Applications & Pathways
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Reaching Zero with Renewables
Sep 2020
Publication
Patrick Akerman,
Pierpaolo Cazzola,
Emma Skov Christiansen,
Renée Van Heusden,
Joanna Kolomanska-van Iperen,
Johannah Christensen,
Kilian Crone,
Keith Dawe,
Guillaume De Smedt,
Alex Keynes,
Anaïs Laporte,
Florie Gonsolin,
Marko Mensink,
Charlotte Hebebrand,
Volker Hoenig,
Chris Malins,
Thomas Neuenhahn,
Ireneusz Pyc,
Andrew Purvis,
Deger Saygin,
Carol Xiao and
Yufeng Yang
Eliminating CO2 emissions from industry and transport in line with the 1.5⁰C climate goal
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
Fuel Cell Cars in a Microgrid for Synergies Between Hydrogen and Electricity Networks
Nov 2016
Publication
Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In this paper we present a community microgrid with photovoltaic systems wind turbines and fuel cell electric vehicles that are used to provide vehicle-to-grid power when renewable power generation is scarce. Excess renewable power generation is used to produce hydrogen which is stored in a refilling station. A central control system is designed to operate the system in such a way that the operational costs are minimized. To this end a hybrid model for the system is derived in which both the characteristics of the fuel cell vehicles and their traveling schedules are considered. The operational costs of the system are formulated considering the presence of uncertainty in the prediction of the load and renewable energy generation. A robust minmax model predictive control scheme is developed and finally a case study illustrates the performance of the designed system.
Optimal Energy Management System Using Biogeography Based Optimization for Grid-connected MVDC Microgrid with Photovoltaic, Hydrogen System, Electric Vehicles and Z-source Converters
Oct 2021
Publication
Currently the technology associated with charging stations for electric vehicles (EV) needs to be studied and improved to further encourage its implementation. This paper presents a new energy management system (EMS) based on a Biogeography-Based Optimization (BBO) algorithm for a hybrid EV charging station with a configuration that integrates Z-source converters (ZSC) into medium voltage direct current (MVDC) grids. The EMS uses the evolutionary BBO algorithm to optimize a fitness function defining the equivalent hydrogen consumption/generation. The charging station consists of a photovoltaic (PV) system a local grid connection two fast charging units and two energy storage systems (ESS) a battery energy storage (BES) and a complete hydrogen system with fuel cell (FC) electrolyzer (LZ) and hydrogen tank. Through the use of the BBO algorithm the EMS manages the energy flow among the components to keep the power balance in the system reducing the equivalent hydrogen consumption and optimizing the equivalent hydrogen generation. The EMS and the configuration of the charging station based on ZSCs are the main contributions of the paper. The behaviour of the EMS is demonstrated with three EV connected to the charging station under different conditions of sun irradiance. In addition the proposed EMS is compared with a simpler EMS for the optimal management of ESS in hybrid configurations. The simulation results show that the proposed EMS achieves a notable improvement in the equivalent hydrogen consumption/generation with respect to the simpler EMS. Thanks to the proposed configuration the output voltage of the components can be upgraded to MVDC while reducing the number of power converters compared with other configurations without ZSC.
Integrating a Hydrogen Fuel Cell Electric Vehicle with Vehicle-to-grid Technology, Photovoltaic Power and a Residential Building
Feb 2018
Publication
This paper presents the results of a demonstration project including building-integrated photovoltaic (BIPV) solar panels a residential building and a hydrogen fuel cell electric vehicle (FCEV) for combined mobility and power generation aiming to achieve a net zero-energy residential building target. The experiment was conducted as part of the Car as Power Plant project at The Green Village in the Netherlands. The main objective was to assess the end-user’s potential of implementing FCEVs in vehicle-to-grid operation (FCEV2G) to act as a local energy source. FCEV2G field test performance with a Hyundai ix35 FCEV are presented. The car was adapted using a power output socket capable of delivering up to 10 kW direct current (DC) to the alternating current (AC) national grid when parked via an off-board (grid-tie) inverter. A Tank-To-AC-Grid efficiency (analogous to Tank- To-Wheel efficiency when driving) of 44% (measured on a Higher Heating Value basis) was obtained when the car was operating in vehicle-to-grid (V2G) mode at the maximum power output. By collecting and analysing real data on the FCEV power production in V2G mode and on BIPV production and household consumption two different operating modes for the FCEV offering balanced services to a residential microgrid were identified namely fixed power output and load following. Based on the data collected one-year simulations of a microgrid consisting of 10 all-electric dwellings and 5 cars with the different FCEV2G modes of operation were performed. Simulation results were evaluated on the factors of autonomy self-consumption of locally produced energy and net-energy consumption by implementing different energy indicators. The results show that utilizing an FCEV working in V2G mode can reduce the annual imported electricity from the grid by approximately 71% over one year and aiding the buildings in the microgrid to achieve a net zero-energy building target. Furthermore the simulation results show that utilizing the FCEV2G setup in both modes analysed could be economically beneficial for the end-user if hydrogen prices at the pump fall below 8.24 €/kg.
Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area
Feb 2022
Publication
Green hydrogen is addressed as a promising solution to decarbonize industrial and mobility sectors. In this context ports could play a key role not only as hydrogen users but also as suppliers for industrial plants with which they have strong commercial ties. The implementation of hydrogen technologies in ports has started to be addressed as a strategy for renewable energy transition but still requires a detailed evaluation of the involved costs which cannot be separated from the correct design and operation of the plant. Hence this study proposes the design and operation optimization of a hydrogen production and storage system in a typical Italian port. Multi-objective optimization is performed to determine the optimal levelized cost of hydrogen in environmental and techno-economic terms. A Polymer Electrolyte Membrane (PEM) electrolyzer powered by a grid-integrated photovoltaic (PV) plant a compression station and two-pressure level storage systems are chosen to provide hydrogen to a hydrogen refueling station for a 20-car fleet and satisfy the demand of the hydrogen batch annealing in a steel plant. The results report that a 341 kWP PV plant 89 kW electrolyzer and 17 kg hydrogen storage could provide hydrogen at 7.80 €/kgH2 potentially avoiding about 153 tCO2eq/year (120 tCO2eq/year only for the steel plant).
Fuel Cell Electric Vehicle as a Power Plant and SOFC as a Natural Gas Reformer: An Exergy Analysis of Different System Designs
Apr 2016
Publication
Delft University of Technology under its ‘‘Green Village” programme has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity heat and hydrogen. It comprises three main zones: a hydrogen production zone a parking zone and a pump station zone. This study focuses mainly on the hydrogen production zone which assesses four different system designs in two different operation modes of the facility: Car as Power Plant (CaPP) mode corresponding to the open period of the facility which uses fuel cell electric vehicles (FCEVs) as energy and water producers while parked; and Pump mode corresponding to the closed period which compresses the hydrogen and pumps to the vehicle’s fuel tank. These system designs differ by the reforming technology: the existing catalytic reformer (CR) and a solid oxide fuel cell operating as reformer (SOFCR); and the option of integrating a carbon capture and storage (CCS). Results reveal that the SOFCR unit significantly reduces the exergy destruction resulting in an improvement of efficiency over 20% in SOFCR-based system designs compared to CR-based system designs in both operation modes. It also mitigates the reduction in system efficiency by integration of a CCS unit achieving a value of 2% whereas in CR-based systems is 7–8%. The SOFCR-based system running in Pump mode achieves a trigeneration efficiency of 60%.
Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems
Jun 2021
Publication
The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB) which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy the best compromise between costs and PEMFC/LIB lifetime could be determined. However this is still a challenging yet crucial aspect rarely addressed in the literature and rarely yet explored. To fill this gap a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.
Extremely Halophilic Biohydrogen Producing Microbial Communities from High-Salinity Soil and Salt Evaporation Pond
Jun 2021
Publication
Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities strategies can be developed to increase biohydrogen molar yield.
A Review of Heavy-Duty Vehicle Powertrain Technologies Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles
Jun 2021
Publication
Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change pollution and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV battery-electric HDV and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism performance metrics and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies highlighting the advantages and disadvantages of each is also presented along with future perspectives of the HDV sector. Overall diesel engine in HDVs will remain an important technology in the short-term future due to the existing infrastructure and lower costs despite their high emissions while battery-electric HDV technology and hydrogen fuel cell HDV technology will be slowly developed to eliminate their barriers including costs infrastructure and performance limitations to penetrate the HDV market.
Hydrogen as Energy Sources—Basic Concepts
Sep 2021
Publication
This paper covers the hydrogen technologies regarding the role of hydrogen as an energy carrier and the possibilities of its production and use. It is initially presented the modalities and the efficiency of the current technologies of obtaining hydrogen detailing its obtaining by the electrolysis of the water the electrochemical efficiency and the specific consumption of electricity as well as the thermodynamics of the electrochemical processes. The following paragraph addresses hydrogen conversion possibilities. This paragraph details the thermodynamic analysis of the fuel cell the external characteristic of the fuel cell and the types of fuel cell. The last paragraph addresses the possibilities of using the fuel cells for electrical vehicles and cogeneration systems for buildings.In this context the traditional transport and distribution grid will have to adapt to the new realities as they will need to actively participate in the internal energy market by the transformation of the traditional electricity grid in energy flow from unidirectional to bidirectional through the production of hydrogen offering the same facilities as the gas grid.
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications
Sep 2021
Publication
Biofuel a cost-effective safe and environmentally benign fuel produced from renewable sources has been accepted as a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based fuels. The current work examines the classification generation and utilization of biofuels particularly in internal combustion engine (ICE) applications. Biofuels are classified according to their physical state technology maturity the generation of feedstock and the generation of products. The methods of production and the advantages of the application of biogas bioalcohol and hydrogen in spark ignition engines as well as biodiesel Fischer– Tropsch fuel and dimethyl ether in compression ignition engines in terms of engine performance and emission are highlighted. The generation of biofuels from waste helps in waste minimization proper waste disposal and sanitation. The utilization of biofuels in ICEs improves engine performance and mitigates the emission of poisonous gases. There is a need for appropriate policy frameworks to promote commercial production and seamless deployment of these biofuels for transportation applications with a view to guaranteeing energy security.
