peak hours. Together managed vehicle charging and vehicle-to-grid supplies could result in a 16% reduction in total annual energy costs. The provision of fast public charging facilities could reduce peak electricity demand by 17GW and save an estimated £650 million annually. Although using hydrogen for heating and transport spreads the hydrogen network costs between homeowners and motorists it is still estimated to be more costly overall compared to an all-electric scenario. Bio-energy electricity generation plants with carbon capture and storage are required to drive overall energy system emissions to net zero utilisation of which is lowest when heating is electrified and road transport consists of a mix of electric and hydrogen fuel-cell vehicles. The analysis demonstrates the need for an integrated systems approach to energy and transport policies and for coordination between national and local governments.
An Adaptive Renewable Energy Plant (AREP) - To Power Local Premises and Vehicles with 100% Renewables
Aug 2021
Publication
An adaptive response renewable energy plant (AREP) that provides grid balancing services and XeV station fuelling services (where “X” is any type) using renewable energy located in urban centres is described. The AREP has its own primary renewable energy sources and adapts operation in the short term to changing levels of excess or deficient energy on LV and MV electricity grids. The AREP adaptively responds by (1) storing excess energy in batteries for the short term and in hydrogen tanks after energy conversion by electrolysers for the long term; (2) returning power to the grid from either the AREP’s own primary (electron-based) energy sources or batteries and/or from hydrogen via conversion in fuel cells; (3) providing electricity for fast charging BeVs and PHeVs and hydrogen for FCeVs; and (4) exporting excess stored energy as hydrogen to domestic markets. The AREP also adapts over the long term by predictive planning of charging capacity such that the type and capacity of renewable energy equipment is optimised for future operations. A key advantage of this AREP configuration is a flexible “plug and play” capability with modular extension of energy assets. If the AREP footprint is constrained interaction with neighbouring AREPs as a mini-VPP-AREP network can assist in balancing short-term operating requirements. The benefits of this grid balancing and XeV renewable energy filling station or AREP are environmental social and economic through efficient functionality of appropriately sized components. AREPs provide a net zero emissions electricity solution to an existing network with short and long-term storage options as well as a net zero emissions fuel alternative to the transport sector while leveraging existing infrastructure with minimal upfront CAPEX. AREPs can give the flexibility a grid needs to enable high levels of renewable installations while developing green hydrogen production.
Hydrogen Blending and the Gas Commercial Framework - Report on Conclusions of NIA study
Sep 2020
Publication
Blending hydrogen into the gas grid could be an important stepping stone during the transition to a sustainable net zero system. In particular it may: provide a significant and reliable source of demand for hydrogen producers supporting the investment case for hydrogen; provide learnings and incremental change towards what could potentially become a 100% hydrogen grid; and immediately decarbonise a portion of the gas flowing through the grid. Technical questions relating to hydrogen blending are being taken forward by the industry (e.g. through the HyDeploy project in relation to the maximum potential blend of hydrogen that can be accommodated without end user appliances needing to be altered or replaced). But if blending is to take place changes to commercial arrangements will be necessary as today these assume a relatively uniform gas quality. In particular the commercial framework will need to ensure that limits on the percentage of hydrogen that can safely be blended (currently expected to be around 20% by volume) are not exceeded. We have been commissioned by Cadent to undertake a Network Innovation Allowance (NIA) project to identify the changes required to the gas commercial framework that will enable hydrogen blending in the GB gas grid and to set out a roadmap for how these can be delivered. This report sets out our recommendations.
