Applications & Pathways
Fuel Cell Electric Vehicles and Hydrogen Balancing 100 Percent Renewable and Integrated National Transportation and Energy Systems
Feb 2021
Publication
Future national electricity heating cooling and transport systems need to reach zero emissions. Significant numbers of back-up power plants as well as large-scale energy storage capacity are required to guarantee the reliability of energy supply in 100 percent renewable energy systems. Electricity can be partially converted into hydrogen which can be transported via pipelines stored in large quantities in underground salt caverns to overcome seasonal effects and used as electricity storage or as a clean fuel for transport. The question addressed in this paper is how parked and grid-connected hydrogen-fuelled Fuel Cell Electric Vehicles might balance 100 per cent renewable electricity heating cooling and transport systems at the national level in Denmark Germany Great Britain France and Spain? Five national electricity heating cooling and transport systems are modeled for the year 2050 for the five countries assuming only 50 percent of the passenger cars to be grid-connected Fuel Cell Electric Vehicles the remaining Battery Electric Vehicles. The grid-connected Fuel Cell Electric Vehicle fleet can always balance the energy systems and their usage is low having load factors of 2.1–5.5 percent corresponding to an average use of 190–480 h per car per year. At peak times occurring only a few hours per year 26 to 43 percent of the grid-connected Fuel Cell Electric Vehicle are required and in particular for energy systems with high shares of solar energy such as Spain balancing by grid-connected Fuel Cell Electric Vehicles is mainly required during the night which matches favorably with driving usage.
Mapping Australia's Hydrogen Future and release of the Hydrogen Economic Fairways Tool
Apr 2021
Publication
Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas) transportation (replacing petrol and diesel) and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted.
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
HYDRIDE4MOBILITY: An EU HORIZON 2020 Project on Hydrogen Powered Fuel Cell Utility Vehicles Using Metal Hydrides in Hydrogen Storage and Refuelling Systems
Feb 2021
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Vladimir Linkov,
Sivakumar Pasupathi,
Moegamat Wafeeq Davids,
Gojmir Radica,
Roman V. Denys,
Jon Eriksen,
José Bellosta von Colbe,
Klaus Taube,
Giovanni Capurso,
Martin Dornheim,
Fahmida Smith,
Delisile Mathebula,
Dana Swanepoel,
Suwarno Suwarno and
Ivan Tolj
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells together with the systems for their refuelling at industrial customers facilities. For these applications high specific weight of the metallic hydrides has an added value as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level simplification of the design and reducing the system cost together with improvement of the efficiency of system “MH store-FC” is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway Germany Croatia) and two partner countries (South Africa and Indonesia).<br/>The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.<br/>This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).
Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator
Nov 2020
Publication
In this article the solution based on hydrogen generation to increase the flexibility of energy storage systems is proposed. Operating characteristics of a hydrogen generator with integrated electrical energy storage and a photovoltaic installation were determined. The key role of the electricity storage in the proposed system was to maintain the highest operating efficiency related to the nominal parameters of the hydrogen generator. The hydrogen generators achieved the highest energy efficiency for the nominal operating point at the highest power output. Lead-acid batteries were used to ensure the optimal operating conditions for the hydrogen generator supplied with renewable energy throughout the day. The proposed system reduces significantly the hydrogen generator nominal power and devices in system operate in such a way to improve their efficiency and durability. The relations between individual components and their constraints were determined. The proposed solution is fully in-line with previously investigated technologies for improving grid stability and can help incorporate renewable energy sources to increase the sustainability of the energy sector and green hydrogen production.
Hydrogen from Natural Gas – The Key to Deep Decarbonisation
Jul 2019
Publication
This Discussion Paper was commissioned by Zukunft ERDGAS to contribute to the debate concerning the deep decarbonisation of the European energy sector required to meet the Paris Agreement targets. Previous discussion papers have put forward decarbonisation pathways that rely heavily on ‘All-Electric’ solutions. These depend predominantly on renewable electricity to deliver decarbonisation of all sectors. This paper offers an alternative to an ‘All-Electric’ solution by building an alternative pathway that allows the inclusion of gas based technologies alongside the ‘All-Electric’ pathway technologies. The new pathway demonstrates that hydrogen from natural gas can be an essential complement to renewable electricity. The pathway also considers the benefits of utilising methane pyrolysis technology in Europe to produce zero carbon hydrogen.
Read the full report at this link
Read the full report at this link
Scottish Offshore Wind to Green Hydrogen Opportunity Assessment
Dec 2020
Publication
Initial assessment of Scotland’s opportunity to produce green hydrogen from offshore wind
Summary of Key Findings
Summary of Key Findings
- Scotland has an abundant offshore wind resource that has the potential to be a vital component in our net zero transition. If used to produce green hydrogen offshore wind can help abate the emissions of historically challenging sectors such as heating transport and industry.
- The production of green hydrogen from offshore wind can help overcome Scotland’s grid constraints and unlock a massive clean power generation resource creating a clean fuel for Scottish industry and households and a highly valuable commodity to supply rapidly growing UK and European markets.
- The primary export markets for Scottish green hydrogen are expected to be in Northern Europe (Germany Netherlands & Belgium). Strong competition to supply these markets is expected to come from green hydrogen produced from solar energy in Southern Europe and North Africa.
- Falling wind and electrolyser costs will enable green hydrogen production to be cost-competitive in the key transport and heat sectors by 2032. Strategic investment in hydrogen transportation and storage is essential to unlocking the economic opportunity for Scotland.
- Xodus’ analysis supports a long-term outlook of LCoH falling towards £2/kg with an estimated reference cost of £2.3 /kg in 2032 for hydrogen delivered to shore.
- Scotland has extensive port and pipeline infrastructure that can be repurposed for hydrogen export to the rest of UK and to Europe. Pipelines from the ‘90s are optimal for this purpose as they are likely to retain acceptable mechanical integrity and have a metallurgy better suited to hydrogen service. A more detailed assessment of export options should be performed to provide a firm foundation for early commercial green hydrogen projects.
- There is considerable hydrogen supply chain overlap with elements of parallel sectors most notably the oil and gas offshore wind and subsea engineering sectors. Scotland already has a mature hydrocarbon supply chain which is engaged in supporting green hydrogen. However a steady pipeline of early projects supported by a clear financeable route to market will be needed to secure this supply chain capability through to widescale commercial deployment.
- There are gaps in the Scottish supply chain in the areas of design manufacture and maintenance of hydrogen production storage and transportation systems. Support including apprenticeships will be needed to develop indigenous skills and capabilities in these areas.
- The development of green hydrogen from offshore wind has the potential to create high value jobs a significant proportion which are likely to be in remote rural/coastal communities located close to offshore wind resources. These can serve as an avenue for workers to redeploy and develop skills learned from oil and gas in line with Just Transition principles.
Global Energy Transformation: A Roadmap to 2050
Apr 2019
Publication
Dolf Gielen,
Ricardo Gorini,
Nicholas Wagner,
Rodrigo Leme,
Laura Gutierrez,
Gayathri Prakash,
Elisa Asmelash,
Luis Janeiro,
Giacomo Gallina,
Guilia Vale,
Lorenzo Sani,
Xavier Garcia Casals,
Rabia Ferroukhi,
Bishal Parajuli,
Jinlei Feng,
Eva Alexandri,
Unnada Chewpreecha,
Mary Goldman,
Sophie Heald,
Jon Stenning,
Hector Pollitt,
Celia García-Baños and
Michael Renner
Increased use of renewable energy combined with intensified electrification could prove decisive for the world to meet key climate goals by 2050. This study from the International Renewable Energy Agency (IRENA) highlights immediately deployable cost-effective options for countries to fulfil climate commitments and limit the rise of global temperatures. The envisaged energy transformation would also reduce net costs and bring significant socio-economic benefits such as increased economic growth job creation and overall welfare gains.<br/>The report – the second under the Global Energy Transformation banner – expands IRENA’s comprehensive roadmap which examines technology pathways and policy implications to ensure a sustainable energy future. Ramping up electricity to over half of the global energy mix (up from one-fifth currently) in combination with renewables would reduce the use of fossil fuels responsible for most greenhouse-gas emissions.
The European Green Deal
Dec 2019
Publication
Climate change and environmental degradation are an existential threat to Europe and the world. To overcome these challenges Europe needs a new growth strategy that will transform the Union into a modern resource-efficient and competitive economy where
The European Green Deal is our plan to make the EU's economy sustainable. We can do this by turning climate and environmental challenges into opportunities and making the transition just and inclusive for all
The European Green Deal provides an action plan to
The EU aims to be climate neutral in 2050. We proposed a European Climate Law to turn this political commitment into a legal obligation.
Reaching this target will require action by all sectors of our economy including
The EU will also provide financial support and technical assistance to help those that are most affected by the move towards the green economy. This is called the Just Transition Mechanism. It will help mobilise at least €100 billion over the period 2021-2027 in the most affected regions.
- there are no net emissions of greenhouse gases by 2050
- economic growth is decoupled from resource use
- no person and no place is left behind
The European Green Deal is our plan to make the EU's economy sustainable. We can do this by turning climate and environmental challenges into opportunities and making the transition just and inclusive for all
The European Green Deal provides an action plan to
- boost the efficient use of resources by moving to a clean circular economy
- restore biodiversity and cut pollution
The EU aims to be climate neutral in 2050. We proposed a European Climate Law to turn this political commitment into a legal obligation.
Reaching this target will require action by all sectors of our economy including
- investing in environmentally-friendly technologies
- supporting industry to innovate
- rolling out cleaner cheaper and healthier forms of private and public transport
- decarbonising the energy sector
- ensuring buildings are more energy efficient
- working with international partners to improve global environmental standards
The EU will also provide financial support and technical assistance to help those that are most affected by the move towards the green economy. This is called the Just Transition Mechanism. It will help mobilise at least €100 billion over the period 2021-2027 in the most affected regions.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
Direct Ammonia Low-temperature Symmetrical Solid Oxide Fuel Cells with Composite Semiconductor Electrolyte
Jan 2022
Publication
In this work a low-temperature symmetrical solid oxide fuel cell with Ni-NCAL|SDC/NCAL|Ni-NCAL (70 SDC:30 NCAL) configuration was successfully constructed by a simple dry press method. At 500 and 550 ◦C the peak power densities of the cell in ammonia were 501 and 755 mW cm− 2 and in hydrogen were 670 and 895 mW cm− 2 respectively. EIS data showed that the Rp values of the cell in ammonia and hydrogen at 550 ◦C were 0.250 and 0.246 Ω cm− 2 respectively indicating the excellent catalytic activity of the Ni-NCAL electrode toward ammonia decomposition and hydrogen oxidation. The different cell output can be ascribed to additional ammonia decomposition steps compared to hydrogen. The noticeable reaction product on the surface of the Ni foam was detrimental to ammonia decomposition. In summary a symmetrical cell with SDC/NCAL semi-conductor electrolyte and Ni-NCAL electrodes exhibited higher electrochemical performance at low temperature than the results reported to date. Therefore higher electrochemical performance can be expected from this cell configuration with more efficient ammonia decomposition catalysts.
