Applications & Pathways
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
Nov 2021
Publication
In this paper the composition function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen oxygen and water) proton and electron transfer in MEA are described in detail including their influencing factors. The failure mechanism of CL (Pt particles CL crack CL flooding etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems a structure optimization strategy for a high‐performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory the drying process of a wet CL is explained. Finally the research direction and future challenges of CL are pointed out hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
The Role of Natural Gas and its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration
Nov 2017
Publication
The pursuit of future energy systems that can meet electricity demands while supporting the attainment of societal environment goals including mitigating climate change and reducing pollution in the air has led to questions regarding the viability of continued use of natural gas. Natural gas use particularly for electricity generation has increased in recent years due to enhanced resource availability from non-traditional reserves and pressure to reduce greenhouse gasses (GHG) from higher-emitting sources including coal generation. While lower than coal emissions current natural gas power generation strategies primarily utilize combustion with higher emissions of GHG and criteria pollutants than other low-carbon generation options including renewable resources. Furthermore emissions from life cycle stages of natural gas production and distribution can have additional detrimental GHG and air quality (AQ) impacts. On the other hand natural gas power generation can play an important role in supporting renewable resource integration by (1) providing essential load balancing services and (2) supporting the use of gaseous renewable fuels through the existing infrastructure of the natural gas system. Additionally advanced technologies and strategies including fuel cells and combined cooling heating and power (CCHP) systems can facilitate natural gas generation with low emissions and high efficiencies. Thus the role of natural gas generation in the context of GHG mitigation and AQ improvement is complex and multi-faceted requiring consideration of more than simple quantification of total or net emissions. If appropriately constructed and managed natural gas generation could support and advance sustainable and renewable energy. In this paper a review of the literature regarding emissions from natural gas with a focus on power generation is conducted and discussed in the context of GHG and AQ impacts. In addition a pathway forward is proposed for natural gas generation and infrastructure to maximize environmental benefits and support renewable resources in the attainment of emission reductions.
Expectations as a Key to Understanding Actor Strategies in the Field of Fuel Cell and Hydrogen Vehicles
Feb 2012
Publication
Due to its environmental impact the mobility system is increasingly under pressure. The challenges to cope with climate change air quality depleting fossil resources imply the need for a transition of the current mobility system towards a more sustainable one. Expectations and visions have been identified as crucial in the guidance of such transitions and more specifically of actor strategies. Still it remained unclear why the actors involved in transition activities appear to change their strategies frequently and suddenly. The empirical analysis of the expectations and strategies of three actors in the field of hydrogen and fuel cell technology indicates that changing actor strategies can be explained by rather volatile expectations related to different levels. Our case studies of the strategies of two large car manufacturers and the German government demonstrate that the car manufacturers refer strongly to expectations about the future regime while expectations related to the socio-technical landscape level appear to be crucial for the strategy of the German government.
Facile Synthesis of Palladium Phosphide Electrocatalysts and their Activity for the Hydrogen Oxidation, Hydrogen Evolutions, Oxygen Reduction and Formic Acid Oxidation Reactions
Nov 2015
Publication
We demonstrate a new approach for producing highly dispersed supported metal phosphide powders with small particle size improved stability and increased electrocatalytic activity towards some useful reactions. The approach involves a one-step conversion of metal supported on high surface area carbon to the metal phosphide utilising a very simple and scalable synthetic process. We use this approach to produce PdP2 and Pd5P2 particles dispersed on carbon with a particle size of 4.5–5.5 nm by converting a commercially available Pd/C powder. The metal phosphide catalysts were tested for the oxygen reduction hydrogen oxidation and evolution and formic acid oxidation reactions. Compared to the unconverted Pd/C material we find that alloying the P at different levels shifts oxide formation on the Pd to higher potentials leading to greater stability during cycling studies (20% more ECSA retained 5k cycles) and in thermal treatment under air. Hydrogen absorption within the PdP2 and Pd5P2 particles is enhanced. The phosphides compare favourably to the most active catalysts reported to date for formic acid oxidation especially PdP2 and there is a significant decrease in poisoning of the surface compared to Pd alone. The mechanistic changes in the reactions studied are rationalised in terms of increased water activation on the surface phosphorus atoms of the catalyst. One of the catalysts PdP2/C is tested in a fuel cell as anode and cathode catalyst and shows good performance.
