- Home
- A-Z Publications
- Publications
Publications
Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities
Jun 2022
Publication
A general rise in environmental and anthropogenically induced greenhouse gas emissions has resulted from worldwide population growth and a growing appetite for clean energy industrial outputs and consumer utilization. Furthermore well-established advanced and emerging countries are seeking fossil fuel and petroleum resources to support their aviation electric utilities industrial sectors and consumer processing essentials. There is an increasing tendency to overcome these challenging concerns and achieve the Paris Agreement’s priorities as emerging technological advances in clean energy technologies progress. Hydrogen is expected to be implemented in various production applications as a fundamental fuel in future energy carrier materials development and manufacturing processes. This paper summarizes recent developments and hydrogen technologies in fuel refining hydrocarbon processing materials manufacturing pharmaceuticals aircraft construction electronics and other hydrogen applications. It also highlights the existing industrialization scenario and describes prospective innovations including theoretical scientific advancements green raw materials production potential exploration and renewable resource integration. Moreover this article further discusses some socioeconomic implications of hydrogen as a green resource.
Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Mar 2022
Publication
Hydrogen refueling stations (HRSs) are critical for the popularity of hydrogen vehicles (fuel cell electric vehicles—FCEVs). However due to high installation investment and operating costs the proliferation of HRSs is difficult. This paper studies HRSs with on-site electrolytic production and hydrogen storage devices and proposes an optimization method to minimize the total costs including both installation investment and operating costs (OPT-ISL method). Moreover to acquire the optimization constraints of hydrogen demand this paper creatively develops a refueling behavior simulation method for different kinds of FCEVs and proposes a hydrogen-demand estimation model to forecast the demand with hourly intervals for HRS. The Jensen–Shannon divergence is applied to verify the accuracy of the hydrogen-demand estimation. The result: 0.029 is much smaller than that of the estimation method in reference. Based on the estimation results and peak-valley prices of electricity from the grid a daily hydrogen generation plan is obtained as well as the optimal capacities of electrolyzers and storage devices. As for the whole costs compared with previous configuration methods that only consider investment costs or operating costs the proposed OPT-ISL method has the least 8.1 and 10.5% less respectively. Moreover the proposed OPT-ISL method shortens the break-even time for HRS from 11.1 years to 7.8 years a decrease of 29.7% so that the HRS could recover its costs in less time.
Temperature Effect on the Mechanical Properties of Liner Materials used for Type IV Hydrogen Storage Tanks
Sep 2021
Publication
Type IV hydrogen storage tanks play an important role in hydrogen fuel cell vehicles (HFCVs) due to their superiority of lightweight good corrosion and fatigue resistance. It is planned to be used between -40℃ and 85℃ at which the polymer liner may have a degradation of mechanical properties and buckling collapse. This demand a good performance of liner materials in that temperature range. In this article the temperature effect on mechanical properties of polyamide 6 (PA6) liner material including specimens with weld seam was investigated via the stress-strain curve (S-S curve) macroscopic and microscopic morphology. Considering that the mechanical properties will change after the liner molding process this test takes samples directly from the liner. Results show that the tensile strength and tensile modulus increased by 2.46 times and 10.6 times respectively with the decrease of temperature especially in the range from 50℃ to -90℃. For the elongation at break and work of fracture they do not monotonously increase with the temperature up. Both of them reduce when the temperature rises from 20°C to 50°C especially for the work of fracture decreasing by 63%. The weld seam weakens the mechanical properties and the elongation at break and work of fracture are more obvious which are greater than 40% at each temperature. In addition the SEM images indicate that the morphology of fracture surface at -90°C is different from that at other temperatures which is a sufficient evidence of toughness reducing in low temperature.
Industrial Decarbonization Pathways: The Example of the German Glass Industry
Nov 2022
Publication
Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately +200%. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching the complete phase-out from natural gas to renewable energy carriers. Furthermore the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target.