A Dynamic Performance Diagnostic Method Applied to Hydrogen Powered Aero Engines Operating under Transient Conditions
Apr 2022
Publication
At present aero engine fault diagnosis is mainly based on the steady-state condition at the cruise phase and the gas path parameters in the entire flight process are not effectively used. At the same time high quality steady-state monitoring measurements are not always available and as a result the accuracy of diagnosis might be affected. There is a recognized need for real-time performance diagnosis of aero engines operating under transient conditions which can improve their condition-based maintenance. Recent studies have demonstrated the capability of the sequential model-based diagnostic method to predict accurately and efficiently the degradation of industrial gas turbines under steady-state conditions. Nevertheless incorporating real-time data for fault detection of aero engines that operate in dynamic conditions is a more challenging task. The primary objective of this study is to investigate the performance of the sequential diagnostic method when it is applied to aero engines that operate under transient conditions while there is a variation in the bypass ratio and the heat soakage effects are taken into consideration. This study provides a novel approach for quantifying component degradation such as fouling and erosion by using an adapted version of the sequential diagnostic method. The research presented here confirms that the proposed method could be applied to aero engine fault diagnosis under both steady-state and dynamic conditions in real-time. In addition the economic impact of engine degradation on fuel cost and payload revenue is evaluated when the engine under investigation is using hydrogen. The proposed method demonstrated promising diagnostic results where the maximum prediction errors for steady state and transient conditions are less than 0.006% and 0.016% respectively. The comparison of the proposed method to a benchmark diagnostic method revealed a 15% improvement in accuracy which can have great benefit when considering that the cost attributed to degradation can reach up to $702585 for 6000 flight cycles of a hydrogen powered aircraft fleet. This study provides an opportunity to improve our understanding of aero engine fault diagnosis in order to improve engine reliability availability and efficiency by online health monitoring.
Towards Climate Resilient Urban Energy Systems: A Review
Jun 2020
Publication
Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This review provides an overview of and insight into the progress achieved in the energy sector to adapt to climate change focusing on the climate resilience of urban energy systems. The state-of-the-art methodology to assess impacts of climate change including extreme events and uncertainties on the design and performance of energy systems is described and discussed. Climate resilience is an emerging concept that is increasingly used to represent the durability and stable performance of energy systems against extreme climate events. However it has not yet been adequately explored and widely used as its definition has not been clearly articulated and assessment is mostly based on qualitative aspects. This study reveals that a major limitation in the state-of-the-art is the inadequacy of climate change adaptation approaches in designing and preparing urban energy systems to satisfactorily address plausible extreme climate events. Furthermore the complexity of the climate and energy models and the mismatch between their temporal and spatial resolutions are the major limitations in linking these models. Therefore few studies have focused on the design and operation of urban energy infrastructure in terms of climate resilience. Considering the occurrence of extreme climate events and increasing demand for implementing climate adaptation strategies the study highlights the importance of improving energy system models to consider future climate variations including extreme events to identify climate resilient energy transition pathways.
Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes
Jun 2020
Publication
Today electricity & heat generation transportation and industrial sectors together produce more than 80% of energy-related CO2 emissions. Hydrogen may be used as an energy carrier and an alternative fuel in the industrial residential and transportation sectors for either heating energy production from fuel cells or direct fueling of vehicles. In particular the use of hydrogen fuel cell vehicles (HFCVs) has the potential to virtually eliminate CO2 emissions from tailpipes and considerably reduce overall emissions from the transportation sector. Although steam methane reforming (SMR) is the dominant industrial process for hydrogen production environmental concerns associated with CO2 emissions along with the process intensification and energy optimization are areas that still require improvement. Metallic membrane reactors (MRs) have the potential to address both challenges. MRs operate at significantly lower pressures and temperatures compared with the conventional reactors. Hence the capital and operating expenses could be considerably lower compared with the conventional reactors. Moreover metallic membranes specifically Pd and its alloys inherently allow for only hydrogen permeation making it possible to produce a stream of up to 99.999+% purity.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.
Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors
Mar 2024
Publication
Decarbonizing the current steel and power sectors through the development of the hydrogen direct-reduction iron ore–electric arc furnace route and the 100% hydrogen-fired gas turbine cycle is crucial. The current study focuses on three clusters of research works. The first cluster covers the investigation of the mass and energy balance of the route and the subsequent application of these values in experiments to optimize the reduction yield of iron ore. In the second cluster the existing gas turbine unit was selected for the complete replacement of natural gas with hydrogen and for finding the most optimal mass and energy balance in the cycle through an Aspen HYSYS model. In addition the chemical kinetics in the hydrogen combustion process were simulated using Ansys Chemkin Pro to research the emissions. In the last cluster a comparative economic analysis was conducted to identify the levelized cost of production of the route and the levelized cost of electricity of the cycle. The findings in the economic analysis provided good insight into the details of the capital and operational expenditures of each industrial sector in understanding the impact of each kg of hydrogen consumed in the plants. These findings provide a good basis for future research on reducing the cost of hydrogen-based steel and power sectors. Moreover the outcomes of this study can also assist ongoing large-scale hydrogen and ammonia projects in Uzbekistan in terms of designing novel hydrogen-based industries with cost-effective solutions.
Voltammetric and Galvanostatic Methods for Measuring Hydrogen Crossover in Fuel Cell
Dec 2021
Publication
Hydrogen crossover rate is an important indicator for characterizing the membrane degradation and failure in proton exchange membrane fuel cell. Several electrochemical methods have been applied to quantify it. But most of established methods are too rough to support follow-up applications. In this paper a systematic and consistent theoretical foundation for electrochemical measurements of hydrogen crossover is established for the first time. Different electrochemical processes occurring throughout the courses of applying potentiostatic or galvanostatic excitations on fuel cell are clarified and the linear current–voltage behavior observed in the steady-state voltammogram is reinterpreted. On this basis we propose a modified galvanostatic charging method with high practicality to achieve accurate electrochemical measurement of hydrogen crossover and the validity of this method is fully verified. This research provides an explicit framework for implementation of galvanostatic charging method and offers deeper insights into the principles of electrochemical methods for measuring hydrogen crossover.
How EU Legislation Can Drive an Uptake of Sustainable Advanced Fuels in Aviation
Jul 2020
Publication
The report calls for a focus on new advanced alternative fuels in particular synthetic kerosene (efuels) which have the capacity to substantially reduce emissions and be scaled up to meet the fuel demands of the sector.
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
Is Hydrogen the Fuel of the Future?
Jul 2019
Publication
Global warming and melting of the ice on both poles of the Earth is caused by the greenhouse effect which is the result of CO2 production. This gas is considered as the main gas causing the greenhouse effect although not the only one. To reduce the total amount of CO2 emitted to the atmosphere mankind looks for an alternative fuel with no carbon present in its molekules. Hydrogen is such a fuel although emissions are produced also during the fuel production process. To compare hydrogen fuel with fossil fuels more aspects have to be considered.
Sustainability Assessment of Fuel Cell Buses in Public Transport
May 2018
Publication
Hydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses in terms of affordability achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.
Renewable Energy Policies in a Time of Transition: Heating and Cooling
Nov 2020
Publication
Heating and cooling accounts for almost half of global energy consumption. With most of this relying fossil fuels however it contributes heavily to greenhouse gas emissions and air pollution. In parts of the world lacking modern energy access meanwhile inefficient biomass use for cooking also harms people’s health damages the environment and reduces social well-being.
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
- Setting specific targets and developing an integrated long-term plan for the decarbonisation of heating and cooling in all end-uses including buildings industry and cooking and productive uses in areas with limited energy access.
- Creating a level playing field by phasing out fossil-fuel subsidies and introducing other fiscal policies to internalise environmental and socio-economic costs.
- Combining the electrification of heating and cooling with increasingly cost-competitive renewable power generation scaling up solar and wind use and boosting system flexibility via energy storage heat pumps and efficient electric appliances.
- Harnessing existing gas networks to accommodate renewable gases such as biogas and green hydrogen.
- Introducing standards certification and testing policies to promote the sustainable use of biomass combining efficient systems and bioenergy solutions such as pellets briquettes bioethanol or anaerobic digestion.
- Reducing investment risks for geothermal exploration and scaling up direct use of geothermal heat.
- Improving district heating and cooling networks through energy efficiency measures and the integration of low-temperature solar thermal geothermal and other renewable-based heat sources.
- Supporting clean cooking and introducing renewable-based food drying in areas lacking energy access with a combination of financing mechanisms capacity building and quality standards aimed at improving livelihoods and maximising socio-economic benefits.
Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives
Feb 2021
Publication
The U.S. transportation sector accounts for 37% of total energy consumption. Automobiles are a primary application of polymer electrolyte membrane (PEM) fuel cells which operate under low temperature and high efficiency to reduce fossil fuel consumption and CO2 emissions. Using hydrogen fuel PEM fuel cells can reach a practical efficiency as high as 65% with water as the only byproduct. Almost all the major automakers are involved in fuel cell electric vehicle (FCEV) development. Toyota and Hyundai introduced FCEVs (the Mirai and NEXO respectively) to consumers in recent years with a driving range between 312 and 402 miles and cold-start capacity from -30 °C. About 50 fuel cell electric buses (FCEB) are operating in California and most of them have achieved the durability target i.e. 25000 h in real-world driving conditions. As of September 2020 over 8573 FCEVs have been sold or leased in the U.S. More than 3521 FCEVs and 22 FCEBs have been sold or leased in Japan as of September 2019. An extensive hydrogen station network is required for the successful deployment of FCEVs and FCEBs. The U.S. currently has over 44 hydrogen fuelling stations (HFSs) nearly all located in California. Europe has over 139 HFSs with ~1500 more stations planned by 2025. This review has three primary objectives: 1) to present the current status of FCEV/FCEB commercialization and HFS development; 2) to describe the PEM fuel cell research/development in automobile applications and the significance of HFS networks; and 3) to outline major challenges and opportunities.
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
New Integrated Process for the Efficient Production of Methanol, Electrical Power, and Heating
Jan 2022
Publication
In this paper a novel process is developed to cogenerate 4741 kg/h of methanol 297.7 kW of electricity and 35.73 ton/h of hot water including a hydrogen purification system an absorption– compression refrigeration cycle (ACRC) a regenerative Organic Rankine Cycle (ORC) and parabolic solar troughs. The heat produced in the methanol reactor is recovered in the ORC and ACRC. Parabolic solar troughs provide thermal power to the methanol distillation tower. Thermal efficiencies of the integrated structure and the liquid methanol production cycle are 78.14% and 60.91% respectively. The process’s total exergy efficiency and irreversibility are 89.45% and 16.89 MW. The solar thermal collectors take the largest share of exergy destruction (34%) followed by heat exchangers (30%) and mixers (19%). Based on the sensitivity analysis D17 (mixture of H2 and low-pressure fuel gas before separation) was the most influential stream affecting the performance of the process. With the temperature decline of stream D17 from −139 to −149 °C the methanol production rate and the total thermal efficiency rose to 4741.2 kg/h and 61.02% respectively. Moreover the growth in the hydrogen content from 55% to 80% molar of the feed gas the flow rate of liquid methanol and the total exergy efficiency declined to 4487 kg/h and 86.05%.