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
Dec 2018
Publication
Mass-produced off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines since the requirements are different. These include a high pressure ratio a low mass flow rate a high efficiency requirement and a compact size. From the established fuel cell types the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC) operating at around 80 ◦C. In this case an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. The results showed that the vehicle equipped with an E-turbocharger had higher performance than the vehicle equipped with a two-stage compressor in the aspects of electric system efficiency (+1.6%) and driving range (+3.7%); however for the same maximal output power the vehicle’s stack was 12.5% heavier and larger. Then due to the existence of the turbine the E-turbocharger led to higher performance than the single-stage compressor for the same stack size. The solid oxide fuel cell is also promising for transportation application especially for a use as range extender. The results show that a 24-kWh electric vehicle can increase its driving range by 252% due to a 5 kW solid oxide fuel cell (SOFC) stack and a gas turbine recovery system. The WLTP driving range depends on the charge cycle but with a pure hydrogen tank of 6.2 kg the vehicle can reach more than 600 km.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Promotion Effect of Hydrogen Addition in Selective Catalytic Reduction of Nitrogen Oxide Emissions from Diesel Engines Fuelled with Diesel-biodiesel-ethanol Blends
Nov 2021
Publication
Ethanol and palm oil biodiesel blended with diesel fuel have the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2) and can gradually decrease dependence on fossil fuels. However the combustion products from these fuels such as oxides of nitrogen (NOx) total hydrocarbons (THC) and particulate matter (PM) require to be examined and any beneficial or detrimental effect to the environment needs to be assessed. This study investigates the hydrocarbon selective catalyst reduction (HC-SCR) activities by the effect of combustion using renewable fuels (biodiesel-ethanol-diesel) blends and the effect of hydrogen addition to the catalyst with the various diesel engine operating conditions. Lower values rate of heat released were recorded as the ethanol fraction increases resulting in trade-off where lower NOx was produced while greater concentration of carbon monoxide (CO) and THC was measured in the exhaust. Consequently increasing the THC/NOx promoting the NOx reduction activity (up to 43%). Additionally the HC-SCR performance was greatly heightened when hydrogen was added into the catalyst and able to improve the NOx reduction activity up to 73%. The experiment demonstrated plausible alternatives to improve the HC-SCR performance through the aids from fuel blends and hydrogen addition.
Hydrogen Direct Injection: Optical Investigation of Premixed and Jet-guided Combustion Modes
Mar 2024
Publication
The classical approach to use hydrogen as a fuel for Internal Combustion Engines (ICEs) is premixed combustion. In order to avoid knocking and to limit NOx emissions very lean mixtures are employed thus resulting in a high boost pressure demand or low specific engine power. To overcome these limitations the possibility of a diesellike jet-guided combustion of hydrogen is explored. The approach is to ignite a directly injected hydrogen jet at its periphery by means of a conventional spark discharge followed by a diffusion-controlled combustion while injection remains active. An optically accessible Rapid Compression Expansion Machine (RCEM) is used to investigate ignition and combustion of underexpanded hydrogen jets in air by means of simultaneous Schlieren visualization and OH chemiluminescence. Different injection and ignition timing are investigated resulting in premixed partially premixed and diffusion-controlled (jet-guided) combustion conditions. The possibility of ignition and combustion of the hydrogen jets in diffusion-controlled conditions is investigated for different orientations of the incoming fuel jet with respect to spark location. The combustion tests are analyzed in terms of ignition success rate ignition delay reacting surface and heat release rate and an optimal orientation of the jet is assessed. The present study provides insights for optimizing hydrogen direct injection ignition and combustion for later application in ICEs.
A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells
Mar 2019
Publication
This paper presents a new model of fuel cells for two different modes of operation: constant fuel utilization control (constant stoichiometry condition) and constant fuel flow control (constant flow rate condition). The model solves the long-standing problem of mixing reversible and irreversible potentials (equilibrium and non-equilibrium states) in the Nernst voltage expression. Specifically a Nernstian gain term is introduced for the constant fuel utilization condition and it is shown that the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell. A Nernstian loss term accounts for an irreversibility for the constant fuel flow operation. Simulation results are presented. The model has been validated against experimental data from the literature.
Are Scenarios of Hydrogen Vehicle Adoption Optimistic? A Comparison with Historical Analogies
Nov 2015
Publication
There is a large literature exploring possible hydrogen futures using various modelling and scenario approaches. This paper compares the rates of transition depicted in that literature with a set of historical analogies. These analogies are cases in which alternative-fuelled vehicles have penetrated vehicle markets. The paper suggests that the literature has tended to be optimistic about the possible rate at which hydrogen vehicles might replace oil-based transportation. The paper compares 11 historical adoptions of alternative fuel vehicles with 24 scenarios from 20 studies that depict possible hydrogen futures. All but one of the hydrogen scenarios show vehicle adoption faster than has occurred for hybrid electric vehicles in Japan the most successful market for hybrids. Several scenarios depict hydrogen transitions occurring at a rate faster than has occurred in any of the historic examples. The paper concludes that scenarios of alternative vehicle adoption should include more pessimistic scenarios alongside optimistic ones.