Hydrogen Mobility Europe (H2ME): Vehicle and Hydrogen Refuelling Station Deployment Results
May 2018
Publication
Hydrogen Mobility Europe (H2ME 2015–2022) is the largest European Fuel Cells and Hydrogen Joint Undertaking (EU FCH JU)-funded hydrogen light vehicle and infrastructure demonstration. Up until April 2017 the 40 Daimler passenger car fuel cell electric vehicles (FCEVs) and 62 Symbio Fuel Cell-Range Extended Electric Vans (FC-REEV)-vans deployed by the project drove 625300 km and consumed a total of 7900 kg of hydrogen with no safety incidents. During its first year of operation (to April 2017) the NEL Hydrogen Fueling HRS (hydrogen refuelling station) in Kolding Denmark dispensed 900 kg of hydrogen and demonstrated excellent reliability (98.2% availability) with no safety incidents. The average hydrogen refuelling time for passenger cars is comparable to that for conventional vehicles (2–3 min).
Testing Programme for Hydrogen Tolerance Tests of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The THyGA project (‘Testing Hydrogen admixture for Gas Applications’) focusses on technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end-user appliances with hydrogen / natural gas blends.<br/>The core of the project is a broad experimental campaign with the aim to conduct up to 100 hydrogen tolerance tests. In addition the technical status quo and present knowledge about hydrogen impact on domestic and commercial appliances are assessed and potential future developments of rules and standards are discussed. Also mitigation strategies for coping with high levels of hydrogen admixture will be developed. By this broad approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies and to which extent in order to identify the regime in which a safe efficient and low-polluting operation is possible.<br/>The series of public reports by the THyGA project starts with several publications from work package 2 which sets the basis for the upcoming results and discussion of the experimental campaign as well as mitigation and standardisation topics.<br/>This report D2.5 completes the series of public reports from work package 2. It explains the steps of development of the test programme for gas-fired appliance tests with hydrogen admixture and especially describes the exchange between the THyGA partners and the external stakeholders.<br/>The report also explains the process of acquisition of appliances to test and method of selecting appliances.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries
Mar 2019
Publication
To achieve a vehicle-efficient energy management system an architecture composed of a PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing aiming at minimizing the total cost achieving a cheaper system that can achieve the requirements of the speed profiles. The chosen vehicle is an urban transport bus which must meet the Buenos Aires Driving Cycle and the Manhattan Driving Cycle. The combination of batteries and supercapacitors allows a better response to the vehicle’s power demand since it combines the high energy density of the batteries with the high power density of the supercapacitors allowing the best absorption of energy coming from braking. In this way we address the rapid changes in power without reducing the global efficiency of the system. Optimum use of storage systems and fuel cell is analyzed through dynamic programming.
A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen Roadmap
Oct 2020
Publication
Power to hydrogen (P2H) provides a promising solution to the geographic mismatch between sources of renewable energy and the market due to its technological maturity flexibility and the availability of technical and economic data from a range of active demonstration projects. In this review we aim to provide an overview of the status of P2H analyze its technical barriers and solutions and propose potential opportunities for future research and industrial demonstrations. We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification. Strong evidence shows that an addition of about 10% hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances and may therefore extend the asset value of the pipelines after natural gas is depleted. To obtain pure hydrogen from hydrogen-enriched natural gas (HENG) mixtures end-user separation is inevitable and can be achieved through membranes adsorption and other promising separation technologies. However novel materials with high selectivity and capacity will be the key to the development of industrial processes and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG. It is also worth investigating the feasibility of electrochemical separation (hydrogen pumping) at a large scale and its energy analysis. Cryogenics may only be feasible when liquefied natural gas (LNG) is one of the major products. A range of other technological and operational barriers and opportunities such as water availability byproduct (oxygen) utilization and environmental impacts are also discussed. This review will advance readers’ understanding of P2H and foster the development of the hydrogen economy.
Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review
Sep 2021
Publication
This article provides an overview of modern technologies and implemented projects in the field of renewable energy systems for the electrification of railway transport. In the first part the relevance of the use of renewable energy on the railways is discussed. Various types of power-generating systems in railway stations and platforms along the track as well as in separate areas are considered. The focus is on wind and solar energy conversion systems. The second part is devoted to the analysis of various types of energy storage devices used in projects for the electrification of railway transport since the energy storage system is one of the key elements in a hybrid renewable energy system. Systems with kinetic storage electrochemical storage batteries supercapacitors hydrogen energy storage are considered. Particular attention is paid to technologies for accumulating and converting hydrogen into electrical energy as well as hybrid systems that combine several types of storage devices with different ranges of charge/discharge rates. A comparative analysis of various hybrid electric power plant configurations depending on the functions they perform in the electrification systems of railway transport has been carried out.
Green Hydrogen Powering Sustainable Festivals: Public Perceptions of Generators, Production and Ownership
Nov 2022
Publication
This paper is the first to explore public perceptions about a particular market niche for hydrogen; mobile generators. By utilising a combined research approach including in-situ surveys and online focus groups this paper explores what festival audience members and residents who live near festival sites think about the displacement of incumbent diesel generator technology with hydrogen alternatives. We investigate if hydrogen production methods are important in informing perceptions and subsequent support including the extent to which participants are influenced by the organisation or entity that produces the fuel and stands to profit from its sale. In addition to a primary focus on hydrogen energy we reflect upon how sustainability might be better conceptualised in a festival context. Our findings reveal broad support for hydrogen generators the use of green hydrogen as a fuel to generate electricity and community-led hydrogen production.