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation
Sep 2021
Publication
A Lagrangian-based one-dimensional approach has been developed using Cantera to study the dynamics of spherically expanding flames. The detailed reaction model USC-Mech II has been employed to examine flame propagating in hydrogen-air mixtures. In the first part our approach has been validated against laminar flame speed and Markstein number data from the literature. It was shown that the laminar flame speed was predicted within 5% on average but that discrepancies were observed for the Markstein number especially for rich mixtures. In the second part a detailed analysis of the thermo-chemical dynamics along the path of Lagrangian particles propagating in stretched flames was performed. For mixtures with negative Markstein lengths it was found that at high stretch rates the mixture entering the reaction-dominated period is less lean with respect to the initial mixture than at low stretch rate. This induces a faster rate of chemical heat release and of active radical production which results in a higher flame propagation speed. Opposite effects were observed for mixtures with positive Markstein lengths for which slower flame propagation was observed at high stretch rates compared to low stretch rates."
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service
Sep 2021
Publication
For achieving Net Zero-aims hydrogen is an indispensable component probably the main component. For the usage of hydrogen a wide acceptance is necessary which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13."
AI Agents Envisioning the Future: Forecast-based Operation of Renewable Energy Storage Systems Using Hydrogen with Deep Reinforcement Learning
Feb 2022
Publication
Hydrogen-based energy storage has the potential to compensate for the volatility of renewable power generation in energy systems with a high renewable penetration. The operation of these storage facilities can be optimized using automated energy management systems. This work presents a Reinforcement Learning-based energy management approach in the context of CO2-neutral hydrogen production and storage for an industrial combined heat and power application. The economic performance of the presented approach is compared to a rule-based energy management strategy as a lower benchmark and a Dynamic Programming-based unit commitment as an upper benchmark. The comparative analysis highlights both the potential benefits and drawbacks of the implemented Reinforcement Learning approach. The simulation results indicate a promising potential of Reinforcement Learning-based algorithms for hydrogen production planning outperforming the lower benchmark. Furthermore a novel approach in the scientific literature demonstrates that including energy and price forecasts in the Reinforcement Learning observation space significantly improves optimization results and allows the algorithm to take variable prices into account. An unresolved challenge however is balancing multiple conflicting objectives in a setting with few degrees of freedom. As a result no parameterization of the reward function could be found that fully satisfied all predefined targets highlighting one of the major challenges for Reinforcement Learning -based energy management algorithms to overcome.
Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles
Mar 2022
Publication
A proton exchange membrane fuel cell (PEMFC) is known as one of the most promising energy sources for electric vehicles. A hydrogen system is required to provide hydrogen to the stack in time to meet the flow and pressure requirements according to the power requirements. In this study a 1-D model of a hydrogen system including the fuel cell stack was established. Two modes one with and one without a proportion integration differentiation (PID) control strategy were applied to analyze the pressure characteristics and performance of the PEMFC. The results showed that the established model could be well verified with experimental data. The anode pressure fluctuation with a PID control strategy was more stable which reduced the damage to the fuel cell stack caused by sudden changes of anode pressure. In addition the performance of the stack with the PID control mode was slightly improved. There was an inflection point for hydrogen utilization; the hydrogen utilization rate was higher under the mode without PID control when the current density was greater than 0.4 A/cm2 . What is more a hierarchical control strategy was proposed which made the pressure difference between the anode and cathode meet the stack working requirements and more importantly maintained the high hydrogen utilization of the hydrogen system.
Optimal Dispatch Model for PV-electrolysis Plants in Self-consumption Regime to Produce Green Hydrogen: A Spanish Case Study
May 2022
Publication
The production of green hydrogen from renewable energy by means of water electrolysis is a promising approach to support energy sector decarbonization. This paper presents a techno-economic model of plants with PV sources connected to electrolysis in self-consumption regime that considers the dynamics of electrolysis systems. The model calculates the optimal hourly dispatch of the electrolysis system including the operational states (production standby and idle) the load factor in production and the energy imports and exports to the electricity grid. Results indicate that the model is a useful decision support tool to operate electrolysis plants connected to PV plants in self-consumption regimes with the target of reducing hydrogen production costs.