Demonstration of a kW-scale Solid Oxide Fuel Cell-calciner for Power Generation and Production of Calcined Materials
Aug 2019
Publication
Carbonate looping (CaL) has been shown to be less energy-intensive when compared to mature carbon capture technologies. Further reduction in the efficiency penalties can be achieved by employing a more efficient source of heat for the calcination process instead of oxy-fuel combustion. In this study a kW-scale solid oxide fuel cell (SOFC)-integrated calciner was designed and developed to evaluate the technical feasibility of simultaneously generating power and driving the calcination process using the high-grade heat of the anode off-gas. Such a system can be integrated with CaL systems or employed as a negative-emission technology where the calcines are used to capture CO2 from the atmosphere. The demonstration unit consisted of a planar SOFC stack operating at 750 °C and a combined afterburner/calciner to combust hydrogen slip from the anode off-gas and thermally decompose magnesite dolomite and limestone. The demonstrator generated up to 2 kWelDC power achieved a temperature in the range of 530–550 °C at the inlet of the afterburner and up to 678 °C in the calciner which was sufficient to demonstrate full calcination of magnesite and partial calcination of dolomite. However in order to achieve the temperature required for calcination of limestone further scale-up and heat integration are needed. These results confirmed technical feasibility of the SOFC-calciner concept for production of calcined materials either for the market or for direct air capture (DAC).
Simulation-Assisted Determination of the Start-Up Time of a Polymer Electrolyte Fuel Cell
Nov 2021
Publication
Fuel starvation is a major cause of anode corrosion in low temperature polymer electrolyte fuel cells. The fuel cell start-up is a critical step as hydrogen may not yet be evenly distributed in the active area leading to local starvation. The present work investigates the hydrogen distribution and risk for starvation during start-up and after nitrogen purge by extending an existing computational fluid dynamic model to capture transient behavior. The results of the numerical model are compared with detailed experimental analysis on a 25 cm2 triple serpentine flow field with good agreement in all aspects and a required time step size of 1 s. This is two to three orders of magnitude larger than the time steps used by other works resulting in reasonably quick calculation times (e.g. 3 min calculation time for 1 s of experimental testing time using a 2 million element mesh).
Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios
Jan 2021
Publication
Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore four other scenarios with production cost investigate the impact of upstream supply chain cost and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was on average a better option. However at an early stage of hydrogen fuel penetration substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally in France hydrogen production matches population distribution in contrast to Germany which suffers from supply and demand disparity.
Alternative-energy-vehicles Deployment Delivers Climate, Air Quality, and Health Co-benefits when Coupled with Decarbonizing Power Generation in China
Aug 2021
Publication
China is the world’s largest carbon emitter and suffers from severe air pollution which results in approximately one million premature deaths/year. Alternative energy vehicles (AEVs) (electric hydrogen fuel cell and natural gas vehicles) can reduce carbon emissions and improve air quality. However climate air quality and health benefits of AEVs powered with deeply decarbonized power generation are poorly quantified. Here we quantitatively estimate the air quality health carbon emission and economic benefits of replacing internal combustion engine vehicles with various AEVs. We find co-benefits increase dramatically as the electricity grid decarbonizes and hydrogen is produced from non-fossil fuels. Relative to 2015 a conversion to AEVs using largely non-fossil power can reduce air pollution and associated premature mortalities and years of life lost by 329000 persons/year and 1611000 life years/year. Thus maximizing climate air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
What is the Energy Balance of Electrofuels Produced Through Power-to-fuel Integration with Biogas Facilities?
Nov 2021
Publication
The need to reduce the climate impact of the transport sector has led to an increasing interest in the utilisation of alternative fuels. Producing advanced fuels through the integration of anaerobic digestion and power-to-fuel technologies may offer a solution to reduce greenhouse gas emissions from difficult to decarbonise modes of transport such as heavy goods vehicles shipping and commercial aviation while also offering wider system benefits. This paper investigates the energy balance of power-to-fuel (power-to-methane power-to-methanol power-to-Fischer-Tropsch fuels) production integrated with a biogas facility co-digesting grass silage and dairy slurry. Through the integration of power-to-methane with anaerobic digestion an increase in system gross energy of 62.6% was found. Power-to-methanol integration with the biogas system increased the gross energy by 50% while power-to-Fischer-Tropsch fuels increased the gross energy yield by 32%. The parasitic energy demand for hydrogen production was highlighted as the most significant factor for integrated biogas and power-to-fuel facilities. Consuming electricity that would otherwise have been curtailed and optimising the anaerobic digestion process were identified as key to improving the energetic efficiency of all system configurations. However the broad cross-sectoral benefits of the overarching cascading circular economy system such as providing electrical grid stability and utilising waste resources must also be considered for a comprehensive perspective on the integration of anaerobic digestion and power-to-fuel.