Hydrogen an Enabler of the Grand Transition Future Energy Leader Position Paper
Jan 2018
Publication
A major transformation and redesign of the global energy system is required towards decarbonisation and to achieve the Paris Agreement targets. This Grand Transition is a complex pressing issue where global joint efforts and system solutions are essential; with hydrogen being one of them.<br/>Hydrogen has the potential to be a powerful effective accelerator towards a low-carbon energy system capable of addressing multiple energy challenges: from facilitating the massive integration of renewables and decarbonisation of energy production to energy transportation in a zero-carbon energy economy to electrification of end uses.
Perspectives on Cathodes for Protonic Ceramic Fuel Cells
Jun 2021
Publication
Protonic ceramic fuel cells (PCFCs) are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility unnecessity of expensive noble metals for the electrocatalyst and no dilution of the fuel electrode due to water formation. Nevertheless the lower operating temperature in comparison to classic solid oxide fuel cells places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors oxide-ionic–electronic conductors triple-conducting oxides and composite electrodes composed of oxides from two of the other categories. Here we review the relatively short history of PCFC cathode research discussing trends highlights and recent progress. Current understanding of reaction mechanisms is also discussed.
Patterned Membranes for Proton Exchange Membrane Fuel Cells Working at Low Humidity
Jun 2021
Publication
High performing proton exchange membrane fuel cells (PEMFCs) that can operate at low relative humidity is a continuing technical challenge for PEMFC developers. In this work micro-patterned membranes are demonstrated at the cathode side by solution casting techniques using stainless steel moulds with laser-imposed periodic surface structures (LIPSS). Three types of patterns lotus lines and sharklet are investigated for their influence on the PEMFC power performance at varying humidity conditions. The experimental results show that the cathode electrolyte pattern in all cases enhances the fuel cell power performance at 100% relative humidity (RH). However only the sharklet pattern exhibits a significant improvement at 25% RH where a peak power density of 450 mW cm−2 is recorded compared with 150 mW cm−2 of the conventional flat membrane. The improvements are explored based on high-frequency resistance electrochemically active surface area (ECSA) and hydrogen crossover by in situ membrane electrode assembly (MEA) testing.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
Development of a Turnkey Hydrogen Fuelling Station
Jul 2010
Publication
The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fuelling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive turnkey stand-alone commercial hydrogen fuelling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses fleet vehicles and ultimately personal vehicles. Air Products partnering with the U.S. Department of Energy (DOE) The Pennsylvania State University Harvest Energy Technology and QuestAir developed a turnkey hydrogen fuelling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency 82% PSA (pressure swing adsorption) efficiency and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fuelling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation compression storage and gas dispensing. In the second phase Air Products designed the components chosen from the technologies examined. Finally phase three entailed a several-month period of data collection full-scale operation maintenance of the station and optimization of system reliability and performance. Based on field data analysis it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1% and the PSA was tested and ran at an efficiency of 82.1% thus meeting the project targets. From the study it was determined that more research was needed in the area of hydrogen fuelling. The overall cost of the hydrogen energy station when combined with the required plot size for scaled-up hydrogen demands demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies such as liquid or pipeline delivery to a refuelling station need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refuelling station configuration and commercialization pathway can be determined.
An Intelligent Site Selection Model for Hydrogen Refueling Stations Based on Fuzzy Comprehensive Evaluation and Artificial Neural Network—A Case Study of Shanghai
Feb 2022
Publication
With the gradual popularization of hydrogen fuel cell vehicles (HFCVs) the construction and planning of hydrogen refueling stations (HRSs) are increasingly important. Taking operational HRSs in China’s coastal and major cities as examples we consider the main factors affecting the site selection of HRSs in China from the three aspects of economy technology and society to establish a site selection evaluation system for hydrogen refueling stations and determine the weight of each index through the analytic hierarchy process (AHP). Then combined with fuzzy comprehensive evaluation (FCE) method and artificial neural network model (ANN) FCE method is used to evaluate HRS in operation in China's coastal areas and major cities and we used the resulting data obtained from the comprehensive evaluation as the training data to train the neural network. So an intelligent site selection model for HRSs based on fuzzy comprehensive evaluation and artificial neural network model (FCE-ANN) is proposed. The planned HRSs in Shanghai are evaluated and an optimal site selection of the HRS is obtained. The results show that the optimal HRSs site selected by the FCE-ANN model is consistent with the site selection obtained by the FCE method and the accuracy of the FCE-ANN model is verified. The findings of this study may provide some guidelines for policy makers in planning the hydrogen refueling stations
Hydrogen Implications for Gas Network Operators
Jan 2021
Publication
Europe has built up one of the best gas distribution infrastructures in the world. There’s one problem though. It distributes natural gas a fuel that we will hardly be able to use if we’re to reach our net zero targets. Can we use the infrastructure instead for clean hydrogen – either blended with natural gas as a stepping stone or with pure hydrogen in the future? In this episode we put aside discussion on the extent to which we should do this – and focus on whether or not we can do this and what’s involved in doing so.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Hydrogen Refuelling Reference Station Lot Size Analysis for Urban Sites
Mar 2020
Publication
Hydrogen Fuelling Infrastructure Research and Station Technology (H2FIRST) is a project initiated by the DOE in 2015 and executed by Sandia National Laboratories and the National Renewable Energy Laboratory to address R&D barriers to the deployment of hydrogen fuelling infrastructure. One key barrier to the deployment of fuelling stations is the land area they require (i.e. ""footprint""). Space is particularly a constraint in dense urban areas where hydrogen demand is high but space for fuelling stations is limited. This work presents current fire code requirements that inform station footprint then identifies and quantifies opportunities to reduce footprint without altering the safety profile of fuelling stations. Opportunities analyzed include potential new methods of hydrogen delivery as well as alternative placements of station technologies (i.e. rooftop/underground fuel storage). As interest in heavy-duty fuelling stations and other markets for hydrogen grows this study can inform techniques to reduce the footprint of heavy-duty stations as well.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
The Technical and Economic Potential of the H2@Scale Concept within the United States
Oct 2020
Publication
The U.S. energy system is evolving as society and technologies change. Renewable electricity generation—especially from wind and solar—is growing rapidly and alternative energy sources are being developed and implemented across the residential commercial transportation and industrial sectors to take advantage of their cost security and health benefits. Systemic changes present numerous challenges to grid resiliency and energy affordability creating a need for synergistic solutions that satisfy multiple applications while yielding system-wide cost and emissions benefits. One such solution is an integrated hydrogen energy system (Figure ES-1). This is the focus of H2@Scale—a U.S. Department of Energy (DOE) initiative led by the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Technologies Office. H2@Scale brings together stakeholders to advance affordable hydrogen production transport storage and utilization in multiple energy sectors. The H2@Scale concept involves hydrogen as an energy intermediate. Hydrogen can be produced from various conventional and renewable energy sources including as a responsive load on the electric grid. Hydrogen has many current applications and many more potential applications such as energy for transportation—used directly in fuel cell electric vehicles (FCEVs) as a feedstock for synthetic fuels and to upgrade oil and biomass—feedstock for industry (e.g. for ammonia production metals refining and other end uses) heat for industry and buildings and electricity storage. Owing to its flexibility and fungibility a hydrogen intermediate could link energy sources that have surplus availability to markets that require energy or chemical feedstocks benefiting both. This document builds upon a growing body of analyses of hydrogen as an energy intermediate by reporting the results from our initial analysis of the potential impacts of the H2@Scale vision by the mid-21st century for the 48 contiguous U.S. states. Previous estimates have been based on expert elicitation and focused on hydrogen demands. We build upon them first by estimating hydrogen’s serviceable consumption potential for possible hydrogen applications and the technical potential for producing hydrogen from various resources. We define the serviceable consumption potential as the quantity of hydrogen that would be consumed to serve the portion of the market that could be captured without considering economics (i.e. if the price of hydrogen were $0/kg over an extended period); thus it can be considered an upper bound for the size of the market. We define the technical potential as the resource potential constrained by real-world geography and system performance but not by economics. We then compare the cumulative serviceable consumption potential with the technical potential of a number of possible sources. Second we estimate economic potential: the quantity of hydrogen at an equilibrium price at which suppliers are willing to sell and consumers are willing to buy the same quantity of hydrogen. We believe this method provides a deeper understanding than was available in the previous analyses. We develop economic potentials for multiple scenarios across various market and technology-advancement assumptions.
Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle
May 2018
Publication
Recent environmental and climate change issues make it imperative to persistently approach research into the development of technologies designed to ensure the sustainability of global mobility. At the European Union level the transport sector is responsible for approximately 28% of greenhouse gas emissions and 84% of them are associated with road transport. One of the most effective ways to enhance the de-carbonization process of the transport sector is through the promotion of electric propulsion which involves overcoming barriers related to reduced driving autonomy and the long time required to recharge the batteries. This paper develops and implements a method meant to increase the autonomy and reduce the battery charging time of an electric car to comparable levels of an internal combustion engine vehicle. By doing so the cost of such vehicles is the only remaining significant barrier in the way of a mass spread of electric propulsion. The chosen method is to hybridize the electric powertrain by using an additional source of fuel; hydrogen gas stored in pressurized cylinders is converted in situ into electrical energy by means of a proton exchange membrane fuel cell. The power generated on board can then be used under the command of a dedicated management system for battery charging leading to an increase in the vehicle’s autonomy. Modeling and simulation results served to easily adjust the size of the fuel cell hybrid electric powertrain. After optimization an actual fuel cell was built and implemented on a vehicle that used the body of a Jeep Wrangler from which the thermal engine associated subassemblies and gearbox were removed. Once completed the vehicle was tested in traffic conditions and its functional performance was established.
Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation
Jun 2021
Publication
The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline kerosene and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV) corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol which is largely dictated by the cost of electrolytic hydrogen and renewable electricity was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.
Industrial Robots Fuel Cell Based Hybrid Power-Trains: A Comparison between Different Configurations
Jun 2021
Publication
Electric vehicles are becoming more and more popular. One of the most promising possible solutions is one where a hybrid powertrain made up of a FC (Fuel Cell) and a battery is used. This type of vehicle offers great autonomy and high recharging speed which makes them ideal for many industrial applications. In this work three ways to build a hybrid power-train are presented and compared. To illustrate this the case of an industrial robot designed to move loads within a fully automated factory is used. The analysis and comparison are carried out through different objective criteria that indicate the power-train performance in different battery charge levels. The hybrid configurations are tested using real power profiles of the industrial robot. Finally simulation results show the performance of each hybrid configuration in terms of hydrogen consumption battery and FC degradation and dc bus voltage and current regulation.