Design and Analysis of Photovoltaic/wind Operations at MPPT for Hydrogen Production using a PEM Electrolyzer: Towards Innovations in Green Technology
Jul 2023
Publication
In recent times renewable energy systems (RESs) such as Photovoltaic (PV) and wind turbine (WT) are being employed to produce hydrogen. This paper aims to compare the efficiency and performance of PV and WT as sources of RESs to power polymer electrolyte membrane electrolyzer (PEMEL) under different conditions. The study assessed the input/ output power of PV and WT the efficiency of the MPPT controller the calculation of the green hydrogen production rate and the efficiency of each system separately. The study analyzed variable irradiance from 600 to 1000 W/m2 for a PV system and a fixed temperature of 25˚C while for the WT system it considered variable wind speed from 10 to 14 m/s and zero fixed pitch angle. The study demonstrated that the applied controllers were effective fast low computational and highly accurate. The obtained results showed that WT produces twice the PEMEL capacity while the PV system is designed to be equal to the PEMEL capacity. The study serves as a reference for designing PV or WT to feed an electrolyzer. The MATLAB program validated the proposed configurations with their control schemes.
Safety and Other Considerations in the Development of a Hydrogen Fueling Protocol for Heavy-duty Vehicles
Sep 2021
Publication
Several manufacturers are developing heavy duty (HD) hydrogen stations and vehicles as zeroemissions alternatives to diesel and gasoline. In order to meet customer demands the new technology must be comparable to conventional approaches including safety reliability fueling times and final fill levels. For a large HD vehicle with a storage rated to 70 MPa nominal working pressure the goal to meet liquid fuel parity means providing 100 kg of hydrogen in 10 minutes. This paper summarizes the results to date of the PRHYDE project efforts to define the concepts of HD fueling which thereby lays the groundwork for the development of the safe and effective approach to filling these large vehicles. The project starts by evaluating the impact of several different assumptions such as the availability of static vehicle data (e.g. vehicle tank type and volume) and station data (e.g. expected station precooling capability) but also considers using real time dynamic data (e.g. vehicle tank gas temperature and pressure station gas temperature etc.) for optimisation to achieve safety and efficiency improvements. With this information the vehicle or station can develop multiple maps of fill time versus the hydrogen delivery temperature which are used to determine the speed of fueling. This will also allow the station or vehicle to adjust the rate of fueling as the station pre-cooling levels and other conditions change. The project also examines different steps for future protocol development such as communication of data between the vehicle and station and if the vehicle or station is controlling the fueling.
Measurement and Modeling on Hydrogen Jet and Combustion from a Pressurize Vessel
Sep 2021
Publication
Hydrogen safety is an important topic for hydrogen energy application. Unintended hydrogen releases and combustions are potential accident scenarios which are of great interest for developing and updating the safety codes and standards. In this paper hydrogen releases and delayed ignitions were studied.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
Metal Hydroborates: From Hydrogen Stores to Solid Electrolyte
Nov 2021
Publication
The last twenty years of an intense research on metal hydroborates as solid hydrogen stores and solid electrolytes are reviewed. It is shown that from the most promising application in hydrogen storage due to their high gravimetric and volumetric capacities the focus has moved to solid electrolytes due to high cation mobility in disordered structures with rotating or tumbling anions-hydroborate clusters. Various strategies of overcoming the strong covalent bonding of hydrogen in hydroborates for hydrogen storage and disordering their structures at room temperature for solid electrolytes are discussed. The important role of crystal chemistry and crystallography knowledge in material design can be read in the cited literature.
Risk Assessment of a Gaseous Hydrogen Fueling Station (GHFs)
Sep 2021
Publication
Promoted by national and European investment plans promoting the use of hydrogen as energy carrier the number of Gaseous Hydrogen Fueling Station (or GHFS) has been growing up quite significantly over the past years. Considering the new possible hazards and the related accidents induced by these installations like seen in 2019 in Norway this paper presents a risk assessment of a typical GHFS using the same methodology as the one required in France by the authorities for Seveso facilities. The fact that a hydrogen fueling station could be used by a public not particularly trained to handle hydrogen underlines the importance of this risk assessment. In this article typical components related to GHFS (dispenser high pressure storage compressor low pressure storage) are listed and the hazard potentials linked to these components and the substances involved are identified. Based on these elements and an accidentology a risk analysis has been conducted in order to identify all accidental situations that could occur. The workflow included a detailed risk assessment consisting in modeling the thermal and explosion effects of all hazardous phenomena and in assessing the probability of occurrence for these scenarios. Regarding possible mitigation measures the study was based on an international benchmark for codes and standards made for GFHS. These preliminary outcomes of this study may be useful for any designer and/or owner of a GFHS.