An Optimal Fuzzy Logic-Based Energy Management Strategy for a Fuel Cell/Battery Hybrid Power Unmanned Aerial Vehicle
Feb 2022
Publication
With the development of high-altitude and long-endurance unmanned aerial vehicles (UAVs) optimization of the coordinated energy dispatch of UAVs’ energy management systems has become a key target in the research of electric UAVs. Several different energy management strategies are proposed herein for improving the overall efficiency and fuel economy of fuel cell/battery hybrid electric power systems (HEPS) of UAVs. A rule-based (RB) energy management strategy is designed as a baseline for comparison with other strategies. An energy management strategy (EMS) based on fuzzy logic (FL) for HEPS is presented. Compared with classical rule-based strategies the fuzzy logic control has better robustness to power fluctuations in the UAV. However the proposed FL strategy has an inherent defect: the optimization performances will be determined by the heuristic method and the past experiences of designers to a great extent rather than a specific cost function of the algorithm itself. Thus the paper puts forward an improved fuzzy logic-based strategy that uses particle swarm optimization (PSO) to track the optimal thresholds of membership functions and the equivalent hydrogen consumption minimization is considered as the objective function. Using a typical 30 min UAV mission profile all the proposed EMS were verified by simulations and rapid controller prototype (RCP) experiments. Comprehensive comparisons and analysis are presented by evaluating hydrogen consumption system efficiency and voltage bus stability. The results show that the PSO-FL algorithm can further improve fuel economy and achieve superior overall dynamic performance when controlling a UAV’s fuel-cell powertrain.
Numerical Simulation of Solid Oxide Fuel Cells Comparing Different Electrochemical Kinetics
Mar 2021
Publication
Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution for example CO2 NOx SOx and particles. Still numerous issues hindered the large‐scale commercialization of fuel cell at a large scale such as fuel storage mechanical failure catalytic degradation electrode poisoning from fuel and air for example lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer electrochemical reactions fluid flow energy transport and species transport. The Butler‐Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation‐ and diffusion‐controlled Butler‐Volmer equation. Three different electrode reaction models are examined in the study which is named case 1 case 2 and case 3 respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion‐controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte which demonstrates the non‐linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.
Renewable Energy Policies in a Time of Transition: Heating and Cooling
Nov 2020
Publication
Heating and cooling accounts for almost half of global energy consumption. With most of this relying fossil fuels however it contributes heavily to greenhouse gas emissions and air pollution. In parts of the world lacking modern energy access meanwhile inefficient biomass use for cooking also harms people’s health damages the environment and reduces social well-being.
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
- Setting specific targets and developing an integrated long-term plan for the decarbonisation of heating and cooling in all end-uses including buildings industry and cooking and productive uses in areas with limited energy access.
- Creating a level playing field by phasing out fossil-fuel subsidies and introducing other fiscal policies to internalise environmental and socio-economic costs.
- Combining the electrification of heating and cooling with increasingly cost-competitive renewable power generation scaling up solar and wind use and boosting system flexibility via energy storage heat pumps and efficient electric appliances.
- Harnessing existing gas networks to accommodate renewable gases such as biogas and green hydrogen.
- Introducing standards certification and testing policies to promote the sustainable use of biomass combining efficient systems and bioenergy solutions such as pellets briquettes bioethanol or anaerobic digestion.
- Reducing investment risks for geothermal exploration and scaling up direct use of geothermal heat.
- Improving district heating and cooling networks through energy efficiency measures and the integration of low-temperature solar thermal geothermal and other renewable-based heat sources.
- Supporting clean cooking and introducing renewable-based food drying in areas lacking energy access with a combination of financing mechanisms capacity building and quality standards aimed at improving livelihoods and maximising socio-economic benefits.
Hydrogen for Transport
Oct 2019
Publication
The Australian transport sector is under increasing pressure to reduce carbon emissions whilst also managing a fuel supply chain that relies heavily on foreign import partners.