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
Mapping of Hydrogen Fuel Quality in Europe
Nov 2020
Publication
As part of FCH-JU funded HyCoRA project running from 2014 to 2017 28 gaseous and 13 particulate samples were collected from hydrogen refuelling stations in Europe. Samples were collected with commercial sampling instruments and analysis performed in compliance with prevailing fuel quality standards. Sampling was conducted with focus on diversity in feedstock as well as commissioning date of the HRS. Results indicate that the strategy for sampling was good. No evidence of impurity cross-over was observed. Parallel samples collected indicate some variation in analytical results. It was however found that fuel quality was generally good. Fourteen analytical results were in violation with the fuel tolerance limits. Therefore eight or 29% of the samples were in violation with the fuel quality requirements. Nitrogen oxygen and organics were the predominant impurities quantified. Particulate impurities were found to be within fuel quality specifications. No correlation between fuel quality and hydrogen feedstock or HRS commissioning date was found. Nitrogen to oxygen ratios gave no indication of samples being contaminated by air. A comparison of analytical results between two different laboratories were conducted. Some difference in analytical results were observed.
Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies
Jan 2021
Publication
With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles which optimally combine the fuel cell system with hybrid energy storage systems represented by batteries and ultracapacitors to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view the latest energy management strategies are analyzed and compared with the reference strategies taking into account performance indicators such as energy efficiency hydrogen consumption and degradation of the subsystems involved which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies optimization-based strategies and learning-based strategies) are discussed. Thus future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.
A Personal Retrospect on Three Decades of High Temperature Fuel Cell Research; Ideas and Lessons Learned
Feb 2021
Publication
In 1986 the Dutch national fuel cell program started. Fuel cells were developed under the paradigm of replacing conventional technology. Coal-fired power plants were to be replaced by large-scale MCFC power plants fuelled by hydrogen in a full-scale future hydrogen economy. With today's knowledge we will reflect on these and other ideas with respect to high temperature fuel cell development including the choice for the type of high temperature fuel cell. It is explained that based on thermodynamics proton conducting fuel cells would have been a better choice and the direct carbon fuel cell even more so with electrochemical gasification of carbon as the ultimate step. The specific characteristics of fuel cells and multisource multiproduct systems were not considered whereas we understand now that these can provide huge driving forces for the implementation of fuel cells compared to just replacing conventional combined heat and power production technology.
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
Transport Energy Air Pollution Model
May 2019
Publication
The transport sector remains at the centre of any debates around energy conservation exaggerated by the stubborn and overwhelming reliance on fossil fuels by its motorised forms whether passenger and freight road rail sea and air.<br/>The very slow transition to alternative fuel sources to date has resulted in this sector being increasingly and convincingly held responsible for the likely failure of individual countries including the UK to meet their obligations under consecutive international climate change agreements.<br/>Electrification of transport is largely expected to take us down the path to a ‘zero carbon future’ (CCC 2019; DfT 2018). But there are serious concerns about future technology performance availability costs and uptake by consumers and businesses. There are also concerns about the increasing gap between lab and ‘real world’ performance of energy use carbon and air pollution emissions. Recently the role of consumer ‘lifestyles’ has increased in prominence (e.g. IPCC 2018) but as yet has not been taken seriously by the DfT BEIS or even the CCC (2019).
Integration of Water Electrolysis for Fossil-free Steel Production
Sep 2020
Publication
This study investigates the integration of water electrolysis technologies in fossil-free steelmaking via the direct reduction of iron ore followed by processing in an electric arc furnace (EAF). Hydrogen (H2) production via low or high temperature electrolysis (LTE and HTE) is considered for the production of carbon-free direct reduced iron (DRI). The introduction of carbon into the DRI reduces the electricity demand of the EAF. Such carburization can be achieved by introducing carbon monoxide (CO) into the direct reduction process. Therefore the production of mixtures of H2 and CO using either a combination of LTE coupled with a reverse water-gas shift reactor (rWGS-LTE) or high-temperature co-electrolysis (HTCE) was also investigated. The results show that HTE has the potential to reduce the specific electricity consumption (SEC) of liquid steel (LS) production by 21% compared to the LTE case. Nevertheless due to the high investment cost of HTE units both routes reach similar LS production costs of approximately 400 €/tonne LS. However if future investment cost targets for HTE units are reached a production cost of 301 €/tonne LS is attainable under the conditions given in this study. For the production of DRI containing carbon a higher SEC is calculated for the LTE-rWGS system compared to HTCE (4.80 vs. 3.07 MWh/tonne LS). Although the use of HTCE or LTE-rWGS leads to similar LS production costs future cost reduction of HTCE could result in a 10% reduction in LS production cost (418 vs. 375 €/tonne LS). We show that the use of HTE either for the production of pure H2 or H2 and CO mixtures may be advantageous compared to the use of LTE in H2 -based steelmaking although results are sensitive to electrolyzer investment costs efficiencies and electricity prices.
Measuring Accuracy and Computational Capacity Trade-offs in an Hourly Integrated Energy System Model
Feb 2021
Publication
Improving energy system modelling capabilities can directly affect the quality of applied studies. However some modelling trade-offs are necessary as the computational capacity and data availability are constrained. In this paper we demonstrate modelling trade-offs resulting from the modification in the resolution of four modelling capabilities namely transitional scope European electricity interconnection hourly demand-side flexibility description and infrastructure representation. We measure the cost of increasing resolution in each capability in terms of computational time and several energy system modelling indicators notably system costs emission prices and electricity import and export levels. The analyses are performed in a national-level integrated energy system model with a linear programming approach that includes the hourly electricity dispatch with European nodes. We determined that reducing the transitional scope from seven to two periods can reduce the computational time by 75% while underestimating the objective function by only 4.6%. Modelers can assume a single European Union node that dispatches electricity at an aggregated level which underestimates the objective function by 1% while halving the computational time. Furthermore the absence of shedding and storage flexibility options can increase the curtailed electricity by 25% and 8% respectively. Although neglecting flexibility options can drastically decrease the computational time it can increase the sub-optimality by 31%. We conclude that an increased resolution in modelling flexibility options can significantly improve the results. While reducing the computational time by half the lack of electricity and gas infrastructure representation can underestimate the objective function by 4% and 6% respectively.
Strategies for Joint Procurement of Fuel Cell Buses: A Study for the Fuel Cells and Hydrogen Joint Undertaking
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Recent Progress in Ammonia Fuel Cells and their Potential Applications
Nov 2020
Publication
Conventional technologies are largely powered by fossil fuel exploitation and have ultimately led to extensive environmental concerns. Hydrogen is an excellent carbon-free energy carrier but its storage and long-distance transportation remain big challenges. Ammonia however is a promising indirect hydrogen storage medium that has well-established storage and transportation links to make it an accessible fuel source. Moreover the notion of ‘green ammonia’ synthesised from renewable energy sources is an emerging topic that may open significant markets and provide a pathway to decarbonise a variety of applications reliant on fossil fuels. Herein a comparative study based on the chosen design working principles advantages and disadvantages of direct ammonia fuel cells is summarised. This work aims to review the most recent advances in ammonia fuel cells and demonstrates how close this technology type is to integration with future applications. At present several challenges such as material selection NOx formation CO2 tolerance limited power densities and long term stability must still be overcome and are also addressed within the contents of this review.
A Study on Electrofuels in Aviation
Feb 2018
Publication
With the growth of aviation traffic and the demand for emission reduction alternative fuels like the so-called electrofuels could comprise a sustainable solution. Electrofuels are understood as those that use renewable energy for fuel synthesis and that are carbon-neutral with respect to greenhouse gas emission. In this study five potential electrofuels are discussed with respect to the potential application as aviation fuels being n-octane methanol methane hydrogen and ammonia and compared to conventional Jet A-1 fuel. Three important aspects are illuminated. Firstly the synthesis process of the electrofuel is described with its technological paths its energy efficiency and the maturity or research need of the production. Secondly the physico-chemical properties are compared with respect to specific energy energy density as well as those properties relevant to the combustion of the fuels i.e. autoignition delay time adiabatic flame temperature laminar flame speed and extinction strain rate. Results show that the physical and combustion properties significantly differ from jet fuel except for n-octane. The results describe how the different electrofuels perform with respect to important aspects such as fuel and air mass flow rates. In addition the results help determine mixture properties of the exhaust gas for each electrofuel. Thirdly a turbine configuration is investigated at a constant operating point to further analyze the drop-in potential of electrofuels in aircraft engines. It is found that electrofuels can generally substitute conventional kerosene-based fuels but have some downsides in the form of higher structural loads and potentially lower efficiencies. Finally a preliminary comparative evaluation matrix is developed. It contains specifically those fields for the different proposed electrofuels where special challenges and problematic points are seen that need more research for potential application. Synthetically-produced n-octane is seen as a potential candidate for a future electrofuel where even a drop-in capability is given. For the other fuels more issues need further research to allow the application as electrofuels in aviation. Specifically interesting could be the combination of hydrogen with ammonia in the far future; however the research is just at the beginning stage.
Impact of Hydrogen Fuel for CO2 Emission Reduction in Power Generation Sector in Japan
Jun 2017
Publication
Japan’s energy consumption derives mostly from fossil fuels which are un-secure and release a much greenhouse gas emissions. To meet goals of reducing GHG hydrogen gas can be utilized in power generation in hydrogen fired and firing / co-combustion power plants. This paper analyses the impact of hydrogen in the power generation sector using the MARKAL-TIMES Japan optimization model framework. Two models are used: a base scenario without hydrogen and hydrogen scenario in which hydrogen is supplied from 2020 onwards. In the hydrogen scenario other processes which are normally supplied by natural gas are reduced because the gas is instead used to generate power. Adding hydrogen to the energy supply leads to a decrease in projected use of fossil fuels. The hydrogen scenario produces fewer emissions than the base scenario; by 2050 the hydrogen scenario’s estimated 388 metric tons of CO2 emissions is over 250 tons less than the base scenario’s emissions of 588 metric tons.
Trace Level Analysis of Reactive ISO 14687 Impurities in Hydrogen Fuel Using Laser-based Spectroscopic Detection Methods
Oct 2020
Publication
Hydrogen fuelled vehicles can play a key role in the decarbonisation of transport and reducing emissions. To ensure the durability of fuel cells a specification has been developed (ISO 14687) setting upper limits to the amount fraction of a series of impurities. Demonstrating conformity with this standard requires demonstrating by measurement that the actual levels of the impurities are below the thresholds. Currently the industry is unable to do so for measurement standards and sensitive dedicated analytical methods are lacking. In this work we report on the development of such measurement standards and methods for four reactive components: formaldehyde formic acid hydrogen chloride and hydrogen fluoride. The primary measurement standard is based on permeation and the analytical methods on highly sensitive and selective laser-based spectroscopic techniques. Relative expanded uncertainties at the ISO 14687 threshold level in hydrogen of 4% (formaldehyde) 8% (formic acid) 5% (hydrogen chloride) and 8% (hydrogen fluoride) have been achieved.