H2-powered Aviation at Airports – Design and Economics of LH2 Refueling Systems
Feb 2022
Publication
In this paper the broader perspective of green hydrogen (H2) supply and refueling systems for aircraft is provided as an enabling technology brick for more climate friendly H2-powered aviation. For this two H2 demand scenarios at exemplary airports are determined for 2050. Then general requirements for liquid hydrogen (LH2) refueling setups in an airport environment are derived and techno-economic models for LH2 storage liquefaction and transportation to the aircraft are designed. Finally a cost tradeoff study is undertaken for the design of the LH2 setup including LH2 refueling trucks and a LH2 pipeline and hydrant system. It is found that for airports with less than 125 ktLH2 annual demand a LH2 refueling truck setup is the more economic choice. At airports with higher annual LH2 demands a LH2 pipeline & hydrant system can lead to slight cost reductions and enable safer and faster refueling. However in all demand scenarios the refueling system costs only mark 3 to 4% of the total supply costs of LH2. The latter are dominated by the costs for green H2 produced offsite followed by the costs for liquefaction of H2 at an airport. While cost reducing scaling effects are likely to be achieved for H2 liquefaction plants other component capacities would already be designed at maximum capacities for medium-sized airports. Furthermore with annual LH2 demands of 100 ktLH2 and more medium and larger airports could take a special H2 hub role by 2050 dominating regional H2 consumption. Finally technology demonstrators are required to reduce uncertainty around major techno-economic parameters such as the investment costs for LH2 pipeline & hydrant systems.
Reducing the Cost of Low-carbon Hydrogen Production via Emerging Chemical Looping Process
Jan 2023
Publication
A thorough techno-economic analysis where inherent carbon capture is examined against state-of-the-art blue hydrogen production configurations for large (100000 Nm3 /h) and very large (333000 Nm3 /h) capacities. Advanced solvent-based technologies based on post-combustion capture and auto-thermal reformer combined with a gas heated reformer are simulated with process flowsheet software and compared with the emerging chemical looping process. A network of dynamically operated packed bed reactors has been designed and modelled using an in-house code and key parameters generating uncertainties in the results have been examined in a sensitivity analysis. The chemical looping reforming process presents a higher net reforming efficiency than the benchmark cases (8.2 % higher at large scale and 1.5 % higher at very large scale) ranged 75.4–75.7 % while the specific energy for CO2 avoidance is negative in the range of − 0.78 to − 0.85 MJ/kgCO2. In the carbon capture cases the chemical looping reforming in packed beds technology generated a levelised cost of hydrogen of 168.9 £/kNm3 H2 for the large scale and 159.1 £/kNm3 H2 for the very large scale with the values for the benchmark cases being higher at 196.4 and 166.6 £/kNm3 H2 respectively while the levelised cost of hydrogen values are 1 % higher in the benchmark cases where carbon emission price is accounted for. The carbon capture ratio is 99.9 % for the chemical looping reforming cases compared to 90–91 % for the benchmark ones thus providing a significant foreground for the scale-up and implementation of chemical looping reforming technologies for hydrogen production.