Industrial Energy Use and Carbon Emissions Reduction in the Chemicals Sector: A UK Perspective
Aug 2017
Publication
The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2 ) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK) although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials cleaning fluids composites dyes paints pharmaceuticals plastics and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions has been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further short-term energy and CO2 emissions savings in chemicals processing but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g. carbon capture and storage (CCS) energy efficiency techniques and bioenergy] alongside a decarbonisation of the electricity supply.
Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle
Jun 2021
Publication
For commercial applications the durability and economy of the fuel cell hybrid system have become obstacles to be overcome which are not only affected by the performance of core materials and components but also closely related to the energy management strategy (EMS). This paper takes the 7.9 t fuel cell logistics vehicle as the research object and designed the EMS from two levels of qualitative and quantitative analysis which are the composite fuzzy control strategy optimized by genetic algorithm and Pontryagin’s minimum principle (PMP) optimized by objective function respectively. The cost function was constructed and used as the optimization objective to prolong the life of the power system as much as possible on the premise of ensuring the fuel economy. The results indicate that the optimized PMP showed a comprehensive optimal performance the hydrogen consumption was 3.481 kg/100 km and the cost was 13.042 $/h. The major contribution lies in that this paper presents a method to evaluate the effect of different strategies on vehicle performance including fuel economy and durability of the fuel cell and battery. The comparison between the two totally different strategies helps to find a better and effective solution to reduce the lifetime cost.
Potentialities of Hydrogen Enriched Natural Gas for Residential Heating Decarbonization and Impact Analysis on Premixed Boilers
Sep 2019
Publication
Nowadays decarbonization of energy economy is a topical theme and several pathways are under discussion. Gaseous fuels will play a primary role during this transition and the production of renewable or low carbon-impact gaseous fuels is necessary to deal with this challenge. Decarbonization will be sustained by an increasing share of renewables which production intermittency can be critical for the energy system. Renewable hydrogen generation is a viable solution since this energy vector can be produced from electricity with a fast response and injected in the existing natural gas infrastructures granting storage capacity and easy transport. Parallelly to the renewable-based energy production fossil-based energy can be exploited with a low carbon impact using methane from reservoirs to produce hydrogen capturing CO2. The mentioned scenarios will lead to hydrogen enrichment of natural gas which impact on the infrastructures is being actively studied. The effect on end-user devices instead is poorly analysed but is fundamental to be assessed. This paper highlights the impact on the widely used premixed condensing boilers which will be fired with hydrogen enriched natural gas in the near future and the changes required to components.
Hydrogen Addition Influence for the Efficient and Ecological Parameters of Heavy-Duty Natural Gas Si Engine
May 2017
Publication
The paper presents the experimental research results of heavy-duty vehicle (public transport bus) fuelled with natural gas and hydrogen fuel mixtures. Spark ignition six cylinder engine tested with different hydrogen additions (from 5% up to 20% according to volume) in the natural gas fuel. The tests were performed on heavy-duty vehicle’s dyno test stand in company “SG dujos Auto” research laboratory. The tests were carried out at three load points and one engine speed. Engine had originally a port fuel injection and exhaust gas recirculation system. Experiments showed that engine fuelled with hydrogen addition was able to achieve lower fuel consumption and brake specific fuel consumption. It was also possible to achieve small increase of engine efficiency. The exhaust gas measurements showed that hydrogen addition in natural gas reduced the CO CO2 and HC emissions because of the H/C atom ratio change in fuel mixture and improved combustion process. The NOx emission level was decreasing although bigger amounts of hydrogen were used in natural gas fuel.
Between Hope And Hype: A Hydrogen Vision For The UK
Mar 2021
Publication
There is a growing conversation around the role that hydrogen can play in the future of the UK and how to best harness its potential to secure jobs show climate leadership promote industrial competitiveness and drive innovation. The Government’s ‘Ten Point Plan for a Green Industrial Revolution’ included hydrogen as one of its ten actions targeting 5GW of ‘low carbon’ hydrogen production by 2030. Britain is thus joining the EU US Japan Germany and a host of other countries seeking to be part of the hydrogen economy of the future.<br/><br/>A focus on clean green hydrogen within targeted sectors and hubs can support multiple Government goals – including demonstrating climate leadership reducing regional inequalities through the ‘levelling up’ agenda and ensuring a green and cost-effective recovery from the coronavirus pandemic which prioritises jobs and skills. A strategic hydrogen vision must be honest and recognise where green hydrogen does not present the optimal pathway for decarbonisation – for instance where alternative solutions are already readily available for roll-out are more efficient and cost-effective. A clear example is hydrogen use for heating where it is estimated to require around 30 times more offshore wind farm capacity than currently available to produce enough green hydrogen to replace all gas boilers as well as adding costs for consumers.<br/><br/>This paper considers the offer of hydrogen for key Government priorities – including an inclusive and resilient economic recovery from the pandemic demonstrating climate leadership and delivering for all of society across the UK. It assesses existing evidence and considers the risks and opportunities and how they might inform a strategic vision for the UK. Ahead of the forthcoming Hydrogen Strategy it sets expectations for Government and outlines key recommendations.