Fostering a Blue Economy: Offshore Renewable Energy
Dec 2020
Publication
Offshore renewable energy – including offshore wind and solar power as well as emerging ocean energy technologies – could support sustainable long-term development and drive a vibrant blue economy. For countries and communities around the world offshore renewables can provide reliable stable electricity as well as support water desalination and aquaculture.
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
- The predictability of power generation from ocean energy technologies complements the variable character solar PV and wind.
- Desalination of seawater using renewable energy sources – including solar and wind power but also direct solar and geothermal heat – can further enhance the sustainable blue economy.
- Renewable-based shipping powered with advanced biofuels hydrogen or synthetic fuels as alternatives to oil offer further synergies with offshore renewable energy.
- Islands and coastal territories could adopt renewable-based electric propulsion for short-distance (< 100 km) sea transport.
- Two reports released concurrently examine the potential for offshore renewables:
Test Campaign on Existing HRS & Dissemination of Results
Apr 2019
Publication
This document is the final deliverable of Tasks 2 & 3 of the tender N° FCH / OP / CONTRACT 196: “Development of a Metering Protocol for Hydrogen Refuelling Stations”. In Task 2 a test campaign was organized on several HRS in Europe to apply the testing protocol defined in Task 1. This protocol requires mainly to perform different accuracy tests in order to determine the error of the complete measuring system (i.e. from the mass flow meter to the nozzle) in real fueling conditions. Seven HRS have been selected to fulfill the requirements specified in the tender. Tests results obtained are presented in this deliverable and conclusions are proposed to explain the errors observed. In the frame of Task 3 results and conclusions have been widely presented to additional Metrology Institutes than those involved in Task 1 in order to get their adhesion on the testing proposed protocol. All the work performed in Tasks 2 & 3 and associated outcomes / conclusions are reported here.
Renewable Hydrogen for the Chemical Industry
Aug 2020
Publication
Hydrogen is often touted as the fuel of the future but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials e.g. fertilizers synthetic textiles and drug precursors supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein existing technologies for the production of renewable hydrogen including biomass and water electrolysis and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Modelling and Simulation of a Zero-emission Hybrid Power Plant for a Domestic Ferry
Jan 2021
Publication
This paper presents a simulation tool for marine hybrid power-plants equipped with polymer exchange membrane fuel cells and batteries. The virtual model through the combination of operational data and dynamically modelled subsystems can simulate power-plants of different sizes and configurations in order to analyze the response of different energy management strategies. The model aims to replicate the realistic behavior of the components included in the vessel's grid to asses if the hardware selected by the user is capable of delivering the power set-point requested by the energy management system. The model can then be used to optimize key factors such as hydrogen consumption. The case study presented in the paper demonstrates how the model can be used for the evaluation of a retrofitting operation replacing a diesel electric power-plant with fuel cells and batteries. The vessel taken into consideration is a domestic ferry operating car and passenger transport in Denmark. The vessel is outfitted with a diesel electric plant and an alternative hybrid power-plant is proposed. The hybrid configuration is tested using the model in a discrete time-domain.
Insights into Renewable Hydrogen Energy: Recent Advances and Prospects
Jan 2020
Publication
Presently the fulfilment of world’s energy demand highly relies on the fossil fuel i.e. coal oil and natural gas. Fossil fuels pose threat to environment and biological systems on the earth. Usage of these fuels leads to an increase in the CO2 content in the atmosphere that causes global warming and undesirable climatic changes. Additionally these are limited sources of energy those will eventually dwindle. There is huge urge of identifying and utilizing the renewable energy resources to replace these fossil fuels in the near future as it is expected to have no impact on environment and thus would enable one to provide energy security. Hydrogen is one of the most desirable fuel capable of replacing vanishing hydrocarbons. In this review we present the status of energy demands recent advances in renewable energy and the prospects of hydrogen as a future fuel are highlighted. It gives a broad overview of different energy systems and mainly focuses on different technologies and their reliability for the production of hydrogen in present and future.
Assessing Uncertainties of Life-Cycle CO2 Emissions Using Hydrogen Energy for Power Generation
Oct 2021
Publication
Hydrogen and its energy carriers such as liquid hydrogen (LH2) methylcyclohexane (MCH) and ammonia (NH3) are essential components of low-carbon energy systems. To utilize hydrogen energy the complete environmental merits of its supply chain should be evaluated. To understand the expected environmental benefit under the uncertainty of hydrogen technology development we conducted life-cycle inventory analysis and calculated CO2 emissions and their uncertainties attributed to the entire supply chain of hydrogen and NH3 power generation (co-firing and mono-firing) in Japan. Hydrogen was assumed to be produced from overseas renewable energy sources with LH2/MCH as the carrier and NH3 from natural gas or renewable energy sources. The Japanese life-cycle inventory database was used to calculate emissions. Monte Carlo simulations were performed to evaluate emission uncertainty and mitigation factors using hydrogen energy. For LH2 CO2 emission uncertainty during hydrogen liquefaction can be reduced by using low-carbon fuel. For MCH CO2 emissions were not significantly affected by power consumption of overseas processes; however it can be reduced by implementing low-carbon fuel and waste-heat utilization during MCH dehydrogenation. Low-carbon NH3 production processes significantly affected power generation whereas carbon capture and storage during NH3 production showed the greatest reduction in CO2 emission. In conclusion reducing CO2 emissions during the production of hydrogen and NH3 is key to realize low-carbon hydrogen energy systems.
World Energy Issues Monitor 2020: Decoding New Signals of Change
Oct 2020
Publication
ISSUES MONITOR 2020: DECODING NEW SIGNALS OF CHANGE
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
The Effect of the Temperature and Moisture to the Permeation Properties of PEO-Based Membranes for Carbon-Dioxide Separation
Jun 2021
Publication
An increased demand for energy in recent decades has caused an increase in the emissions of combustion products among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects like global warming and the greenhouse effect a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work the possibility for the application of the polymer-based dense mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30 60 and 90 °C) under wet conditions with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide hydrogen nitrogen and oxygen was measured and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity compared to hydrogen oxygen and nitrogen.
Electric and Hydrogen Rail: Potential Contribution to Net Zero in the UK
Sep 2020
Publication
Electric trains (ET) and hydrogen trains (HT) are considered zero emission at the point of use. True emissions are dependent upon non-tailpipe sources primarily in energy production. We present UK carbon dioxide (CO2) operating emission model outputs for conventionally fuelled trains (CFT) ETs and HTs between 2017 and 2050 under four National Grid electricity generation scenarios.
Comparing four service categories (urban regional intercity and high speed) to private conventionally fuelled vehicles (CFV) and electric vehicles considering average distance travelled per trip under different passenger capacity levels (125% 100% 75% 50% and 25%).
Results indicate by 2050 at 100% capacity CFTs produce a fifth of the emissions of CFVs per kilometre per person. Under two degree generation scenario by 2050 ETs produced 14 times and HTs produced five times less emissions than CFTs. Policymakers should encourage shifts away from private vehicles to public transport powered by low carbon electricity.
Comparing four service categories (urban regional intercity and high speed) to private conventionally fuelled vehicles (CFV) and electric vehicles considering average distance travelled per trip under different passenger capacity levels (125% 100% 75% 50% and 25%).
Results indicate by 2050 at 100% capacity CFTs produce a fifth of the emissions of CFVs per kilometre per person. Under two degree generation scenario by 2050 ETs produced 14 times and HTs produced five times less emissions than CFTs. Policymakers should encourage shifts away from private vehicles to public transport powered by low carbon electricity.
UKERC Research Atlas Landscape – Fuel Cells
Dec 2013
Publication
This UKERC Research Atlas Landscape provides an overview of the competencies and publicly funded activities in fuel cell research development and demonstration (RD&D) in the UK. It covers the main funding streams research providers infrastructure networks and UK participation in international activities.
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
Thermodynamic Analysis of a Regenerative Brayton Cycle Using H2, CH4 and H2/CH4 Blends as Fuel
Feb 2022
Publication
Considering a simple regenerative Brayton cycle the impact of using different fuel blends containing a variable volumetric percentage of hydrogen in methane was analysed. Due to the potential of hydrogen combustion in gas turbines to reduce the overall CO2 emissions and the dependency on natural gas further research is needed to understand the impact on the overall thermodynamic cycle. For that purpose a qualitative thermodynamic analysis was carried out to assess the exergetic and energetic efficiencies of the cycle as well as the irreversibilities associated to a subsystem. A single step reaction was considered in the hypothesis of complete combustion of a generic H2/CH4 mixture where the volumetric H2 percentage was represented by fH2 which was varied from 0 to 1 defining the amount of hydrogen in the fuel mixture. Energy and entropy balances were solved through the Engineering Equation Solver (EES) code. Results showed that global exergetic and energetic efficiencies increased by 5% and 2% respectively varying fH2 from 0 to 1. Higher hydrogen percentages resulted in lower exergy destruction in the chamber despite the higher air-excess levels. It was also observed that higher values of fH2 led to lower fuel mass flow rates in the chamber showing that hydrogen can still be competitive even though its cost per unit mass is twice that of natural gas.
Success Stories: A Partnership Dedicated to Clean Energy and Transport in Europe
Dec 2018
Publication
As 2018 marks the ten-year anniversary of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) it is inspiring to look back over the many accomplishments of the past decade. The projects described in these pages illustrate the approach of continuous learning exemplified by the FCH JU’s projects from creating low-carbon and sustainable solutions enabling market entry for new products developing ‘next generation’ products based on previous research to opening new markets for European expertise in fuel cell and hydrogen (FCH) technology.<br/>The FCH JU’s achievements are due in part to its multi-stakeholder structure: a public-private partnership between industry research and the European Commission. Industry-led research has pioneered new developments in FCH technology and brought many of them to the cusp of commercialisation. Market uptake from public authorities major companies and citizens alike has boosted confidence in these clean technologies establishing hydrogen as a cornerstone of Europe’s energy transition.<br/>DEVELOPING SOLUTIONS FOR A GREENER WORLD<br/>Citizens are at the heart of Europe’s Energy Union a strategy aimed at providing clean secure and affordable energy for all. For some years now and as a signatory to the Paris Agreement in 2015 the EU has been actively targeting reductions in carbon dioxide (CO2) emissions.
Decarbonising City Bus Networks in Ireland with Renewable Hydrogen
Dec 2020
Publication
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production transportation and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm sizing of the electrolyser PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced transported and dispensed using this system can meet the entire current bus fuel demand for all the studied cities at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH the future operational cost of FCEBs in Belfast Cork and Dublin can be competitive with public buses fuelled by diesel especially under carbon taxes more reflective of the environmental impact of fossil fuels.