Cost Minimisation of Renewable Hydrogen in a Dutch Neighbourhood While Meeting European Union Sustainability Targets
Jun 2022
Publication
Decentralised renewable energy production in the form of fuels or electricity can have large scale deployment in future energy systems but the feasibility needs to be assessed. The novelty of this paper is in the design and implementation of a mixed integer linear programming optimisation model to minimise the net present cost of decentralised hydrogen production for different energy demands on neighbourhood urban scale while simultaneously adhering to European Union targets on greenhouse gas emission reductions. The energy system configurations optimised were assumed to possibly consist of a variable number or size of wind turbines solar photovoltaics grey grid electricity usage battery storage electrolyser and hydrogen storage. The demands served are hydrogen for heating and mobility and electricity for the households. A hydrogen residential heating project currently being developed in Hoogeveen The Netherlands served as a case study. Six scenarios were compared each taking one or multiple energy demand services into question. For each scenario the levelised cost of hydrogen was calculated. The lowest levelised cost of hydrogen was found for the combined heating and mobility scenario: 8.36 € kg− 1 for heating and 9.83 € kg− 1 for mobility. The results support potential cost reductions of combined demand patterns of different energy services. A sensitivity analysis showed a strong influence of electrolyser efficiency wind turbine parameters and emission reduction factor on levelised cost. Wind energy was strongly preferred because of the lower cost and the low greenhouse gas emissions compared to solar photovoltaics and grid electricity. Increasing electrolyser efficiency and greenhouse gas emission reduction of the used technologies deserve further research.
A Case Study Using Hydrogen Fuel Cell as Range Extender for Lithium Battery Electric Vehicle
Mar 2024
Publication
This paper presents a case study of a lithium battery and fuel cell integrated powertrain system for a renewable energy vehicle. The performance analysis includes evaluating the energy consumption of the vehicle and the efficiency of the power generation components. When driven solely by the lithium battery at average speeds of 15 km/h and 20 km/h it was observed that speed significantly influences the travel distance of the vehicle with higher speeds resulting in lower mileage. The energy efficiency rates were found to be 89.3% and 85.7% at speeds of 15 km/h and 20 km/h respectively indicating an 18.1% decrease in efficiency from low to higher speeds. When the lithium battery is solely charged by the hydrogen fuel cell the efficiency under test conditions reaches approximately 32.5%. In the “FC + B + SC” driving mode which combines the use of the lithium battery fuel cell and solar panel to power the vehicle the travel range can be extended to 50.62 km and 42.05 km respectively representing an increase of over 50% with overall efficiencies of 63.8% and 60.7% respectively. This hybrid powertrain system exhibits rapid dynamic response high energy and power density and enables longer travel distances for the renewable energy vehicle.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
Techno-Economic Analysis of Low Carbon Hydrogen Production from Offshore Wind Using Battolyser Technology
Aug 2022
Publication
A battolyser is a combined battery electrolyser in one unit. It is based on flow battery technology and can be adapted to produce hydrogen at a lower efficiency than an electrolyser but without the need for rare and expensive materials. This paper presents a method of determining if a battolyser connected to a wind farm makes economic sense based on stochastic modelling. A range of cost data and operational scenarios are used to establish the impact on the NPV and LCOE of adding a battolyser to a wind farm. The results are compared to adding a battery or an electrolyser to a wind farm. Indications are that it makes economic sense to add a battolyser or battery to a wind farm to use any curtailed wind with calculated LCOE at £56/MWh to £58/MWh and positive NPV over a range of cost scenarios. However electrolysers are still too expensive to make economic sense.
Numerical Prediction of Lean Premixed Hydrogen Deflagrations in Vented Vessels
Sep 2021
Publication
In water-cooled nuclear power plants hydrogen gas can be generated by various mechanisms during an accident. In case combustion of the resulting hydrogen-air mixture within the facility occurs existing containment structures may be compromised and excessive radio-active material can be released to the environment. Thus an improved understanding of the propagation of lean hydrogen deflagrations within buildings and structures is essential for the development of appropriate accident management strategies associated with these scenarios. Following the accident in Fukushima Japan the application of three-dimensional computational fluid dynamics methods to high-fidelity detailed analysis of hydrogen combustion processes in both closed and vented vessels has become more widespread. In this study a recently developed large-eddy-simulation (LES) capability is applied to the prediction of lean premixed hydrogen deflagrations in vented vessels. The LES methodology makes use of a flamelet- or progress-variable-based combustion model coupled with an empirical burning velocity model (BVM) an anisotropic block-based adaptive mesh refinement (AMR) strategy an accurate finite-volume numerical scheme and a mesh independent subfilter-scale (SFS) model. Several different vessel and vent sizes and configurations are considered herein. The LES predictions are compared to experimental data obtained from the Large-Scale Vented Combustion Test Facility (LSVCTF) of the Canadian Nuclear Laboratories (CNL) with both quiescent and turbulent initial conditions. Following descriptions of the LES models LES results for both variable chamber sizes and single- and double-vent cases are presented to illustrate the capabilities of the proposed computational approach. In particular the predicted time histories of pressure as well as the maximum overpressure achieved within the vessels and combustion compartments are compared to those from the LSVCTF experiments. The influences of the modelled ignition process initial turbulence and mesh resolution on the LES results are also discussed. The findings highlight the potential and limitations of the proposed LES approach for accurately describing lean premixed hydrogen deflagrations within vented vessels.