Australian Hydrogen Hubs Study
Nov 2019
Publication
Arup have conducted interviews with targeted industry and government stakeholders to gather data and perspectives to support the development of this study. Arup have also utilised private and publicly available data sources building on recent work undertaken by Geoscience Australia and Deloitte and the comprehensive stakeholder engagement process to inform our research. This study considers the supply chain and infrastructure requirements to support the development of export and domestic hubs. The study aims to provide a succinct “Hydrogen Hubs” report for presentation to the hydrogen working group.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
- Health and safety provisions;
- Environmental considerations;
- Economic and social considerations;
- Land availability with appropriate zoning and buffer distances & ownership (new terminals storage solar PV industries etc.);•
- Availability of gas pipeline infrastructure;
- Availability of electricity grid connectivity backup energy supply or co-location of renewables;
- Road & rail infrastructure (site access);
- Community and environmental concerns and weather. Social licence consideration;
- Berths (berthing depth ship storage loading facilities existing LNG and/or petroleum infrastructure etc.);
- Port potential (current capacity & occupancy expandability & scalability);
- Availability of or potential for skilled workers (construction & operation);
- Availability of or potential for water (recycled & desalinated);
- Opportunity for co-location with industrial ammonia production and future industrial opportunities;
- Interest (projects priority ports state development areas politics etc.);
- Shipping distance to target market (Japan & South Korea);
- Availability of demand-based infrastructure (i.e. refuelling stations).
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources
Jan 2023
Publication
To become sustainable the production of electricity has been oriented towards the adoption of local and renewable sources. Distributed electric and thermal energy generation is more suitable to avoid any possible waste and the Micro Gas Turbine (MGT) can play a key role in this scenario. Due to the intrinsic properties and the high flexibility of operation of this energy conversion system the exploitation of alternative fuels and the integration of the MGT itself with other energy conversion systems (solar field ORC fuel cells) represent one of the most effective strategies to achieve higher conversion efficiencies and to reduce emissions from power systems. The present work aims to review the results obtained by the researchers in the last years. The different technologies are analyzed in detail both separately and under a more complete view considering two or more solutions embedded in micro-grid configurations.
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
Oct 2021
Publication
This paper provides a comprehensive review and critical analysis of the latest research results in addition to an overview of the future challenges and opportunities regarding the use of hydrogen to power internal combustion engines (ICEs). The experiences and opinions of various international research centers on the technical possibilities of using hydrogen as a fuel in ICE are summarized. The advantages and disadvantages of the use of hydrogen as a solution are described. Attention is drawn to the specific physical chemical and operational properties of hydrogen for ICEs. A critical review of hydrogen combustion concepts is provided drawing on previous research results and experiences described in a number of research papers. Much space is devoted to discussing the challenges and opportunities associated with port and direct hydrogen injection technology. A comparison of different fuel injection and ignition strategies and the benefits of using the synergies of selected solutions are presented. Pointing to the previous experiences of various research centers the hazards related to incorrect hydrogen combustion such as early pre‐ignition late pre‐ignition knocking combustion and backfire are described. Attention is focused on the fundamental importance of air ratio optimization from the point of view of combustion quality NOx emissions engine efficiency and performance. Exhaust gas scrubbing to meet future emission regulations for hydrogen powered internal combustion engines is another issue that is considered. The article also discusses the modifications required to adapt existing engines to run on hydrogen. Referring to still‐unsolved problems the reliability challenges faced by fuel injection systems in particular are presented. An analysis of more than 150 articles shows that hydrogen is a suitable alternative fuel for spark‐ignition engines. It will significantly improve their performance and greatly reduce emissions to a fraction of their current level. However its use also has some drawbacks the most significant of which are its high NOx emissions and low power output and problems in terms of the durability and reliability of hydrogen‐fueled engines.
Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives
Nov 2020
Publication
Driven by a small number of niche markets and several decades of application research fuel cell systems (FCS) are gradually reaching maturity to the point where many players are questioning the interest and intensity of its deployment in the transport sector in general. This article aims to shed light on this debate from the road transport perspective. It focuses on the description of the fuel cell vehicle (FCV) in order to understand its assets limitations and current paths of progress. These vehicles are basically hybrid systems combining a fuel cell and a lithium-ion battery and different architectures are emerging among manufacturers who adopt very different levels of hybridization. The main opportunity of Fuel Cell Vehicles is clearly their design versatility based on the decoupling of the choice of the number of Fuel Cell modules and hydrogen tanks. This enables manufacturers to meet various specifications using standard products. Upcoming developments will be in line with the crucial advantage of Fuel Cell Vehicles: intensive use in terms of driving range and load capacity. Over the next few decades long-distance heavy-duty vehicles and fleets of taxis or delivery vehicles will develop based on range extender or mild hybrid architectures and enable the hydrogen sector to mature the technology from niche markets to a large-scale market.
Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains
Jun 2017
Publication
Hydrogen is a promising energy carrier in the clean energy systems currently being developed. However its effectiveness in mitigating greenhouse gas (GHG) emissions requires conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This study focuses on the hydrogen for the transport sector in particular renewable hydrogen that is produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The stages of the supply chains include hydrogen being produced overseas converted into a transportable hydrogen carrier (liquid hydrogen or methylcyclohexane) imported to Japan by sea distributed to hydrogen filling stations restored from the hydrogen carrier to hydrogen and filled into fuel cell vehicles. For comparison an analysis is also carried out with hydrogen produced by steam reforming of natural gas. Foreground data related to the hydrogen supply chains are collected by literature surveys and the Japanese life cycle inventory database is used as the background data. The analysis results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by reforming of natural gas. A significant piece of the work is to consider the impacts of variations in the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that the production of renewable hydrogen its liquefaction the dehydrogenation of methylcyclohexane and the compression of hydrogen at the filling station are the GHG-intensive stages in the target supply chains.
Design Challenges in Hydrogen-Fueled Rotary Engine-A Review
Jan 2023
Publication
The rotary engine (RE) is a potential power plant for unmanned aerial vehicles (UAVs) and automobiles because of its structural and design merits. However it has some serious drawbacks such as frequent maintenance requirements and excessive fuel consumption. This review paper presents the current status of hydrogen-fueled rotary engine (HRE) technology and identifies the existing research and development gaps in combustion efficiency and performance of this engine that might benefit transportation sector. Focusing primarily on the research from past ten years the crucial challenges encountered in hydrogen-powered rotary engines have been reviewed in terms of knock hydrocarbon (HC) emissions and seal leakages. The paper identifies the recent advances in design concepts and production approaches used in hydrogen-fueled rotary engines such as geometric models of trochoid profiles port configurations fuel utilization systems and currently available computational fluid dynamics (CFD) tools. This review article is an attempt to collect and organize literature on existing design methods up to date and provide recommendations for further improvements in RE technology.
Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus
Feb 2017
Publication
Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74% wind turbine of 45% electrolysis of 67% and fuel cells of 40%.
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant attempts have been placed on the maturity of cooling technologies for electrochemical devices. Nonetheless the existing reviews on the subject have been primarily focused on battery cooling. Conversely heat transfer in other electrochemical systems commonly used for energy conversion and storage has not been subjected to critical reviews. To address this issue the current study gives an overview of the progress and challenges on the thermal management of different electrochemical energy devices including fuel cells electrolysers and supercapacitors. The physicochemical mechanisms of heat generation in these electrochemical devices are discussed in-depth. Physics of the heat transfer techniques currently employed for temperature control are then exposed and some directions for future studies are provided.
Net Zero in the Heating Sector: Technological Options and Environmental Sustainability from Now to 2050
Jan 2021
Publication
Heating and hot water within buildings account for almost a quarter of global energy consumption. Approximately 90% of this heat is derived directly from the combustion of fossil fuels primarily natural gas leading to the unabated emission of carbon dioxide. This paper assesses the environmental sustainability of a range of heating technologies and scenarios on a life cycle basis. The major technologies considered are natural gas boilers air source heat pumps hydrogen boilers and direct electric heaters. The scenarios use the UK as an example due to its status as a major economy with a legally-binding net-zero carbon target for 2050; they consider plausible future electricity and natural gas mixes including the potential growth of domestic shale gas. The environmental impacts are estimated using ReCiPe 2016. Current gas boilers have a climate change impact of 220 g CO2 eq./kWh of heat which could fall to 64 g CO2 eq./kWh for boilers fuelled by hydrogen derived from natural gas with carbon capture. Heat from electric air source heat pumps or hydrogen from electrolysis can achieve net zero with a decarbonised electricity mix but electrolysis has the highest energy demand of all options which leads to the highest impacts across 17 of the 19 categories. Despite their high carbon emissions gas boilers remain the lowest impact option across 12 categories as they avoid the impacts related to electricity generation including metal depletion toxicities and eutrophication. By 2050 the best performing scenario sees the climate change impact of the heating mix fall by 95%; this is achieved by prioritising electric air source heat pumps without hydrofluorocarbon refrigerants alongside demand reduction. The results show that if infrastructure and financial challenges can be overcome there are several viable decarbonisation strategies for heating with heat pumps offering the most environmentally sustainable option of those considered here. However increased renewable electricity demand may worsen some environmental impacts compared to natural gas boilers.
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
Improve Hydrogen Economy for Vehicular Fuel Cell System via Investigation and Control of Optimal Operating Oxygen Excess Ratio
Apr 2022
Publication
This study investigates and controls the optimal operating oxygen excess ratio (OER) for PEMFC which effectively prevents oxygen starvation and improves the hydrogen economy of proton exchange membrane fuel cells (PEMFC). Firstly the PEMFC output characteristic model and the five-order nonlinear air supply system model are established. Moreover an adaptive algebraic observer was developed to observe the partial pressure of gas in PEMFC and further reconstruct OER. Secondly to achieve the minimum hydrogen consumption under the required power the reference OER is determined by analyzing the PEMFC system output power with its minimum current. Finally the super-twisting algorithm is adopted to track reference OER. Simulation results show that the average absolute observation errors of oxygen nitrogen and cathode pressures under the Highway Fuel Economy Test are 1351.1 Pa (5.1%) 1724.2 Pa (0.9%) and 409.9 Pa (1.6%) respectively. The OER adjust average absolute error is 0.03. Compared with the commonly used fixed OER (e.g. OER of 1.5 and 2.3) the optimal OER strategy can reduce the hydrogen consumption of the PEMFC system by 5.2% and 1.8% respectively. Besides a DSP hardware in loop test is conducted to show the real-time performance of the proposed optimal method.