The Role of Critical Minerals in Clean Energy Transitions
May 2021
Publication
Minerals are essential components in many of today’s rapidly growing clean energy technologies – from wind turbines and electricity networks to electric vehicles. Demand for these minerals will grow quickly as clean energy transitions gather pace. This new World Energy Outlook Special Report provides the most comprehensive analysis to date of the complex links between these minerals and the prospects for a secure rapid transformation of the energy sector.
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Decarbonising Ships, Planes and Trucks: An Analysis of Suitable Low-carbon Fuels for the Maritime, Aviation and Haulage Sectors
Jan 2021
Publication
The high environmental impacts of transport mean that there is an increasing interest in utilising low-carbon alternative energy carriers and powertrains within the sector. While electricity has been mooted as the energy carrier of choice for passenger vehicles as the mass and range of the vehicle increases electrification becomes more difficult. This paper reviews the shipping aviation and haulage sectors and a range of low-carbon energy carriers (electricity biofuels hydrogen and electro fuels) that can be used to decarbonise them. Energy carriers were assessed based on their energy density specific energy cost lifecycle greenhouse gas emissions and land-use. In terms of haulage current battery electric vehicles may be technically feasible however the specific energy of current battery technology reduces the payload capacity and range when compared to diesel. To alleviate these issues biomethane represents a mature technology with potential co-benefits while hydrogen is close to competitiveness but requires significant infrastructure. Energy density issues preclude the use of batteries in shipping which requires energy dense liquids or compressed gaseous fuels that allow for retrofits/current hull designs with methanol being particularly appropriate here. Future shipping may be achieved with ammonia or hydrogen but hull design will need to be changed significantly. Regulations and aircraft design mean that commercial aviation is dependant on drop-in jet fuels for the foreseeable future with power-to-liquid fuels being deemed the most suitable option due to the scales required. Fuel costs and a lack of refuelling infrastructure were identified as key barriers facing the uptake of alternatives with policy and financial incentives required to encourage the uptake of low-carbon fuels.
The Role of Hydrogen and Fuel Cells in the Global Energy System
Dec 2018
Publication
Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity heat industry transport and energy storage in a low-carbon energy system and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries and 225 000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems an unrealistic prospect which fully justifies the growing interest and policy support for these technologies around the world.
Comparison of Hydrogen and Battery Electric Trucks
Jul 2020
Publication
Only emissions-free vehicles which include battery electric (BEVs) and hydrogen fuel cell trucks (FCEVs) can provide for a credible long-term pathway towards the full decarbonisation of the road freight sector. This document lays out the methodology and assumptions which were used to calculate the total cost of ownership (TCO) of the two vehicle technologies for regional delivery and long-haul truck applications. It also discusses other criteria such as refuelling and recharging times as well as potential payload losses.
Link to Document Download on Transport & Environment website
Link to Document Download on Transport & Environment website
Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications
Jan 2018
Publication
In the near future the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for e.g. the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs such as the blended-wing-body enable a more flexible integration of new storage technologies and energy converters e.g. cryogenic hydrogen tanks and fuel cells. Against this background a tank-design model is formulated which considers geometrical mechanical and thermal aspects as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass which is further improved by the use of a fuel cell.
Assessment of Hydrogen Quality Dispensed for Hydrogen Refuelling Stations in Europe
Dec 2020
Publication
The fuel quality of hydrogen dispensed from 10 refuelling stations in Europe was assessed. Representative sampling was conducted from the nozzle by use of a sampling adapter allowing to bleed sample gas in parallel while refuelling an FCEV. Samples were split off and distributed to four laboratories for analysis in accordance with ISO 14687 and SAE J2719. The results indicated some inconsistencies between the laboratories but were still conclusive. The fuel quality was generally good. Elevated nitrogen concentrations were detected in two samples but not in violation with the new 300 μmol/mol tolerance limit. Four samples showed water concentrations higher than the 5 μmol/mol tolerance limit estimated by at least one laboratory. The results were ambiguous: none of the four samples showed all laboratories in agreement with the violation. One laboratory reported an elevated oxygen concentration that was not corroborated by the other two laboratories and thus considered an outlier.
The World’s Energy Agenda & Its Evolution: Issues Monitor 2019
Feb 2019
Publication
In an era where the energy landscape is in constant transition energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues which are shaping energy transitions.<br/>This report takes a focused look at the issues facing the energy transition in Europe using data collected by surveying over 40 leaders and shapers representing the European Transmission and Distributors Operators. This Issues Monitor outlines clear Action Priorities and Critical Uncertainties for different stakeholder groups mapping them out intuitively to promote a shared understanding of the issues. These maps also help identifiy regional variations understand differing areas of concern as well as follow the evolution of specific technology trends.<br/>Produced in partnership with ENTSO-E and E.DSO.
Multi-state Techno-economic Model for Optimal Dispatch of Grid Connected Hydrogen Electrolysis Systems Operating Under Dynamic Conditions
Oct 2020
Publication
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses especially while electrolysis plants grow in size to accommodate further increases in demand.
Clean Growth- Transforming Heating Overview of Current Evidence
Dec 2018
Publication
Government has reviewed the evidence base on options for achieving long term heat decarbonisation. This report provides an overview of the key issues arising from our review and seeks to:
- highlight the different characteristics of the main alternative sources of low carbon heat and the approaches to achieving transformational change
- set out strategically important issues ‘strategic inferences’ which we have drawn from the evidence available to help focus the development of our long term policy framework
- identify areas that require further exploration to inform the development of a new long term policy framework for heat
- better understanding of the different options available for decarbonising heating
- a clearer common agenda across industry academia and the public sector to ensure effort and resources are effectively and efficiently applied to long term heat decarbonisation issues
- the strategic inferences identified
- the priority areas requiring further development
- any important omissions
- the parties best placed to deliver in these areas
- opportunities for enhancing co-ordination
Up-scalable Emerging Energy Conversion Technologies Enabled by 2D Materials: From Miniature Power Harvesters Towards Grid-connected Energy Systems
May 2021
Publication
Breakthrough discoveries in high-throughput formulation of abundant materials and advanced engineering approaches are both in utter need as prerequisites for developing novel large-scale energy conversion technologies required to address our planet's rising energy demands. Nowadays the rapid deployment of Internet of Things (IoT) associated with a distributed network of power-demanding smart devices concurrently urges for miniaturized systems powered by ambient energy harvesting. Graphene and other related two-dimensional materials (GRM) consist a perfect fit to drive this innovation owing to their extraordinary optoelectronic physical and chemical properties that emerge at the limit of two-dimensions. In this review after a critical analysis of GRM's emerging properties that are beneficial for power generation novel approaches are presented for developing ambient energy conversion devices covering a wide range of scales. Notable examples vary from GRM-enabled large-scale photovoltaic panels and fuel cells smart hydrovoltaics and blue energy conversion routes to miniaturized radio frequency piezoelectric triboelectric and thermoelectric energy harvesters. The insights from this review demonstrate that GRM-enabled energy harvesters apart from enabling the self-powered operation of individual IoT devices have also the potential to revolutionize the way that grid-electricity is provided in the cities of the future. This approach is materialized by two complementary paradigms: cross-coupled integration of GRM into firstly a network consisted of a vast number of miniaturized in-series-connected harvesters and secondly into up-scaled multi-energy hybrid harvesters both approaches having the potential for on-grid energy generation under all-ambient-conditions. At the end of the discussion perspectives on the trends limitations and commercialisation potential of these emerging up-scalable energy conversion technologies are provided. This review aims to highlight the importance of building a network of GRM-based cross-scaled energy conversion systems and their potential to become the guideline for the energy sustainable cities of the future.
Sector Coupling Potential of Wind-based Hydrogen Production and Fuel Cell Train Operation in Regional Rail Transport in Berlin and Brandenburg
Jan 2021
Publication
As the transport sector is ought to be decarbonized fuel-cell-powered trains are a viable zero-tailpipe technology alternative to the widely employed diesel multiple units in regional railway service on non-electrified tracks. Carbon-free hydrogen can be provided by water-electrolysis from renewable energies. In this study we introduce an approach to assess the potential of wind-based hydrogen for use in adjacent regional rail transport by applying a GIS approach in conjunction with a site-level cost model. In Brandenburg about 10.1 million train-km annually could be switched to fuel cell electric train operation. This relates to a diesel consumption of appr. 9.5 million liters today. If fuel cell trains would be employed that translated to 2198 annual tons hydrogen annually. At favorable sites hydrogen costs of approx. 6.40 €/kg - including costs of hydrogen refueling stations - could be achieved. Making excess hydrogen available for other consumers would further decrease hydrogen production costs.
Initial Assessment of a Fuel Cell—Gas Turbine Hybrid Propulsion Concept
Jan 2022
Publication
A fuel cell—gas turbine hybrid propulsion concept is introduced and initially assessed. The concept uses the water mass flow produced by a hydrogen fuel cell in order to improve the efficiency and power output of the gas turbine engine through burner steam injection. Therefore the fuel cell product water is conditioned through a process of condensation pressurization and revaporization. The vaporization uses the waste heat of the gas turbine exhaust. The functional principles of the system concept are introduced and discussed and appropriate methodology for an initial concept evaluation is formulated. Essential technology fields are surveyed in brief. The impact of burner steam injection on gas turbine efficiency and sizing is parametrically modelled. Simplified parametric models of the fuel cell system and key components of the water treatment process are presented. Fuel cell stack efficiency and specific power levels are methodically derived from latest experimental studies at the laboratory scale. The overall concept is assessed for a liquid hydrogen fueled short-/medium range aircraft application. Block fuel savings of up to 7.1% are found for an optimum design case based on solid oxide fuel cell technology. The optimum design features a gas turbine water-to-air ratio of 6.1% in cruise and 62% reduced high-level NOx emissions.
Macroeconomic Implications of Switching to process-emission-free Iron and Steel Production in Europe
Nov 2018
Publication
Climate change is one of the most serious threats to the human habitat. The required structural change to limit anthropogenic forcing is expected to fundamentally change daily social and economic life. The production of iron and steel is a special case of economic activities since it is not only associated with combustion but particularly with process emissions of greenhouse gases which have to be dealt with likewise. Traditional mitigation options of the sector like efficiency measures substitution with less emission-intensive materials or scrap-based production are bounded and thus insufficient for rapid decarbonization necessary for complying with long-term climate policy targets. Iron and steel products are basic materials at the core of modern socio-economic systems additionally being essential also for other mitigation options like hydro and wind power. Therefore a system-wide assessment of recent technological developments enabling almost complete decarbonization of the sector is substantially relevant. Deploying a recursive-dynamic multi-region multi-sector computable general equilibrium approach we investigate switches from coke-to hydrogen-based iron and steel technologies in a scenario framework where industry decisions (technological choice and timing) and climate policies are mis-aligned. Overall we find that the costs of industry transition are moderate but still ones that may represent a barrier for implementation because the generation deciding on low-carbon technologies and bearing (macro)economic costs might not be the generation benefitting from it. Our macroeconomic assessment further indicates that anticipated bottom-up estimates of required additional domestic renewable electricity tend to be overestimated. Relative price changes in the economy induce electricity substitution effects and trigger increased electricity imports. Sectoral carbon leakage is an imminent risk and calls for aligned course of action of private and public actors.