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
Available from the Energy Ministers Website link here
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
Available from the Energy Ministers Website link here
Environmental Sustainability of Renewable Hydrogen in Comparison with Conventional Cooking Fuels
Jun 2018
Publication
Hydrogen could be used as a ‘cleaner’ cooking fuel particularly in communities that rely on biomass and fossil fuels to reduce local pollution and related health effects. However hydrogen must be produced using sustainable feedstocks and energy sources to ensure that local impacts are not reduced at the expense of other impacts generated elsewhere in the life cycle. To this end this paper evaluates life cycle environmental impacts of renewable hydrogen produced in a proton-exchange membrane electrolyser using solar energy. The aim of the study is to find out if hydrogen produced in this system and used as a cooking fuel is environmentally sustainable in comparison with conventional cooking fuels typically used in developing countries such as liquefied petroleum gas (LPG) charcoal and firewood. The results suggest that hydrogen would reduce the climate change impact by 2.5–14 times to 0.04 kg CO2 eq./MJ compared to firewood (0.10 kg CO2 eq./MJ) and LPG (0.57 kg CO2 eq./MJ). Some other impacts would also be lower by 6%–35 times including depletion of fossil fuels summer smog and health effects from emissions of particulates both locally and across the rest of the life cycle. However some other impacts would increase by 6%–6.7 times such as depletion of metals and freshwater and marine ecotoxicity. These are mainly due to the solar photovoltaic panels used to generate power for the electrolyser. In terms of the local impacts the study suggests that hydrogen would reduce local pollution and related health impacts by 8%–35 times. However LPG is still environmentally a better option than hydrogen for most of the impacts both at the point of use and on a life cycle basis.
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads
Apr 2022
Publication
Energy requirements push the shipping industry towards more energy-efficient ships while environmental regulations influence the development of environmentally friendly ships by replacing fossil fuels with alternatives. Current mathematical models for ship energy efficiency which set the analysis boundaries at the level of the ship power system are not able to consider alternative fuels as a powering option. In this paper the energy efficiency and emissions index are formulated for ships with alternative power systems considering three different impacts on the environment (global warming acidification and eutrophication) and realistic fuel pathways and workloads. Besides diesel applications of alternative powering options such as electricity methanol liquefied natural gas hydrogen and ammonia are considered. By extending the analysis boundaries from the ship power system to the complete fuel cycle it is possible to compare different ships within the considered fleet or a whole shipping sector from the viewpoint of energy efficiency and environmental friendliness. The applicability of the model is illustrated on the Croatian ro-ro passenger fleet. A technical measure of implementation of alternative fuels in combination with an operational measure of speed reduction results in an even greater emissions reduction and an increase in energy efficiency. Analysis of the impact of voluntary speed reduction for ships with different power systems resulted in the identification of the optimal combination of alternative fuel and speed reduction by a specific percentage from the ship design speed.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Advancing Hydrogen: Learning from 19 Plans to Advance Hydrogen from Across the Globe
Jul 2019
Publication
Hydrogen as the International Energy Agency (IEA 2019) notes has experienced a number of ‘false dawns’ - in the 1970s 1990s and early 2000s - which subsequently faded. However this time there is reason to think that hydrogen will play a substantial role in the global energy system. The most important factor driving this renewed focus is the ability of hydrogen to support deep carbon abatement by assisting in those sectors where abatement with non-carbon electricity has so far proven difficult. Hydrogen can also address poor urban air quality energy security and provides a good means of shifting energy supply between regions and between seasons.
In response to these changed conditions many countries states and even cities have developed hydrogen strategies while various interest groups have developed industry roadmaps which fulfil a similar role.
This report summarises 19 hydrogen strategies and aims to help readers understand how nations regions and industries are thinking about opportunities to become involved in this emerging industry. Its prime purpose is to act as a resource to assist those involved in long-term energy policy planning in Australia including those involved in the development of Australia’s hydrogen strategy
The full report can be read on the Energy Network website at this link here
In response to these changed conditions many countries states and even cities have developed hydrogen strategies while various interest groups have developed industry roadmaps which fulfil a similar role.
