Applications & Pathways
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Study on the Explosion of the Hydrogen Fuel Tank of Fuel Cell Electric Vehicles in Semi-Enclosed Spaces
Dec 2022
Publication
The rise in hydrogen fuel cell electric vehicles (FCEVs) is expected to pose a variety of hazards on the road. Vehicles using hydrogen could cause significant damage owing to hydrogen vapor cloud explosions jet fires caused by leakage or hydrogen tank explosions. This risk is expected to further increase in semi-enclosed spaces such as underground parking lots and road tunnels. Therefore it is necessary to study the fire safety of hydrogen vehicles in semi-enclosed spaces. In this study an experiment on hydrogen tank explosion was performed. In addition the CFD numerical model was verified using the experimental results and the damaging effect due to pressure propagation during hydrogen tank explosions in underground parking lots and road tunnels was analyzed using numerical analysis. From the experiment results the hydrogen tank exploded at about 80 Mpa a maximum incident pressure is generated 267 kPa at a distance of 1.9 m. As a result of numerical analysis based on the experimental results the limit distance that can cause serious injury due to the explosion of a hydrogen tank in a road tunnel or underground parking lot was analyzed up to about 20 m from the point of explosion.
Local Degradation Effects in Automotive Size Membrane Electrode Assemblies Under Realistic Operating Conditions
Dec 2019
Publication
In automotive applications the operational parameters for fuel cell (FC) systems can vary over a wide range. To analyze their impact on fuel cell degradation an automotive size single cell was operated under realistic working conditions. The parameter sets were extracted from the FC system modelling based on on-road customer data. The parameter variation included simultaneous variation of the FC load gas pressures cell temperature stoichiometries and relative humidity. Current density distributions and the overall cell voltage were recorded in real time during the tests. The current densities were low at the geometric anode gas outlet and high at the anode gas inlet. After electrochemical tests post mortem analysis was conducted on the membrane electrode assemblies using scanning electron microscopy. The ex-situ analysis showed significant cathode carbon corrosion in areas associated with low current densities. This suggests that fuel starvation close to the anode outlet is the origin of the cathode electrode degradation. The results of the numerical simulations reveal high relative humidity at that region and therefore water flooding is assumed to cause local anode fuel starvation. Even though the hydrogen oxidation reaction has low kinetic overpotentials “local availability” of H2 plays a significant role in maintaining a homogeneous current density distribution and thereby in local degradation of the cathode catalyst layer. The described phenomena occurred while the overall cell voltage remained above 0.3 V. This indicates that only voltage monitoring of fuel cell systems does not contain straightforward information about this type of degradation.
Everything About Hydrogen Podcast: Is This the End of the Diesel Train?
Jan 2020
Publication
For this show the team are taking a dive into the world of hydrogen trains and who better to speak to this space than Mike Muldoon Head of Business Development and Marketing for Alstom UK&I. Alstom have been the pioneers of hydrogen powered rail and in addition to two operating trains in Germany have secured over Eur500 million of orders for hydrogen trains. On the show we talk to Mike about why Alstom see hydrogen as a key part of the evolution of the rail industry towards zero emissions and why hydrogen today is such a compelling proposition for operators and investors.
The podcast can be found on their website
The podcast can be found on their website
Effect of Hydrogen-diesel Fuel Co-combustion on Exhaust Emissions with Verification Using an Inecylinder Gas Sampling Technique
Aug 2014
Publication
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition a novel inecylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two inecylinder locations and at various instants during the combustion process. The results showed a decrease in the particulates CO and THC emissions and a slight increase in CO2 emissions with the addition of hydrogen with fixed diesel fuel injection periods. NOx emissions increased steeply with hydrogen addition but only when the combined diesel and hydrogen co-combustion temperatures exceeded the threshold temperature for NOx formation. The inecylinder gas sampling results showed higher NOx levels between adjacent spray cones in comparison to sampling within an individual spray cone.
Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment
Apr 2022
Publication
Tailpipe emissions from vehicles consist of CO2 and other greenhouse gases which con‐ tribute immensely to the rise in global temperatures. Green hydrogen produced from the gasification of biomass can reduce the amount of CO2 emissions to zero. This study aims to provide a modelling framework to optimize the production of hydrogen from biomass waste obtained from different cities for use in the road transport sector in Nigeria. A gasification model with post‐treatment shift conversion and CO2 removal by adsorption is proposed. In this study six cities are simulated based on technical and environmental considerations using the Aspen Plus software package. The results revealed that Kaduna has the highest hydrogen generation potential of 0.148 million metric tons per year which could reduce CO2 emissions to 1.60 and 1.524 million metric tons by the dis‐ placement of an equivalent volume of gasoline and diesel. This amounts to cost savings of NGN 116 and 161.8 billion for gasoline and diesel respectively. In addition the results of the sensitivity analysis revealed that the steam‐to‐biomass ratio and the temperature of gasification are positively correlated with the amount of avoided CO2 emissions while the equivalence ratio shows a negative correlation.
The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach
Oct 2017
Publication
The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper is to analyze which factors are most likely to influence the outcome of this battle thereby reducing the uncertainty in the industry regarding investment decisions in either of these technologies. We examine the relevant factors for standard dominance and apply a multi-criteria decision-making method best worst method to determine the relative importance of these factors. The results indicate that the key factors include technological superiority compatibility and brand reputation and credibility. Our findings show that battery powered electric vehicles have a greater chance of winning the standards battle. This study contributes to theory by providing further empirical evidence that the outcome of standards battles can be explained and predicted by applying factors for standard success. We conclude that technology dominance in the automotive industry is mostly driven by technological characteristics and characteristics of the format supporter.
Carbon Capture and Storage Could Clear a Path to the UK's Carbon Reduction Targets: An ETI Technology Programme Highlight Report
Sep 2014
Publication
Capturing and sealing away carbon dioxide released from industrial processes and electricity generation is acknowledged internationally to be potentially a winning intervention in the battle against climate change. The collected technologies that make up Carbon Capture and Storage (CCS) could remove more than 90% of the carbon emissions from energy intensive industries and electricity production. In power generation CCS not only provides low-carbon output but it also preserves capacity in fossil fuel-fired plant to respond to shifts in demand. This is a near-unique combination that could mitigate the different shortcomings of harnessing the wind the sun or nuclear fission.<br/>CCS could clear a path to the UK’s carbon reduction targets; secure its energy supplies; and reduce the cost of those achievements. With CCS in play a low-carbon future with secure energy supplies becomes affordable. However without our research has found that the costs of meeting the UK’s lowcarbon targets could double to £60bn a year by 2050 at today’s prices.<br/>However CCS has to be honed technically and commercially before it can become a reality. ETI supported by its partners has made important progress and continues to do so.
Development of NaBH4-Based Hydrogen Generator for Fuel Cell Unmanned Aerial Vehicles with Movable Fuel Cartridge
Mar 2019
Publication
NaBH4-based hydrogen generator for fuel cell Unmanned Aerial Vehicle (UAVs) with movable fuel cartridge was developed in the present study. The main fuel of hydrogen generator is Sodium borohydride (NaBH4) that is a kind of chemical hydride and has a high hydrogen storage density. In the previous studies hydrogen generators were developed in which hydrogen was directly generated from solid state NaBH4. However it was a prototype so inconvenient to replace the fuel after used up and lacked user convenience. Therefore the performance evaluation and the development procedure of NaBH4-based hydrogen generator that was designed taking user convenience in consideration for commercialization were described in this paper.