Hydrogen Refueling Station Networks for Heavy-duty Vehicles in Future Power Systems
May 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is to use alternatively fuelled vehicles (AFV). Heavy-duty vehicles (HDV) emit a large share of GHG emissions in the transport sector and are therefore the subject of growing attention from global regulators. Fuel cell and green hydrogen technologies are a promising option to decarbonize HDVs as their fast refuelling and long vehicle ranges are consistent with current logistic operational requirements. Moreover the application of green hydrogen in transport could enable more effective integration of renewable energies (RE) across different energy sectors. This paper explores the interplay between HDV Hydrogen Refuelling Stations (HRS) that produce hydrogen locally and the power system by combining an infrastructure location planning model and an electricity system optimization model that takes grid expansion options into account. Two scenarios – one sizing refuelling stations to support the power system and one sizing them independently of it – are assessed regarding their impacts on the total annual electricity system costs regional RE integration and the levelized cost of hydrogen (LCOH). The impacts are calculated based on locational marginal pricing for 2050. Depending on the integration scenario we find average LCOH of between 4.83 euro/kg and 5.36 euro/kg for which nodal electricity prices are the main determining factor as well as a strong difference in LCOH between north and south Germany. Adding HDV-HRS incurs power transmission expansion as well as higher power supply costs as the total power demand increases. From a system perspective investing in HDV-HRS in symbiosis with the power system rather than independently promises cost savings of around seven billion euros per annum. We therefore conclude that the co-optimization of multiple energy sectors is important for investment planning and has the potential to exploit synergies.
World Energy Issues Monitor 2018: Perspectives on the Grand Energy Transition
May 2018
Publication
The World Energy Issues Monitor provides the views of energy leaders from across the globe to highlight the key issues of uncertainty importance and developing signals for the future.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
- The geographical views can now be broken out into a country level.
- The time view allows you to see how specific issues have developed whether globally at a regional or country level
- Issues can also be viewed according to certain categories such as OECD non-OECD G20 countries innovators
An Optimal Fuzzy Logic-Based Energy Management Strategy for a Fuel Cell/Battery Hybrid Power Unmanned Aerial Vehicle
Feb 2022
Publication
With the development of high-altitude and long-endurance unmanned aerial vehicles (UAVs) optimization of the coordinated energy dispatch of UAVs’ energy management systems has become a key target in the research of electric UAVs. Several different energy management strategies are proposed herein for improving the overall efficiency and fuel economy of fuel cell/battery hybrid electric power systems (HEPS) of UAVs. A rule-based (RB) energy management strategy is designed as a baseline for comparison with other strategies. An energy management strategy (EMS) based on fuzzy logic (FL) for HEPS is presented. Compared with classical rule-based strategies the fuzzy logic control has better robustness to power fluctuations in the UAV. However the proposed FL strategy has an inherent defect: the optimization performances will be determined by the heuristic method and the past experiences of designers to a great extent rather than a specific cost function of the algorithm itself. Thus the paper puts forward an improved fuzzy logic-based strategy that uses particle swarm optimization (PSO) to track the optimal thresholds of membership functions and the equivalent hydrogen consumption minimization is considered as the objective function. Using a typical 30 min UAV mission profile all the proposed EMS were verified by simulations and rapid controller prototype (RCP) experiments. Comprehensive comparisons and analysis are presented by evaluating hydrogen consumption system efficiency and voltage bus stability. The results show that the PSO-FL algorithm can further improve fuel economy and achieve superior overall dynamic performance when controlling a UAV’s fuel-cell powertrain.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
Hydrogen Power Focus Shifts from Cars to Heavy Vehicles
Oct 2020
Publication
Hydrogen has been hailed as a promising energy carrier for decades. But compared to the thriving success of hybrid and plug-in electric cars the prospects for cars powered by hydrogen fuel cells have recently diminished mostly due to challenges in bringing down the costs of fuel cells and developing a broad network of fuelling stations.<br/>Beginning in March 2020 three major auto manufacturers—Daimler AG] Volkswagen and General Motors (GM)]—followed the April 2019 move by Honda to back out of the hydrogen-powered passenger car market. Instead these companies and others are looking to develop the technology as an emission-free solution to power heavy commercial and military vehicles with refuelling taking place at centralized locations.
Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives
Jan 2021
Publication
Fuel cells as clean power sources are very attractive for the maritime sector which is committed to sustainability and reducing greenhouse gas and atmospheric pollutant emissions from ships. This paper presents a technological review on fuel cell power systems for maritime applications from the past two decades. The available fuels including hydrogen ammonia renewable methane and methanol for fuel cells under the context of sustainable maritime transportation and their pre-processing technologies are analyzed. Proton exchange membrane molten carbonate and solid oxide fuel cells are found to be the most promising options for maritime applications once energy efficiency power capacity and sensitivity to fuel impurities are considered. The types layouts and characteristics of fuel cell modules are summarized based on the existing applications in particular industrial or residential sectors. The various research and demonstration projects of fuel cell power systems in the maritime industry are reviewed and the challenges with regard to power capacity safety reliability durability operability and costs are analyzed. Currently power capacity costs and lifetime of the fuel cell stack are the primary barriers. Coupling with batteries modularization mass production and optimized operating and control strategies are all important pathways to improve the performance of fuel cell power systems.
Preliminary Analysis of Compression System Integrated Heat Management Concepts Using LH2-Based Parametric Gas Turbine Model
Apr 2021
Publication
The investigation of the various heat management concepts using LH2 requires the development of a modeling environment coupling the cryogenic hydrogen fuel system with turbofan performance. This paper presents a numerical framework to model hydrogen-fueled gas turbine engines with a dedicated heat-management system complemented by an introductory analysis of the impact of using LH2 to precool and intercool in the compression system. The propulsion installations comprise Brayton cycle-based turbofans and first assessments are made on how to use the hydrogen as a heat sink integrated into the compression system. Conceptual tubular compact heat exchanger designs are explored to either precool or intercool the compression system and preheat the fuel to improve the installed performance of the propulsion cycles. The precooler and the intercooler show up to 0.3% improved specific fuel consumption for heat exchanger effectiveness in the range 0.5–0.6 but higher effectiveness designs incur disproportionately higher pressure losses that cancel-out the benefits.
A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments
Mar 2020
Publication
The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018 the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however different power systems are used: main engine generators polymer electrolyte membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Further these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems it is shown that ammonia can be a carbon-free fuel for ships. Moreover among the proposed systems the SOFC power system is the most eco-friendly alternative (up to 92.1%) even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions the results indicate a meaningful approach toward solving GHG problems in the maritime industry.
Multi-vector Energy Management System including Scheduling Electrolyser, Electric Vehicle Charging Station and Other Assets in a Real Scenario
Oct 2022
Publication
Today in the field of energy the main goal is to reduce emissions with 7 the aim of maintaining a clean environment. To reduce energy consumption 8 from fossil fuels new tools for micro-grids have been proposed. In the context 9 of multi-vector energy management systems the present work proposes an 10 optimal scheduler based on genetic algorithms to manage flexible assets in the 11 energy system such as energy storage and manageable demand. This tool is 12 applied to a case study for a Spanish technology park (360 kW consumption 13 peak) with photovoltaic and wind generation (735 kW generation peak) 14 hydrogen production (15 kW) and electric and fuel cell charging stations. 15 It provides an hourly day-ahead scheduling for the existing flexible assets: 16 the electrolyser the electric vehicle charging station the hydrogen refuelling 17 station and the heating ventilation and air conditioning system in one 18 building of the park. 19 A set of experiments is carried out over a period of 14 days using real 20 data and performing computations in real time in order to test and validate 21 the tool. The analysis of results show that the solution maximises the use of 22 local renewable energy production (demand is shifted to those hours when 23 there is a surplus of generation) which means a reduction in energy costs 24 whereas the computational cost allows the implementation of the tool in real 25 time.
Methodologies for Representing the Road Transport Sector in Energy System Models
Dec 2013
Publication
Energy system models are often used to assess the potential role of hydrogen and electric powertrains for reducing transport CO2 emissions in the future. In this paper we review how different energy system models have represented both vehicles and fuel infrastructure in the past and we provide guidelines for their representation in the future. In particular we identify three key modelling decisions: the degree of car market segmentation the imposition of market share constraints and the use of lumpy investments to represent infrastructure. We examine each of these decisions in a case study using the UK MARKAL model. While disaggregating the car market principally affects only the transition rate to the optimum mix of technologies market share constraints can greatly change the optimum mix so should be chosen carefully. In contrast modelling infrastructure using lumpy investments has little impact on the model results. We identify the development of new methodologies to represent the impact of behavioural change on transport demand as a key challenge for improving energy system models in the future.
Decarbonizing Primary Steel Production : Techno-economic Assessment of a Hydrogen Based Green Steel Production Plant in Norway
Mar 2022
Publication
High electricity cost is the biggest challenge faced by the steel industry in transitioning to hydrogen based steelmaking. A steel plant in Norway could have access to cheap emission free electricity high-quality iron ore skilled manpower and the European market. An open-source model for conducting techno-economic assessment of a hydrogen based steel manufacturing plant operating in Norway has been developed in this work. Levelized cost of production (LCOP) for two plant configurations; one procuring electricity at a fixed price and the other procuring electricity from the day-ahead electricity markets with different electrolyzer capacity were analyzed. LCOP varied from $622/tls to $722/tls for the different plant configurations. Procuring electricity from the day-ahead electricity markets could reduce the LCOP by 15%. Increasing the electrolyzer capacity reduced the operational costs but increased the capital investments reducing the overall advantage. Sensitivity analysis revealed that electricity price and iron ore price are the major contributors to uncertainty for configurations with fixed electricity prices. For configurations with higher electrolyzer capacity changes in the iron ore price and parameters related to capital investment were found to affect the LCOP significantly.