Fuel Cells and Hydrogen Observatory Technology and Market Report
Sep 2021
Publication
The information in this report covers the period January 2019 – December 2019. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this first edition data to the end of 2019 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: • Application: Total system shipments are divided into Transport Stationary and Portable applications • Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types • Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product • Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies.
Life Cycle Inventory Data Generation by Process Simulation for Conventional, Feedstock Recycling and Power-to-X Technologies for Base Chemical Production
Jan 2022
Publication
The article presents the methodology and applicable data for the generation of life cycle inventory for conventional and alternative processes for base chemical production by process simulation. Addressed base chemicals include lower olefins BTX aromatics methanol ammonia and hydrogen. Assessed processes include conventional chemical production processes from naphtha LPG natural gas and heavy fuel oil; feedstock recycling technologies via gasification and pyrolysis of refuse derived fuel; and power-to-X technologies from hydrogen and CO2. Further process variations with additional hydrogen input are covered. Flowsheet simulation in Aspen Plus is applied to generate datasets with conclusive mass and energy balance under uniform modelling and assessment conditions with available validation data. Process inventory data is generated with no regard to the development stage of the respective technology but applicable process data with high technology maturity is prioritized for model validation. The generated inventory data can be applied for life cycle assessments. Further the presented modelling and balancing framework can be applied for inventory data generation of similar processes to ensure comparability in life cycle inventory data.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Energy System Requirements of Fossil-free Steelmaking using Hydrogen Direct Reduction
May 2021
Publication
The iron and steel industry is one of the world’s largest industrial emitters of greenhouse gases. One promising option for decarbonising the industry is hydrogen direct reduction of iron (H-DR) with electric arc furnace (EAF) steelmaking powered by zero carbon electricity. However to date little attention has been given to the energy system requirements of adopting such a highly energy-intensive process. This study integrates a newly developed long-term energy system planning tool with a thermodynamic process model of H-DR/EAF steelmaking developed by Vogl et al. (2018) to assess the optimal combination of generation and storage technologies needed to provide a reliable supply of electricity and hydrogen. The modelling tools can be applied to any country or region and their use is demonstrated here by application to the UK iron and steel industry as a case study. It is found that the optimal energy system comprises 1.3 GW of electrolysers 3 GW of wind power 2.5 GW of solar 60 MW of combined cycle gas with carbon capture 600 GWh/600 MW of hydrogen storage and 30 GWh/130 MW of compressed air energy storage. The hydrogen storage requirements of the industry can be significantly reduced by maintaining some dispatchable generation for example from 600 GWh with no restriction on dispatchable generation to 140 GWh if 20% of electricity demand is met using dispatchable generation. The marginal abatement costs of a switch to hydrogen-based steelmaking are projected to be less than carbon price forecasts within 5–10 years.
Porosity and Thickness Effect of Pd–Cu–Si Metallic Glasses on Electrocatalytic Hydrogen Production and Storage
Aug 2021
Publication
This contribution places emphasis on tuning pore architecture and film thickness of mesoporous Pd–Cu–Si thin films sputtered on Si/SiO2 substrates for enhanced electrocatalytic and hydrogen sorption/desorption activity and their comparison with the state-of-the-art thin film electrocatalysts. Small Tafel slope of 43 mV dec–1 for 1250 nm thick coatings with 2 µm diameter pores with 4.2 µm interspacing (H2) electrocatalyst with comparable hydrogen overpotentials to the literature suggests its use for standard fuel cells. The largest hydrogen sorption has been attained for the 250 nm thick electrocatalyst on 5 µm pore diameter and 12 µm interspacing (2189 µC cm–2 per CV cycle) making it possible for rapid storage systems. Moreover the charge transfer resistance described by an equivalent circuit model has an excellent correlation with Tafel slopes. Along with its very low Tafel slope of 42 mV dec–1 10 nm thick H2 pore design electrocatalyst has the highest capacitive response of ∼0.001 S sn cm–2 and is promising to be used as a nano-charger and hydrogen sensor.