Energy Management Strategy of Hydrogen Fuel Cell/Battery/Ultracapacitor Hybrid Tractor Based on Efficiency Optimization
Dec 2022
Publication
With the application of new energy technology hybrid agricultural machinery has been developed. This article designs a hybrid tractor energy management method to solve the problem of high energy consumption caused by significant load fluctuation of the tractor in field operation. This article first analyzes the characteristics of the hydrogen fuel cell power battery and ultracapacitor and designs a hybrid energy system for the tractor. Second the energy management strategy (EMS) of multi-layer decoupling control based on the Haar wavelet and logic rule is designed to realize the multi-layer decoupling of high-frequency low-frequency and steady-state signals of load demand power. Then the EMS redistributes the decoupled power signals to each energy source. Finally a hardware-in-loop simulation experiment was carried out through the model. The results show that compared with single-layer control strategies such as fuzzy control and power-following control the multi-layer control strategy can allocate the demand power more reasonably and the efficiency of the hydrogen fuel cell is the highest. The average efficiency of the hydrogen fuel cell was increased by 2.87% and 1.2% respectively. Furthermore the equivalent hydrogen consumption of the tractor was reduced by 17.06% and 5.41% respectively within the experimental cycle. It is shown that the multi-layer control strategy considering power fluctuation can improve the vehicle economy based on meeting the power demanded by the whole vehicle load.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
Hydrogen: Untapped Energy?
Jan 2012
Publication
Hydrogen has potential applications across our future energy systems due particularly to its relatively high energy weight ratio and because it is emission-free at the point of use. Hydrogen is also abundant and versatile in the sense that it could be produced from a variety of primary energy sources and chemical substances including water and used to deliver power in a variety of applications including fuel cell combined heat and power technologies. As a chemical feedstock hydrogen has been used for several decades and such expertise could be fed back into the relatively new areas of utilising hydrogen to meet growing energy demands.<br/>The UK interest in hydrogen is also growing with various industrial academic and governmental organisations investigating how hydrogen could be part of a diverse portfolio of options for a low carbon future. While hydrogen as an alternative fuel is yet to command mass-appeal in the UK energy market IGEM believes hydrogen is capable of allowing us to use the wide range of primary energy sources at our disposal in a much greener and sustainable way.<br/>IGEM also sees hydrogen playing a small but key role in the gas industry whereby excess renewable energy is used to generate hydrogen which is then injected into the gas grid for widespread distribution and consumption. Various studies suggest admixtures containing up to 10 – 50%v/v hydrogen could be safely administered into the existing natural gas infrastructure. However IGEM understands that this would currently not be permissible under the Gas Safety (Management) Regulations (GS(M)R) for gas conveyance here in the UK. Also proper assessments of the risks associated with adding hydrogen to natural gas streams will need to be performed so that such systems can be managed effectively.<br/>IGEM has also identified a need for standards that cover the safety requirements of hydrogen technologies particularly those pertaining to installations in commercial or domestic environments. IGEM also recommend that the technical measures used to determine separation distances for hydrogen installations particularly refuelling stations are re-assessed through a systematic identification and control of potential sources of ignition.<br/>Hydrogen has the potential to be a significant fuel of the future and part of a diverse portfolio of energy options capable of meeting growing energy needs. This report therefore seeks to demonstrate how hydrogen could be a potential option for energy storage and power generation in a diverse energy system. It also aims to inform the readers on the current state of hydrogen here in the UK and abroad. This report has been assembled for IGEM members interested bodies and the general public.
Implementing Maritime Battery-electric and Hydrogen Solutions: A Technological Innovation Systems Analysis
Sep 2020
Publication
Maritime transport faces increasing pressure to reduce its greenhouse gas emissions to be in accordance with the Paris Agreement. For this to happen low- and zero-carbon energy solutions need to be developed. In this paper we draw on sustainability transition literature and introduce the technological innovation system (TIS) framework to the field of maritime transportation research. The TIS approach analytically distinguishes between different innovation system functions that are important for new technologies to develop and diffuse beyond an early phase of experimentation. This provides a basis for technology-specific policy recommendations. We apply the TIS framework to the case of battery-electric and hydrogen energy solutions for coastal maritime transport in Norway. Whereas both battery-electric and hydrogen solutions have developed rapidly the former is more mature and has a strong momentum. Public procurement and other policy instruments have been crucial for developments to date and will be important for these technologies to become viable options for shipping more generally.