Cradle-grave Energy Consumption, Greenhouse Gas and Acidification Emissions in Current and Future Fuel Cell Vehicles: Study Based on Five Hydrogen Production Methods in China
Jun 2022
Publication
Hydrogen fuel cell vehicles (FCVs) are regarded as a promising solution to the problems of energy security and environmental pollution. However the technology is under development and the hydrogen consumption is uncertain. The quantitative evaluation of life cycle energy consumption pollution emissions of current and future FCVs in China involves complex processes and parameters. Therefore this study addresses Life Cycle Assessment (LCA) of FCV and focuses on the key parameters of FCV production and different hydrogen production methods which include steam methane reforming catalysis decomposition methanol steam reforming electrolysis–photovoltaic (PV) and electrolysis Chinese electricity grid mix (CN). Sensitivity analysis of bipolar plate glider mass power density fuel cell system efficiency and energy control strategy are performed whilst accounting for different assumption scenarios. The results show that all impact assessment indicators will decrease by 28.8– 44.3% under the 2030 positive scenario for the production of FCVs. For cradle-grave FCVs the use of hydrogen from electrolysis operated with photovoltaic power reduces global warming potential (GWP) by almost 76.4% relative to steam methane reforming. By contrast the use of hydrogen from electrolysis operated with the Chinese electricity grid mix results in an increase in GWP of almost 158.3%.
Fuel Cell Electrical Vehicles as Mobile Coupled Heat and Power Backup-Plant in Neighbourhoods
Apr 2022
Publication
Fuel cell electric vehicles (FCEVs) can be used during idle times to convert hydrogen into electricity in a decentralised manner thus ensuring a completely renewable energy supply. In addition to the electric power waste heat is generated in the fuel cell stack that can also be used. This paper investigates how the energy demand of a compiled German neighbourhood can be met by FCEVs and identifies potential technical problems. For this purpose energy scenarios are modelled in the Open Energy System Modelling Framework (oemof). An optimisation simulation finds the most energetically favourable solution for the 10-day period under consideration. Up to 49% of the heat demand for heating and hot water can be covered directly by the waste heat of the FCEVs. As the number of battery electric vehicles (BEVs) to be charged increases so does this share. 5 of the 252 residents must permanently provide an FCEV to supply the neighbourhood. The amount of hydrogen required was identified as a problem. If the vehicles cannot be supplied with hydrogen in a stationary way 15 times more vehicles are needed than required in terms of performance due to the energy demand.
Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication
Mar 2022
Publication
Green liquid hydrogen (LH2) could play an essential role as a zero-carbon aircraft fuel to reach long-term sustainable aviation. Excluding challenges such as electrolysis transportation and use of renewable energy in setting up hydrogen (H2) fuel infrastructure this paper investigates the interface between refueling systems and aircraft and the impacts on fuel distribution at the airport. Furthermore it provides an overview of key technology design decisions for LH2 refueling procedures and their effects on the turnaround times as well as on aircraft design. Based on a comparison to Jet A-1 refueling new LH2 refueling procedures are described and evaluated. Process steps under consideration are connecting/disconnecting purging chill-down and refueling. The actual refueling flow of LH2 is limited to a simplified Reynolds term of v · d = 2.35 m2/s. A mass flow rate of 20 kg/s is reached with an inner hose diameter of 152.4 mm. The previous and subsequent processes (without refueling) require 9 min with purging and 6 min without purging. For the assessment of impacts on LH2 aircraft operation process changes on the level of ground support equipment are compared to current procedures with Jet A-1. The technical challenges at the airport for refueling trucks as well as pipeline systems and dispensers are presented. In addition to the technological solutions explosion protection as applicable safety regulations are analyzed and the overall refueling process is validated. The thermodynamic properties of LH2 as a real compressible fluid are considered to derive implications for airport-side infrastructure. The advantages and disadvantages of a subcooled liquid are evaluated and cost impacts are elaborated. Behind the airport storage tank LH2 must be cooled to at least 19 K to prevent two-phase phenomena and a mass flow reduction during distribution. Implications on LH2 aircraft design are investigated by understanding the thermodynamic properties including calculation methods for the aircraft tank volume and problems such as cavitation and two-phase flows. In conclusion the work presented shows that LH2 refueling procedure is feasible compliant with the applicable explosion protection standards and hence does not impact the turnaround procedure. A turnaround time comparison shows that refueling with LH2 in most cases takes less time than with Jet A-1. The turnaround at the airport can be performed by a fuel truck or a pipeline dispenser system without generating direct losses i.e. venting to the atmosphere.
On the Possibility to Simulate the Operation of a SI Engine using Alternative Gaseous Fuels
Nov 2019
Publication
A thermodynamic combustion model developed in AVL BOOST software was used in order to evaluate the pollutant emissions performance and efficiency parameters of a spark ignition engine Renault K7M-710 fueled with compressed natural gas hydrogen and blends of compressed natural gas and hydrogen (hythane). Multiple research studies have concluded that for the near future hythane could be the most promising alternative fuel because it has the advantages of both its components. In our previous work the model was validated for the performance and efficiency parameters by comparison of simulation results with experimental data acquired when the engine was fueled with gasoline. In this work the model was improved and can predict the values of pollutant emissions when the engine is running with the studied alternative fuels. As the percentage of hydrogen in hythane is increased the power of the engine rises the brake specific fuel consumption carbon dioxide carbon monoxide and total unburned hydrocarbon emissions decrease while nitrogen oxides increase. The values of peak fire pressure maximum pressure derivative and peak fire temperature in cycle are higher leading to an increased probability of knock occurrence. To avoid this phenomenon an optimum correlation between the natural gas-hydrogen blend the air-fuel ratio the spark advance and the engine operating condition needs to be found.
Energy Transition in Aviation: The Role of Cryogenic Fuels
Dec 2020
Publication
Aviation is the backbone of our modern society. In 2019 around 4.5 billion passengers travelled through the air. However at the same time aviation was also responsible for around 5% of anthropogenic causes of global warming. The impact of the COVID-19 pandemic on the aviation sector in the short term is clearly very high but the long-term effects are still unknown. However with the increase in global GDP the number of travelers is expected to increase between three- to four-fold by the middle of this century. While other sectors of transportation are making steady progress in decarbonizing aviation is falling behind. This paper explores some of the various options for energy carriers in aviation and particularly highlights the possibilities and challenges of using cryogenic fuels/energy carriers such as liquid hydrogen (LH2) and liquefied natural gas (LNG).
Reliability Analysis of Pyrotechnic Igniter for Hydrogen-Oxygen Rocket Engine with Low Temperature Combustion Instability Failure Mode
Mar 2022
Publication
To evaluate the functional reliability of the pyrotechnic igniter in the failure mode of unstable combustion at low temperature a reliability and reliability sensitivity analysis method based on the combination of an interior ballistic model and Kriging reliability method is proposed. Through the deterministic interior ballistic simulation the failure mode of low temperature unstable combustion of the pyrotechnic igniter is examined while the random variables are introduced to establish the ignition nonlinear implicit function of the pyrotechnic igniter. The ignition display function of the pyrotechnic igniter is established by the Kriging model which avoids the repeated calculation of true limit state function values. This study provides an efficient approach to evaluate the ignition reliability of the pyrotechnic igniter and compared with the traditional Monte Carlo method to verify the accuracy of the results. Finally reliability-based sensitivity indices are presented to quantify the significance of random parameters. It is shown that the influence of the uncertainties can be precisely described and the diameter of the nozzle plays a dominant role in ignition reliability. Additionally ignition experiments of nozzles with different diameters were performed to verify the result of sensitivity. This can further support the detailed design of the pyrotechnic igniter
Thermodynamic Performance and Creep Life Assessment Comparing Hydrogen- and Jet-Fueled Turbofan Aero Engine
Apr 2021
Publication
There is renewed interest in hydrogen as an alternative fuel for aero engines due to their perceived environmental and performance benefits compared to jet fuel. This paper presents a cycle thermal performance energy and creep life assessment of hydrogen compared with jet fuel using a turbofan aero engine. The turbofan cycle performance was simulated using a code developed by the authors that allows hydrogen and jet fuel to be selected as fuel input. The exergy assessment uses both conservations of energy and mass and the second law of thermodynamics to understand the impact of the fuels on the exergy destruction exergy efficiency waste factor ratio environmental effect factor and sustainability index for a turbofan aero engine. Finally the study looks at a top-level creep life assessment on the high-pressure turbine hot section influenced by the fuel heating values. This study shows performance (64% reduced fuel flow rate better SFC) and more extended blade life (15% increase) benefits using liquefied hydrogen fuel which corresponds with other literary work on the benefits of LH2 over jet fuel. This paper also highlights some drawbacks of hydrogen fuel based on previous research work and gives recommendations for future work aimed at maturing the hydrogen fuel concept in aviation.
Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes
Apr 2022
Publication
The presented article aims to design an educational test bench setup for smart grids and renewable energies with multiple features and techniques used in a microgrid. The test bench is designed for students laboratory engineers and researchers which enables electrical microgrid system studies and testing of new advanced control algorithms to optimize the energy efficiency. The idea behind this work is to design hybrid energy sources such as wind power solar photovoltaic power hydroelectric power hydrogen energy and different types of energy storage systems such as batteries pumped storage and flywheel integrating different electrical loads. The user can visualize the state of the components of each emulated scenario through an open-source software that interacts and communicates using OPC Unified Architecture protocol. The researchers can test and validate new solutions to manage the energy behavior in the grid using machine learning and optimization algorithms integrated in the software in form of blocks that can be modified and improved and then simulate the results. A model-based system of engineering is provided which describes the different requirements and case studies of the designed test bench respecting the open-source software and the frugal innovation features in which there is use of low-cost hardware and open-source software. The users obtain the opportunity to add new sources and new loads change software platforms and communicate with other simulators and equipment. The students can understand the different features of smart grids such as defect classification energy forecasting energy optimization and basics of production transmission and consumption.
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
A Study on the Joule-Thomson Effect of During Filling Hydrogen in High Pressure Tank
Dec 2022
Publication
With the development of the hydrogen fuel cell automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogenation process of hydrogenation station. Fuel for hydrogen fuel cell vehicles comes from hydrogen refueling stations. At present the technological difficulty of hydrogenation is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. The Joule-Thomson (JT) effect occurs when high-pressure hydrogen gas passes through the valve assembly which may lead to an increase in hydrogen temperature. The JT effect is generally reflected by the JT coefficient. According to the high pressure hydrogen in the pressure reducing valve the corresponding JT coefficients were calculated by using the VDW equation RK equation SRK equation and PR equation and the expression of JT effect temperature rise was deduced which revealed the hydrogen temperature variation law in the process of reducing pressure. Make clear the relationship between charging parameters and temperature rise in the process of decompression; the flow and thermal characteristics of hydrogen in the process of decompression are revealed. This study provides basic support for experts to achieve throttling optimization of related pressure control system in hydrogen industry
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
What Will Fuel Transport Systems of the Future?
Nov 2011
Publication
This paper seeks to decry the notion of a single solution or “silver bullet” to replace petroleum products with renewable transport fuel. At different times different technological developments have been in vogue as the panacea for future transport needs: for quite some time hydrogen has been perceived as a transport fuel that would be all encompassing when the technology was mature. Liquid biofuels have gone from exalted to unsustainable in the last ten years. The present flavor of the month is the electric vehicle. This paper examines renewable transport fuels through a review of the literature and attempts to place an analytical perspective on a number of technologies.
No more items...