This report summarises 19 hydrogen strategies and aims to help readers understand how nations regions and industries are thinking about opportunities to become involved in this emerging industry. Its prime purpose is to act as a resource to assist those involved in long-term energy policy planning in Australia including those involved in the development of Australia’s hydrogen strategy
The full report can be read on the Energy Network website at this link here
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
A Study on Electrofuels in Aviation
Feb 2018
Publication
With the growth of aviation traffic and the demand for emission reduction alternative fuels like the so-called electrofuels could comprise a sustainable solution. Electrofuels are understood as those that use renewable energy for fuel synthesis and that are carbon-neutral with respect to greenhouse gas emission. In this study five potential electrofuels are discussed with respect to the potential application as aviation fuels being n-octane methanol methane hydrogen and ammonia and compared to conventional Jet A-1 fuel. Three important aspects are illuminated. Firstly the synthesis process of the electrofuel is described with its technological paths its energy efficiency and the maturity or research need of the production. Secondly the physico-chemical properties are compared with respect to specific energy energy density as well as those properties relevant to the combustion of the fuels i.e. autoignition delay time adiabatic flame temperature laminar flame speed and extinction strain rate. Results show that the physical and combustion properties significantly differ from jet fuel except for n-octane. The results describe how the different electrofuels perform with respect to important aspects such as fuel and air mass flow rates. In addition the results help determine mixture properties of the exhaust gas for each electrofuel. Thirdly a turbine configuration is investigated at a constant operating point to further analyze the drop-in potential of electrofuels in aircraft engines. It is found that electrofuels can generally substitute conventional kerosene-based fuels but have some downsides in the form of higher structural loads and potentially lower efficiencies. Finally a preliminary comparative evaluation matrix is developed. It contains specifically those fields for the different proposed electrofuels where special challenges and problematic points are seen that need more research for potential application. Synthetically-produced n-octane is seen as a potential candidate for a future electrofuel where even a drop-in capability is given. For the other fuels more issues need further research to allow the application as electrofuels in aviation. Specifically interesting could be the combination of hydrogen with ammonia in the far future; however the research is just at the beginning stage.
Effects of Quantum Confinement of Hydrogen in Nanocavities – Experimental INS Results and New Insights
Jun 2020
Publication
Current developments of non-relativistic quantum mechanics appear to predict and reveal counter-intuitive dynamical effects of hydrogen in nanostructured materials that are of considerable importance for basic research as well as for technological applications. In this review the experimental focus is on H2O and H molecules in carbon nanotubes and other nanocavities that have been experimentally investigated using the well-established technique of incoherent inelastic neutron scattering (INS). For instance the momentum and energy transfers as obtained from the commonly used standard data analysis techniques from a
(I) H2 molecule in a C-nanotube resulting in a roto-translational motion along the nanotube axis seems to (1) either violate the standard conservation laws or (2) to attribute to the H molecule undergoing translation the effective mass a.m.u. (atomic mass units) instead of the expected 2 a.m.u. A similar striking anomalous effect has been found in the neutron-H scattering from the
(II) H2O molecules in nano-channels of some solid materials in which O-H stretching vibrations along the channel axis are created.
The results of this scattering process seem to once again either violate the standard conservation laws or to attribute to the effective mass of the struck H2 molecule as a.m.u. instead of the expected value of 1 a.m.u. We show that these counterintuitive observations from the INS studies have no conventional interpretation within the standard non-relativistic scattering theory. However they can be qualitatively interpreted “from first principles” within the framework of modern theories of
(III) time-symmetric quantum dynamics as provided by the weak values (WV) and two-state- vector formalism (TSVF)
and/or
(IV) quantum correlations especially quantum discord (QD) and quantum thermodynamics (QTD).
The theoretical analysis provides an intuitive understanding of the experimental results gives strong evidence that the nano-structured cavities do represent quantum systems which participate significantly in the dynamics of the neutron-H scattering and surprisingly shows that new physical information can be derived from the experimental data. This latter point may also have far-reaching consequences for technology and material sciences (e.g. fuel cells H storage materials etc.). Moreover novel insights into the short-lived quantum dynamics and/or quantum information theory can be gained.
(I) H2 molecule in a C-nanotube resulting in a roto-translational motion along the nanotube axis seems to (1) either violate the standard conservation laws or (2) to attribute to the H molecule undergoing translation the effective mass a.m.u. (atomic mass units) instead of the expected 2 a.m.u. A similar striking anomalous effect has been found in the neutron-H scattering from the
(II) H2O molecules in nano-channels of some solid materials in which O-H stretching vibrations along the channel axis are created.
The results of this scattering process seem to once again either violate the standard conservation laws or to attribute to the effective mass of the struck H2 molecule as a.m.u. instead of the expected value of 1 a.m.u. We show that these counterintuitive observations from the INS studies have no conventional interpretation within the standard non-relativistic scattering theory. However they can be qualitatively interpreted “from first principles” within the framework of modern theories of
(III) time-symmetric quantum dynamics as provided by the weak values (WV) and two-state- vector formalism (TSVF)
and/or
(IV) quantum correlations especially quantum discord (QD) and quantum thermodynamics (QTD).