A Novel Remaining Useful Life Prediction Method for Hydrogen Fuel Cells Based on the Gated Recurrent Unit Neural Network
Jan 2022
Publication
The remaining useful life (RUL) prediction for hydrogen fuel cells is an important part of its prognostics and health management (PHM). Artificial neural networks (ANNs) are proven to be very effective in RUL prediction as they do not need to understand the failure mechanisms behind hydrogen fuel cells. A novel RUL prediction method for hydrogen fuel cells based on the gated recurrent unit ANN is proposed in this paper. Firstly the data were preprocessed to remove outliers and noises. Secondly the performance of different neural networks is compared including the back propagation neural network (BPNN) the long short-term memory (LSTM) network and the gated recurrent unit (GRU) network. According to our proposed method based on GRU the root mean square error was 0.0026 the mean absolute percentage error was 0.0038 and the coefficient of determination was 0.9891 for the data from the challenge datasets provided by FCLAB Research Federation when the prediction starting point was 650 h. Compared with the other RUL prediction methods based on the BPNN and the LSTM our prediction method is better in both prediction accuracy and convergence rate.
Recent Developments in High-Performance Nafion Membranes for Hydrogen Fuel Cells Applications
Aug 2021
Publication
As a promising alternative to petroleum fossil energy polymer electrolyte membrane fuel cell has drawn considerable attention due to its low pollution emission high energy density portability and long operation times. Proton exchange membrane (PEM) like Nafion plays an essential role as the core of fuel cell. A good PEM must have satisfactory performance such as high proton conductivity excellent mechanical strength electrochemical stability and suitable for making membrane electrode assemblies (MEA). However performance degradation and high permeability remain the main shortcomings of Nafion. Therefore the development of a new PEM with better performance in some special conditions is greatly desired. In this review we aim to summarize the latest achievements in improving the Nafion performance that works well under elevated temperature or methanol-fueled systems. The methods described in this article can be divided into some categories utilizing hydrophilic inorganic material metal-organic frameworks nanocomposites and ionic liquids. In addition the mechanism of proton conduction in Nafion membranes is discussed. These composite membranes exhibit some desirable characteristics but the development is still at an early stage. In the future revolutionary approaches are needed to accelerate the application of fuel cells and promote the renewal of energy structure.
Optimal Planning of Hybrid Electric-hydrogen Energy Storage Systems via Multi-objective Particle Swarm Optimization
Jan 2023
Publication
In recent years hydrogen is rapidly developing because it is environmentally friendly and sustainable. In this case hydrogen energy storage systems (HESSs) can be widely used in the distribution network. The application of hybrid electric-hydrogen energy storage systems can solve the adverse effects caused by renewable energy access to the distribution network. In order to ensure the rationality and effectiveness of energy storage systems (ESSs) configuration economic indicators of battery energy storage systems (BESSs) and hydrogen energy storage systems power loss and voltage fluctuation are chosen as the fitness function in this paper. Meanwhile multi-objective particle swarm optimization (MOPSO) is used to solve Pareto non-dominated set of energy storage systems’ optimal configuration scheme in which the technique for order preference by similarity to ideal solution (TOPSIS) based on information entropy weight (IEW) is used select the optimal solution in Pareto non-dominated solution set. Based on the extended IEEE-33 system and IEEE-69 system the rationality of energy storage systems configuration scheme under 20% and 35% renewable energy penetration rate is analyzed. The simulation results show that the power loss can be reduced by 7.9%–22.8% and the voltage fluctuation can be reduced by 40.0%–71% when the renewable energy penetration rate is 20% and 35% respectively in IEEE-33 and 69 nodes systems. Therefore it can be concluded that the locations and capacities of energy storage systems obtained by multi-objective particle swarm optimization can improve the distribution network stability and economy after accessing renewable generation.
A Quantitative Study of Policy-driven Changes and Forecasts in the Development of the Hydrogen Transportation Industry
Feb 2022
Publication
Through data mining and analysis of the word frequency and occurrence position of industrial policy keywords the main policy parameters affecting industrial development are determined and the functional relationship between industrial policy and industrial development is obtained through multi-parameter non-linear regression: Yit−1 (y1 y2 y3 y4 y5) = β1it X1 + β2it ln X2 + β3it ln X3 + β4it X1it ∗ ln X3 + εit . The time series function of the industrial development index: Y (t) = 0.174 ∗ e (0.256∗t) is established and the industrial development under the influence of next year’s policy is predicted. It is concluded from the mathematical expression of the statistical model that there is a certain coupling effect between different policies and that industrial development is influenced by the joint effect on the parent and sub-industries. This ultimately proves that there is a clear correlation between policy and industry development.