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Current Status and Development Trend of Wind Power Generation-based Hydrogen Production Technology
Jan 2019
Publication
The hydrogen production technology by wind power is an effective mean to improve the utilization of wind energy and alleviate the problem of wind power curtailment. First the basic principles and technical characteristics of the hydrogen production technology by wind power are briefly introduced. Then the history of the hydrogen production technology is reviewed and on this basis the hydrogen production system by wind power is elaborated in detail. In addition the prospect of the application of the hydrogen production technology by wind power is analyzed and discussed. In the end the key technology of the hydrogen production by wind power and the problems to be solved are comprehensively reviewed. The development of hydrogen production technology by wind power is analyzed from many aspects which provides reference for future development of hydrogen production technology by wind power
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
Discharge Modeling of Large Scale LH2 Experiments with an Engineering Tool
Sep 2021
Publication
Accurate estimation of mass flow rate and release conditions is important for the design of dispersion and combustion experiments for the subsequent validation of CFD codes/models for consequence assessment analysis within related risk assessment studies and for associated Regulation Codes and Standards development. This work focuses on the modelling of the discharge phase of the recent large scale LH2 release and dispersion experiments performed by HSE within the framework of PRESLHY project. The experimental conditions covered sub-cooled liquid stagnation conditions at two pressures (2 and 6 bara) and 3 release nozzle diameters (1 ½ and ¼ inches). The simulations were performed using a 1d engineering tool which accounts for discharge line effects due to friction extra resistance due to fittings and area change. The engineering tool uses the Possible Impossible Flow (PIF) algorithm for choked flow calculations and the Helmholtz Free Energy (HFE) EoS formulation. Three different phase distribution models were applied. The predictions are compared against measured and derived data from the experiments and recommendations are given both regarding engineering tool applicability and future experimental design.
Machine Learning Approach for Prediction of Hydrogen Environment Embrittlement in Austenitic Steels
Jun 2022
Publication
This study introduces a machine learning approach to predict the effect of alloying elements and test conditions on the hydrogen environment embrittlement (HEE) index of austenitic steels for the first time. The correlation between input features and the HEE index was analyzed with Pearson's correlation coefficient (PCC) and Maximum Information Coefficient (MIC) algorithms. The correlation analysis results identified Ni and Mo as dominant features influencing the HEE index of austenitic steels. Based on the analysis results the performance of the four representative machine learning models as a function of the number of top-ranked features was evaluated: random forest (RF) linear regression (LR) Bayesian ridge (BR) and support vector machine (SVM). Regardless of the type and the number of top-ranking features the RF model had the highest accuracy among various models. The machine learning-based approach is expected to be useful in designing new steels having mechanical properties required for hydrogen applications.