The theoretical analysis provides an intuitive understanding of the experimental results gives strong evidence that the nano-structured cavities do represent quantum systems which participate significantly in the dynamics of the neutron-H scattering and surprisingly shows that new physical information can be derived from the experimental data. This latter point may also have far-reaching consequences for technology and material sciences (e.g. fuel cells H storage materials etc.). Moreover novel insights into the short-lived quantum dynamics and/or quantum information theory can be gained.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
South Korea’s Big Move to Hydrogen Society
Nov 2020
Publication
Extensive energy consumption has become a major concern due to increase of greenhouse gas emissions and global warming. Hence hydrogen has attracted attention as a green fuel with zero carbon emission for green transportation through production of electric vehicles with hydrogen fuel cells. South Korea has launched a hydrogen society policy with the objective of expanding production of hydrogen from renewable energy sources. The hydrogen economy will play a critical role in reducing atmospheric pollution and global arming. However new development of infrastructure for hydrogen refuelling and increasing awareness of the hydrogen economy is required together with reduced prices of hydrogen-driven vehicles that are promising options for a sustainable green hydrogen economy.
Hydrogen Implications for Gas Network Operators
Jan 2021
Publication
Europe has built up one of the best gas distribution infrastructures in the world. There’s one problem though. It distributes natural gas a fuel that we will hardly be able to use if we’re to reach our net zero targets. Can we use the infrastructure instead for clean hydrogen – either blended with natural gas as a stepping stone or with pure hydrogen in the future? In this episode we put aside discussion on the extent to which we should do this – and focus on whether or not we can do this and what’s involved in doing so.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Strategies for Joint Procurement of Fuel Cell Buses: A Study for the Fuel Cells and Hydrogen Joint Undertaking
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Power-to-liquid via Synthesis of Methanol, DME or Fischer–Tropsch-fuels: A Review
Jul 2020
Publication
The conversion of H2 and CO2 to liquid fuels via Power-to-Liquid (PtL) processes is gaining attention. With their higher energy densities compared to gases the use of synthetic liquid fuels is particularly interesting in hard-to-abate sectors for which decarbonisation is difficult. However PtL poses new challenges for the synthesis: away from syngas-based continuously run large-scale plants towards more flexible small-scale concepts with direct CO2-utilisation. This review provides an overview of state of the art synthesis technologies as well as current developments and pilot plants for the most prominent PtL routes for methanol DME and Fischer–Tropsch-fuels. It should serve as a benchmark for future concepts guide researchers in their process development and allow a technological evaluation of alternative reactor designs. In the case of power-to-methanol and power-to-FT-fuels several pilot plants have been realised and the first commercial scale plants are planned or already in operation. In comparison power-to-DME is much less investigated and in an earlier stage of development. For methanol the direct CO2 hydrogenation offers advantages through less by-product formation and lower heat development. However increased water formation and lower equilibrium conversion necessitate new catalysts and reactor designs. While DME synthesis offers benefits with regards to energy efficiency operational experience from laboratory tests and pilot plants is still missing. Furthermore four major process routes for power-to-DME are possible requiring additional research to determine the optimal concept. In the case of Fischer–Tropsch synthesis catalysts for direct CO2 utilisation are still in an early stage. Consequently today’s Fischer–Tropsch-based PtL requires a shift to syngas benefiting from advances in co-electrolysis and reverse water-gas shift reactor design.
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
A Review on Synthesis of Methane as a Pathway for Renewable Energy Storage With a Focus on Solid Oxide Electrolytic Cell-Based Processes
Sep 2020
Publication
Environmental issues related to global warming are constantly pushing the fossil fuel-based energy sector toward an efficient and economically viable utilization of renewable energy. However challenges related to renewable energy call for alternative routes of its conversion to fuels and chemicals by an emerging Power-to-X approach. Methane is one such high-valued fuel that can be produced through renewables-powered electrolytic routes. Such routes employ alkaline electrolyzers proton exchange membrane electrolyzers and solid oxide electrolyzers commonly known as solid oxide electrolysis cells (SOECs). SOECs have the potential to utilize the waste heat generated from exothermic methanation reactions to reduce the expensive electrical energy input required for electrolysis. A further advantage of an SOEC lies in its capacity to co-electrolyze both steam and carbon dioxide as opposed to only water and this inherent capability of an SOEC can be harnessed for in situ synthesis of methane within a single reactor. However the concept of in situ methanation in SOECs is still at a nascent stage and requires significant advancements in SOEC materials particularly in developing a cathode electrocatalyst that demonstrates activity toward both steam electrolysis and methanation reactions. Equally important is the appropriate reactor design along with optimization of cell operating conditions (temperature pressure and applied potential). This review elucidates those developments along with research and development opportunities in this space. Also presented here is an efficiency comparison of different routes of synthetic methane production using SOECs in various modes that is as a source of hydrogen syngas and hydrogen/carbon dioxide mixture and for in situ methane synthesis.