Experimental Study on Tri-fuel Combustion Using Premixed Methane-hydrogen Mixtures Ignited by a Diesel Pilot
Apr 2021
Publication
A comprehensive investigation on diesel pilot spray ignited methane-hydrogen (CH4–H2) combustion tri-fuel combustion (TF) is performed in a single-cylinder compression ignition (CI) engine. The experiments provide a detailed analysis of the effect of H2 concentration (based on mole fraction MH2) and charge-air temperature (Tair) on the ignition behavior combustion stability cycle-to-cycle (CCV) and engine performance. The results indicate that adding H2 from 0 to 60% shortens the ignition delay time (IDT) and combustion duration (based on CA90) up to 33% and 45% respectively. Thereby H2 helps to increase the indicated thermal efficiency (ITE) by as much as 10%. Furthermore to gain an insight into the combustion stability and CCV the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) methodologies are applied to estimate the combustion stability and CCV of the TF combustion process. The results reveal that the pressure oscillation can be reduced up to 4 dB/Hz and the CCV by 50% when MH2 < 60% and Tair < 55 °C. However when MH2 > 60% and Tair > 40 °C abnormal combustion and knocking are observed.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Optimal Scheduling of Multi-energy Type Virtual Energy Storage System in Reconfigurable Distribution Networks for Congestion Management
Jan 2023
Publication
The virtual energy storage system (VESS) is one of the emerging novel concepts among current energy storage systems (ESSs) due to the high effectiveness and reliability. In fact VESS could store surplus energy and inject the energy during the shortages at high power with larger capacities compared to the conventional ESSs in smart grids. This study investigates the optimal operation of a multi-carrier VESS including batteries thermal energy storage (TES) systems power to hydrogen (P2H) and hydrogen to power (H2P) technologies in hydrogen storage systems (HSS) and electric vehicles (EVs) in dynamic ESS. Further demand response program (DRP) for electrical and thermal loads has been considered as a tool of VESS due to the similar behavior of physical ESS. In the market three participants have considered such as electrical thermal and hydrogen markets. In addition the price uncertainties were calculated by means of scenarios as in stochastic programming while the optimization process and the operational constraints were considered to calculate the operational costs in different ESSs. However congestion in the power systems is often occurred due to the extreme load increments. Hence this study proposes a bi-level formulation system where independent system operators (ISO) manage the congestion in the upper level while VESS operators deal with the financial goals in the lower level. Moreover four case studies have considered to observe the effectiveness of each storage system and the simulation was modeled in the IEEE 33-bus system with CPLEX in GAMS.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Techno-economic Analysis of Hydrogen Enhanced Methanol to Gasoline Process from Biomass-derived Synthesis Gas
Mar 2021
Publication
In this paper the implications of the use of hydrogen on product yield and conversion efficiency as well as on economic performance of a hydrogen enhanced Biomass-to-Liquid (BtL) process are analyzed. A process concept for the synthesis of fuel (gasoline and LPG) from biomass-derived synthesis gas via Methanol-to-Gasoline (MtG) route with utilization of carbon dioxide from gasification by feeding additional hydrogen is developed and modeled in Aspen Plus. The modeled process produces 0.36 kg fuel per kg dry straw. Additionally 99 MW electrical power are recovered from purge and off gases from fuel synthesis in CCGT process covering the electricity consumption of fuel synthesis and synthesis gas generation. The hydrogen enhanced BtL procces reaches a combined chemical and electrical efficiency of 48.2% and overall carbon efficiency of 69.5%. The total product costs (TPC) sum up to 3.24 €/kg fuel. Raw materials (hydrogen and straw) make up the largest fraction of TPC with a total share of 75%. The hydrogen enhanced BtL process shows increased chemical energy and carbon efficiencies and thus higher product yields. However economic analysis shows that the process is unprofitable under current conditions due to high costs for hydrogen provision.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Thermodynamic Modeling of Hydrogen Refueling for Heavy-duty Fuel Cell Buses and Comparison with Aggregated Real Data
Apr 2021
Publication
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises both refuelling infrastructure and vehicles should be deployed together with improved refuelling protocols. Several studies focus on refuelling the light-duty vehicles with 10 kgH2 up to 700 bar however less known effort is reported for refuelling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refuelling event tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refuelling quantities such as pressure temperature and mass flow are predicted dynamically throughout the refuelling process as a function of the operating parameters within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refuelling performances. In conclusion the analysis of the effect of different APRR from 0.03 to 0.1 MPa/s indicate that is possible to safely reduce the duration of half-to-full refuelling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s.
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic
Sep 2015
Publication
Several alternative fuel–vehicle combinations are being considered for replacement of the internal combustion engine (ICE) vehicles to reduce greenhouse gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity hydrogen and biofuels in the transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares the use of these alternative fuels viz. electricity hydrogen and bio-ethanol in combination with battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV) technologies on the basis of their overall efficiency and GHG emissions involved in the conversion of the primary energy source to the actual energy required at wheels through a well-to-wheel analysis. The source of energy for electricity production plays a major role in determining the overall efficiency and the GHG emissions of a BEV. Hence electricity production mix of Germany (60% fossil fuel energy) France (76% nuclear energy) Sweden and Austria (60 and 76% renewable energy respectively) the European Union mix (48% fossil fuel energy) and the United States of America (68% fossil fuel energy) are considered for the BEV analysis. In addition to the standard hydrogen based FCEVs CNG and bio-ethanol based FCEVs are analysed. The influence of a direct ethanol fuel cell (DEFC) on GHG emissions and overall chain efficiency is discussed. In addition to the standard sources of bio-ethanol (like sugarcane corn etc.) sources like wood waste and wheat straw are included in the analysis. The results of this study suggest that a BEV powered by an electricity production mix dominated by renewable energy and bio-ethanol based DEFC electric vehicles offer the best solution in terms of GHG emissions efficiency and fossil fuel dependency. Bio-ethanol as a fuel has the additional advantage to be implemented readily in ICE vehicles followed by advancements through reformer based FCEVs and DEFC electric vehicles. Although important this analysis does not include the health effects of the alternative vehicles. Bio-ethanol used in an ICE may lead to increased emission of acetaldehydes which however might not be the case if it is used in fuel cells.
No more items...