The Effect of the Temperature and Moisture to the Permeation Properties of PEO-Based Membranes for Carbon-Dioxide Separation
Jun 2021
Publication
An increased demand for energy in recent decades has caused an increase in the emissions of combustion products among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects like global warming and the greenhouse effect a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work the possibility for the application of the polymer-based dense mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30 60 and 90 °C) under wet conditions with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide hydrogen nitrogen and oxygen was measured and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity compared to hydrogen oxygen and nitrogen.
Hydrogen Addition Influence for the Efficient and Ecological Parameters of Heavy-Duty Natural Gas Si Engine
May 2017
Publication
The paper presents the experimental research results of heavy-duty vehicle (public transport bus) fuelled with natural gas and hydrogen fuel mixtures. Spark ignition six cylinder engine tested with different hydrogen additions (from 5% up to 20% according to volume) in the natural gas fuel. The tests were performed on heavy-duty vehicle’s dyno test stand in company “SG dujos Auto” research laboratory. The tests were carried out at three load points and one engine speed. Engine had originally a port fuel injection and exhaust gas recirculation system. Experiments showed that engine fuelled with hydrogen addition was able to achieve lower fuel consumption and brake specific fuel consumption. It was also possible to achieve small increase of engine efficiency. The exhaust gas measurements showed that hydrogen addition in natural gas reduced the CO CO2 and HC emissions because of the H/C atom ratio change in fuel mixture and improved combustion process. The NOx emission level was decreasing although bigger amounts of hydrogen were used in natural gas fuel.
Economic Analysis of a High-pressure Urban Pipeline Concept (HyLine) for Delivering Hydrogen to Retail Fueling Stations
Nov 2019
Publication
Reducing the cost of delivering hydrogen to fuelling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011 and a German station on the edge of an industrial park has been supplied with 13000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure scalable intra-city pipeline system referred to here as the “HyLine” system. In the HyLine system hydrogen would be produced at urban industrial or commercial sites compressed to 15000 psi stored at centralized facilities delivered via high-pressure pipeline to retail stations and dispensed directly into FCEVs. Our analysis of retail fuelling station economics in Los Angeles suggests that as FCEV demand for hydrogen in an area becomes sufficiently dense pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integrated compression and storage. In the largest-scale fuelling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each and hydrogen produced via steam methane reforming) HyLine could potentially achieve a profited hydrogen cost of $5.3/kg which is approximately equivalent to a gasoline cost of $2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge codes and standards that would enable a HyLine system to be viable. However our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fuelling stations which is not reflected in our analysis.
Sector Coupling Potential of Wind-based Hydrogen Production and Fuel Cell Train Operation in Regional Rail Transport in Berlin and Brandenburg
Jan 2021
Publication
As the transport sector is ought to be decarbonized fuel-cell-powered trains are a viable zero-tailpipe technology alternative to the widely employed diesel multiple units in regional railway service on non-electrified tracks. Carbon-free hydrogen can be provided by water-electrolysis from renewable energies. In this study we introduce an approach to assess the potential of wind-based hydrogen for use in adjacent regional rail transport by applying a GIS approach in conjunction with a site-level cost model. In Brandenburg about 10.1 million train-km annually could be switched to fuel cell electric train operation. This relates to a diesel consumption of appr. 9.5 million liters today. If fuel cell trains would be employed that translated to 2198 annual tons hydrogen annually. At favorable sites hydrogen costs of approx. 6.40 €/kg - including costs of hydrogen refueling stations - could be achieved. Making excess hydrogen available for other consumers would further decrease hydrogen production costs.