Modeling the Effects of Implementation of Alternative Ways of Vehicle Powering
Nov 2021
Publication
The trend to replace traditional fossil fuel vehicles is becoming increasingly apparent. The replacement concerns the use of pure biofuels or in blends with traditional fuels the use of hydrogen as an alternative fuel and above all the introduction of electric propulsion. The introduction of new types of vehicle propulsion affects the demand for specific fuels the needs for new infrastructure or the nature of the emissions to the environment generated by fuel production and vehicle operation. The article presents a mathematical model using the difference of two logistic functions the first of which describes the development of the production of a specific type of vehicle and the second the withdrawal of this type of vehicle from traffic after its use. The model makes it possible to forecast both the number of vehicles of each generation as a function of time as well as changes in energy demand from various sources and changes in exhaust emissions. The results of the numerical simulation show replacing classic vehicles with alternative vehicles increases the total energy demand if the generation of the next generation occurs earlier than the decay of the previous generation of vehicles and may decrease in the case of overlapping or delays in the creation of new vehicles compared to the course of the decay function of the previous generation. For electric vehicles carbon dioxide emissions are largely dependent on the emissions from electricity generation. The proposed model can be used to forecast technology development variants as well as analyze the current situation based on the approximation of real data from Vehicle Registration Offices.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
Incorporating Homeowners' Preferences of Heating Technologies in the UK TIMES Model
Feb 2018
Publication
Hot water and space heating account for about 80% of total energy consumption in the residential sector in the UK. It is thus crucial to decarbonise residential heating to achieve UK's 2050 greenhouse gas reduction targets. However the decarbonisation transitions determined by most techno-economic energy system models might be too optimistic or misleading for relying on cost minimisation alone and not considering households' preferences for different heating technologies. This study thus proposes a novel framework to incorporate heterogeneous households' (HHs) preferences into the modelling process of the UK TIMES model. The incorporated preferences for HHs are based on a nationwide survey on homeowners' choices of heating technologies. Preference constraints are then applied to regulate the HHs' choices of heating technologies to reflect the survey results. Consequently compared to the least cost transition pathway the preference-driven pathway adopts heating technologies gradually without abrupt increases of market shares. Heat pumps and electric heaters are deployed much less than in the cost optimal result. Extensive district heating using low-carbon fuels and conservation measures should thus be deployed to provide flexibility for decarbonisation. The proposed framework can also incorporate preferences for other energy consumption technologies and be applied to other linear programming based energy system models.
Hydrogen Double Compression-expansion Engine (H2DCEE): A Sustainable Internal Combustion Engine with 60%+ Brake Thermal Efficiency Potential at 45 Bar BMEP
May 2022
Publication
Hydrogen (H2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct injection (HPDI) nonpremixed H2 combustion. Experimentally validated 3D CFD simulations are combined with 1D GT-Power simulations to make the predictions. Several modifications to the system design and operating conditions are systematically implemented and their effects are investigated. Addition of a catalytic burner in the combustor exhaust insulation of the expander dehumidification of the EGR and removal of the intercooling yielded 1.5 1.3 0.8 and 0.5%-point BTE improvements respectively. Raising the peak pressure to 300 bar via a larger compressor further improved the BTE by 1.8%-points but should be accompanied with a higher injector-cylinder differential pressure. The λ of ~1.4 gave the optimum tradeoff between the mechanical and combustion efficiencies. A peak BTE of 60.3% is reported with H2DCEE which is ~5%-points higher than the best diesel-fueled DCEE alternative.
Bridging the Maritime-Hydrogen Cost-Gap: Real Options Analysis of Policy Alternatives
May 2022
Publication
Alternative and especially renewable marine fuels are needed to reduce the environmental and climate impacts of the shipping sector. This paper investigates the business case for hydrogen as an alternative fuel in a new-built vessel utilizing fuel cells and liquefied hydrogen. A real option approach is used to model the optimal time and costs for investment as well as the value of deferring an investment as a result of uncertainty. This model is then used to assess the impact of a carbon tax on a ship owner’s investment decision. A low carbon tax results in ship owners deferring investments which then slows the uptake of the technology. We recommend that policymakers set a high carbon tax at an early stage in order to help hydrogen compete with fossil fuels. A clear and timely policy design promotes further investments and accelerates the uptake of new technologies that can fulfill decarbonization targets.