Perspectives on Cathodes for Protonic Ceramic Fuel Cells
Jun 2021
Publication
Protonic ceramic fuel cells (PCFCs) are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility unnecessity of expensive noble metals for the electrocatalyst and no dilution of the fuel electrode due to water formation. Nevertheless the lower operating temperature in comparison to classic solid oxide fuel cells places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors oxide-ionic–electronic conductors triple-conducting oxides and composite electrodes composed of oxides from two of the other categories. Here we review the relatively short history of PCFC cathode research discussing trends highlights and recent progress. Current understanding of reaction mechanisms is also discussed.
Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals
Apr 2021
Publication
This review paper examines the possible pathways and possible technologies available that will help the shipping sector achieve the International Maritime Organization’s (IMO) deep decarbonization targets by 2050. There has been increased interest from important stakeholders regarding deep decarbonization evidenced by market surveys conducted by Shell and Deloitte. However deep decarbonization will require financial incentives and policies at an international and regional level given the maritime sector’s ~3% contribution to green house gas (GHG) emissions. The review paper based on research articles and grey literature discusses technoeconomic problems and/or benefits for technologies that will help the shipping sector achieve the IMO’s targets. The review presents a discussion on the recent literature regarding alternative fuels (nuclear hydrogen ammonia methanol) renewable energy sources (biofuels wind solar) the maturity of technologies (fuel cells internal combustion engines) as well as technical and operational strategies to reduce fuel consumption for new and existing ships (slow steaming cleaning and coating waste heat recovery hull and propeller design). The IMO’s 2050 targets will be achieved via radical technology shift together with the aid of social pressure financial incentives regulatory and legislative reforms at the local regional and international level.
Assessing Uncertainties of Life-Cycle CO2 Emissions Using Hydrogen Energy for Power Generation
Oct 2021
Publication
Hydrogen and its energy carriers such as liquid hydrogen (LH2) methylcyclohexane (MCH) and ammonia (NH3) are essential components of low-carbon energy systems. To utilize hydrogen energy the complete environmental merits of its supply chain should be evaluated. To understand the expected environmental benefit under the uncertainty of hydrogen technology development we conducted life-cycle inventory analysis and calculated CO2 emissions and their uncertainties attributed to the entire supply chain of hydrogen and NH3 power generation (co-firing and mono-firing) in Japan. Hydrogen was assumed to be produced from overseas renewable energy sources with LH2/MCH as the carrier and NH3 from natural gas or renewable energy sources. The Japanese life-cycle inventory database was used to calculate emissions. Monte Carlo simulations were performed to evaluate emission uncertainty and mitigation factors using hydrogen energy. For LH2 CO2 emission uncertainty during hydrogen liquefaction can be reduced by using low-carbon fuel. For MCH CO2 emissions were not significantly affected by power consumption of overseas processes; however it can be reduced by implementing low-carbon fuel and waste-heat utilization during MCH dehydrogenation. Low-carbon NH3 production processes significantly affected power generation whereas carbon capture and storage during NH3 production showed the greatest reduction in CO2 emission. In conclusion reducing CO2 emissions during the production of hydrogen and NH3 is key to realize low-carbon hydrogen energy systems.
Ultrasonic-assisted Catalytic Transfer Hydrogenation for Upgrading Pyrolysis-oil
Feb 2021
Publication
Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g. pyrolysis and hydrogenation) and economically unsustainable thus more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process including biomass conversion and bio-oil upgrading using mixed fast and slow pyrolysis conversion pathway as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH bio-oil molecular bonds were broken and restructured via the phenomena of cavitation rarefaction and hydrogenation with the resulting product composition investigated using ultimate analysis and spectroscopy. Additionally an in-line characterization approach is proposed using near-infrared spectroscopy calibrated by multivariate analysis and modelling. The results indicate the potentiality of ultrasonic cavitation catalytic transfer hydrogenation and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
No more items...