Success Stories: A Partnership Dedicated to Clean Energy and Transport in Europe
Dec 2018
Publication
As 2018 marks the ten-year anniversary of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) it is inspiring to look back over the many accomplishments of the past decade. The projects described in these pages illustrate the approach of continuous learning exemplified by the FCH JU’s projects from creating low-carbon and sustainable solutions enabling market entry for new products developing ‘next generation’ products based on previous research to opening new markets for European expertise in fuel cell and hydrogen (FCH) technology.<br/>The FCH JU’s achievements are due in part to its multi-stakeholder structure: a public-private partnership between industry research and the European Commission. Industry-led research has pioneered new developments in FCH technology and brought many of them to the cusp of commercialisation. Market uptake from public authorities major companies and citizens alike has boosted confidence in these clean technologies establishing hydrogen as a cornerstone of Europe’s energy transition.<br/>DEVELOPING SOLUTIONS FOR A GREENER WORLD<br/>Citizens are at the heart of Europe’s Energy Union a strategy aimed at providing clean secure and affordable energy for all. For some years now and as a signatory to the Paris Agreement in 2015 the EU has been actively targeting reductions in carbon dioxide (CO2) emissions.
Hydrogen Refueling Station Networks for Heavy-duty Vehicles in Future Power Systems
May 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is to use alternatively fuelled vehicles (AFV). Heavy-duty vehicles (HDV) emit a large share of GHG emissions in the transport sector and are therefore the subject of growing attention from global regulators. Fuel cell and green hydrogen technologies are a promising option to decarbonize HDVs as their fast refuelling and long vehicle ranges are consistent with current logistic operational requirements. Moreover the application of green hydrogen in transport could enable more effective integration of renewable energies (RE) across different energy sectors. This paper explores the interplay between HDV Hydrogen Refuelling Stations (HRS) that produce hydrogen locally and the power system by combining an infrastructure location planning model and an electricity system optimization model that takes grid expansion options into account. Two scenarios – one sizing refuelling stations to support the power system and one sizing them independently of it – are assessed regarding their impacts on the total annual electricity system costs regional RE integration and the levelized cost of hydrogen (LCOH). The impacts are calculated based on locational marginal pricing for 2050. Depending on the integration scenario we find average LCOH of between 4.83 euro/kg and 5.36 euro/kg for which nodal electricity prices are the main determining factor as well as a strong difference in LCOH between north and south Germany. Adding HDV-HRS incurs power transmission expansion as well as higher power supply costs as the total power demand increases. From a system perspective investing in HDV-HRS in symbiosis with the power system rather than independently promises cost savings of around seven billion euros per annum. We therefore conclude that the co-optimization of multiple energy sectors is important for investment planning and has the potential to exploit synergies.
What is Needed to Deliver Carbon-neutral Heat Using Hydrogen and CCS?
Sep 2020
Publication
In comparison with the power sector large scale decarbonisation of heat has received relatively little attention at the infrastructural scale despite its importance in the global CO2 emissions landscape. In this study we focus on the regional transition of a heating sector from natural gas-based infrastructure to H2 using mathematical optimisation. A discrete spatio-temporal description of the geographical region of Great Britain was used in addition to a detailed description of all network elements for illustrating the key factors in the design of nation-wide H2 and CO2 infrastructure. We have found that the synergistic deployment of H2 production technologies such as autothermal reforming of methane and biomass gasification with CO2 abatement technologies such as carbon capture and storage (CCS) are critical in achieving cost-effective decarbonisation. We show that both large scale underground H2 storage and water electrolysis provide resilience and flexibility to the heating system competing on cost and deployment rates. The optimal regions for siting H2 production infrastructure are characterised by proximity to: (1) underground H2 storage (2) high demands for H2 (3) geological storage for CO2. Furthermore cost-effective transitions based on a methane reforming pathway may necessitate regional expansions in the supply of natural gas with profound implications for security of supply in nations that are already highly reliant potentially creating an infrastructure lock-in during the near term. We found that the total system cost comprising both investment and operational elements is mostly influenced by the natural gas price followed by biomass price and CapEx of underground caverns. Under a hybrid Regulated Asset Base (RAB) commercial framework with private enterprises delivering production infrastructure the total cost of heat supply over the infrastructure lifetime is estimated as 5.2–8.6 pence per kW h. Due to the higher cost relative to natural gas a Contract for Difference payment between d20 per MW h and d53 per MW h will be necessary for H2-derived heat to be competitive in the market.
No more items...