A Parametric Approach for Conceptual Integration and Performance Studies of Liquid Hydrogen Short–Medium Range Aircraft
Jul 2022
Publication
The present paper deals with the investigation at conceptual level of the performance of short–medium-range aircraft with hydrogen propulsion. The attention is focused on the relationship between figures of merit related to transport capability such as passenger capacity and flight range and the parameters which drive the design of liquid hydrogen tanks and their integration with a given aircraft geometry. The reference aircraft chosen for such purpose is a box-wing short–mediumrange airplane the object of study within a previous European research project called PARSIFAL capable of cutting the fuel consumption per passenger-kilometre up to 22%. By adopting a retrofitting approach non-integral pressure vessels are sized to fit into the fuselage of the reference aircraft under the assumption that the main aerodynamic flight mechanic and structural characteristics are not affected. A parametric model is introduced to generate a wide variety of fuselage-tank cross-section layouts from a single tank with the maximum diameter compatible with a catwalk corridor to multiple tanks located in the cargo deck and an assessment workflow is implemented to perform the structural sizing of the tanks and analyse their thermodynamic behaviour during the mission. This latter is simulated with a time-marching approach that couples the fuel request from engines with the thermodynamics of the hydrogen in the tanks which is constantly subject to evaporation and depending on the internal pressure vented-out in gas form. Each model is presented in detail in the paper and results are provided through sensitivity analyses to both the technologic parameters of the tanks and the geometric parameters influencing their integration. The guidelines resulting from the analyses indicate that light materials such as the aluminium alloy AA2219 for tanks’ structures and polystyrene foam for the insulation should be selected. Preferred values are also indicted for the aspect ratios of the vessel components i.e. central tube and endcaps as well as suggestions for the integration layout to be adopted depending on the desired trade-off between passenger capacity as for the case of multiple tanks in the cargo deck and achievable flight ranges as for the single tank in the section.
A Brief History of Process Safety Management
Sep 2021
Publication
Common root causes are often to be found in many if not most process safety incidents. Whilst largescale events are relatively rare such events can have devastating consequences. The subsequent investigations often uncover that the risks are rarely visible the direct causes are often hidden and that a ‘normalization of deviation’ is a common human characteristic. Process Safety Management (PSM) builds on the valuable lessons learned from past incidents to help prevent future recurrences. An understanding of how PSM originated and has evolved as a discipline over the past 200 years can be instructive when considering the safety implications of emerging technologies. An example is hydrogen production where risks must be effectively identified mitigated and addressed to provide safe production transportation storage and use .
Recent Application of Nanomaterials to Overcome Technological Challenges of Microbial Electrolysis Cells
Apr 2022
Publication
Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus understanding the technological challenges of MECs the characteristics of nanomaterials and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein the critical challenges that need to be addressed for MECs are highlighted and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.
Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives
Jul 2022
Publication
Hydrogen fuel cell vehicles can complement other electric vehicle technologies as a zeroemission technology and contribute to global efforts to achieve the emission reduction targets. This article spotlights the current deployment status of fuel cells in road transport. For this purpose data collection was performed by the Advanced Fuel Cells Technology Collaboration Programme. Moreover the available incentives for purchasing a fuel cell vehicle in different countries were reviewed and future perspectives summarized. Based on the collected information the development trends in the last five years were analyzed and possible further trends that could see the realization of the defined goals derived. The number of registered vehicles was estimated to be 51437 units with South Korea leading the market with 90% of the vehicles being concentrated in four countries. A total of 729 hydrogen refueling stations were in operation with Japan having the highest number of these. The analysis results clearly indicate a very positive development trend for fuel cell vehicles and hydrogen refueling stations in 2021 with the highest number of new vehicles and stations in a single year paralleling the year’s overall economic recovery. Yet a more ambitious ramp-up in the coming years is required to achieve the set targets.
Hydrogen Bubble Growth in Alkaline Water Electrolysis: An Immersed Boundary Simulation Study
Nov 2022
Publication
Enhancing the efficiency of industrial water electrolysis for hydrogen production is important for the energy transition. In electrolysis hydrogen is produced at the cathode which forms bubbles due to the diffusion of dissolved hydrogen in the surrounding supersaturated electrolyte. Hydrogen (and oxygen) bubbles play an important role in the achievable electrolysis efficiency. The growth of the bubbles is determined by diffusive and convective mass transfer. In turn the presence and the growth of the hydrogen bubbles affect the electrolysis process at the cathode.<br/>In the present study we simulate the growth of a single hydrogen bubble attached to a vertical cathode in a 30 wt KOH solution in a cathodic compartment represented by a narrow channel. We solve the Navier-Stokes equations mass transport equations and potential equation for a tertiary current distribution. A sharp interface immersed boundary method with an artificial compressibility method for the pressure is employed. To verify the numerical accuracy of the method we performed a grid refinement study and checked the global momentum and hydrogen mass balances. We investigate the effects of flow rate and operation pressure upon bubble growth behaviour species concentrations potential and current density. We compare different cases in two ways: for the same time and for the same bubble radius. We observe that increasing the flow velocity leads to a small increase in efficiency. Increasing the operation pressure causes higher hydrogen density which slows down the bubble growth. It is remarkable that for a given bubble radius increasing the pressure leads to a small decrease in efficiency.