Net Zero in the Heating Sector: Technological Options and Environmental Sustainability from Now to 2050
Jan 2021
Publication
Heating and hot water within buildings account for almost a quarter of global energy consumption. Approximately 90% of this heat is derived directly from the combustion of fossil fuels primarily natural gas leading to the unabated emission of carbon dioxide. This paper assesses the environmental sustainability of a range of heating technologies and scenarios on a life cycle basis. The major technologies considered are natural gas boilers air source heat pumps hydrogen boilers and direct electric heaters. The scenarios use the UK as an example due to its status as a major economy with a legally-binding net-zero carbon target for 2050; they consider plausible future electricity and natural gas mixes including the potential growth of domestic shale gas. The environmental impacts are estimated using ReCiPe 2016. Current gas boilers have a climate change impact of 220 g CO2 eq./kWh of heat which could fall to 64 g CO2 eq./kWh for boilers fuelled by hydrogen derived from natural gas with carbon capture. Heat from electric air source heat pumps or hydrogen from electrolysis can achieve net zero with a decarbonised electricity mix but electrolysis has the highest energy demand of all options which leads to the highest impacts across 17 of the 19 categories. Despite their high carbon emissions gas boilers remain the lowest impact option across 12 categories as they avoid the impacts related to electricity generation including metal depletion toxicities and eutrophication. By 2050 the best performing scenario sees the climate change impact of the heating mix fall by 95%; this is achieved by prioritising electric air source heat pumps without hydrofluorocarbon refrigerants alongside demand reduction. The results show that if infrastructure and financial challenges can be overcome there are several viable decarbonisation strategies for heating with heat pumps offering the most environmentally sustainable option of those considered here. However increased renewable electricity demand may worsen some environmental impacts compared to natural gas boilers.
Systematic Overview of Newly Available Technologies in the Green Maritime Sector
Jan 2023
Publication
The application of newly available technologies in the green maritime sector is difficult due to conflicting requirements and the inter-relation of different ecological technological and economical parameters. The governments incentivize radical reductions in harmful emissions as an overall priority. If the politics do not change the continuous implementation of stricter government regulations for reducing emissions will eventually result in the mandatory use of what we currently consider alternative fuels. Immediate application of radically different strategies would significantly increase the economic costs of maritime transport thus jeopardizing its greatest benefit: the transport of massive quantities of freight at the lowest cost. Increased maritime transport costs would immediately disrupt the global economy as seen recently during the COVID-19 pandemic. For this reason the industry has shifted towards a gradual decrease in emissions through the implementation of “better” transitional solutions until alternative fuels eventually become low-cost fuels. Since this topic is very broad and interdisciplinary our systematic overview gives insight into the state-of-the-art available technologies in green maritime transport with a focus on the following subjects: (i) alternative fuels; (ii) hybrid propulsion systems and hydrogen technologies; (iii) the benefits of digitalization in the maritime sector aimed at increasing vessel efficiency; (iv) hull drag reduction technologies; and (v) carbon capture technologies. This paper outlines the challenges advantages and disadvantages of their implementation. The results of this analysis elucidate the current technologies’ readiness levels and their expected development over the coming years.
Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration
Nov 2021
Publication
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry government university and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford Connecticut metropolitan area. The workshop involved identifying relevant location factors rapid prototyping of station network designs and developing consensus on a final design. The geodesign platform which was designed specifically for facility location problems enables breakout groups to add or delete stations with a simple point-and-click operation view and overlay different map layers compute performance metrics and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.
The Role of Synthetic Fuels for a Carbon Neutral Economy
Apr 2017
Publication
Fossil fuels depletion and increasing environmental impacts arising from their use call for seeking growing supplies from renewable and nuclear primary energy sources. However it is necessary to simultaneously attend to both the electrical power needs and the specificities of the transport and industrial sector requirements. A major question posed by the shift away from traditional fossil fuels towards renewable energy sources lies in matching the power demand with the daily and seasonal oscillation and the intermittency of these natural energy fluxes. Huge energy storage requirements become necessary or otherwise the decline of the power factor of both the renewable and conventional generation would mean loss of resources. On the other hand liquid and gaseous fuels for which there is vast storage and distribution capacity available appear essential to supply the transport sector for a very long time ahead besides their domestic and industrial roles. Within this context the present assessment suggests that proven technologies and sound tested principles are available to develop an integrated energy system relying on synthetic fuels. These would incorporate carbon capture and utilization in a closed carbon cycle progressively relying mostly on solar and/or nuclear primary sources providing both electric power and gaseous/liquid hydrocarbon fuels having ample storage capacity and able to timely satisfy all forms of energy demand. The principles and means are already available to develop a carbon-neutral synthetic fuel economy.
No more items...