Recent Advances in Hybrid Water Electrolysis for Energy-saving Hydrogen Production
Nov 2022
Publication
Electricity-driven water splitting to convert water into hydrogen (H2) has been widely regarded as an efficient approach for H2 production. Nevertheless the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction (OER). To effectively address the issue a novel concept of hybrid water electrolysis has been developed for energy– saving H2 production. This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER. Herein recent advances in such water splitting system for boosting H2 evolution under low cell voltage are systematically summarized. Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction (HER) are discussed in detail. To facilitate the development of hybrid water electrolysis the major challenges and perspectives are also proposed.
Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage
Apr 2022
Publication
Fluctuations in renewable energy production especially from solar and wind plants can be solved by large‐scale energy storage. One of the possibilities is storing energy in the form of hydrogen or methane–hydrogen blends. A viable alternative for storing hydrogen in salt caverns is Lined Rock Cavern (LRC) underground energy storage. One of the most significant challenges in LRC for hydrogen storage is sealing liners which need to have satisfactory sealing and mechanical properties. An experimental study of hydrogen permeability of different kinds of polymers was conducted followed by modeling of hydrogen permeability of these materials with different additives (graphite halloysite and fly ash). Fillers in polymers can have an impact on the hydrogen permeability ratio and reduce the amount of polymer required to make a sealing liner in the reservoir. Results of this study show that hydrogen permeability coefficients of polymers and estimated hydrogen leakage through these materials are similar to the results of salt rock after the salt creep process. During 60 days of hydrogen storage in a tank of 1000 m2 inner surface 1 cm thick sealing liner and gas pressure of 1.0 MPa only approx. 1 m3STP of hydrogen will diffuse from the reservoir. The study also carries out the modeling of the hydrogen permeability of materials using the Max‐ well model. The difference between experimental and model results is up to 17% compared to the differences exceeding 30% in some other studies.
Hydrogen Blowdown Release Experiments at Different Temperatures in the Discha-facility
Sep 2021
Publication
In this work experiments on horizontal hydrogen jet releases from a 2.815 dm³ volume tank to the ambience are described. For the main experimental series tank valve and release line were cooled down to a temperature of approx. 80 K in a bath of liquid nitrogen. As a reference similar experiments were also performed with the uncooled tank at ambient temperature. The releases were carried out through four nozzles with different circular orifice diameters from 0.5 to 4 mm and started from initial tank pressures from 0.5 to 20 MPa (rel.). During the releases pressures and temperatures inside the vessel as well as inside the release line were measured. Outside the nozzle further temperature and hydrogen concentration measurements were performed along and besides the jet axis. The electrostatic field builtup in the jet was monitored using two field meters in different distances from the release nozzle and optical observation via photo and video-cameras was performed for the visualization of the H2-jet via the BOS-method. The experiments were performed in the frame of the EU-funded project PRESHLY in which several tests of this program were selected for a comparative computational study the results of which will also be presented at this conference. So on the one hand the paper gives a comprehensive description of the facility on the other hands it also describes the experimental procedure and the main findings.
Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand
Jan 2023
Publication
Non-energy use of natural gas is gaining importance. Gas used for 183 million tons annual ammonia production represents 4% of total global gas supply. 1.5-degree pathways estimate an ammonia demand growth of 3–4-fold until 2050 as new markets in hydrogen transport shipping and power generation emerge. Ammonia production from hydrogen produced via water electrolysis with renewable power (green ammonia) and from natural gas with CO2 storage (blue ammonia) is gaining attention due to the potential role of ammonia in decarbonizing energy value chains and aiding nations in achieving their net-zero targets. This study assesses the technical and economic viability of different routes of ammonia production with an emphasis on a systems level perspective and related process integration. Additional cost reductions may be driven by optimum sizing of renewable power capacity reducing losses in the value chain technology learning and scale-up reducing risk and a lower cost of capital. Developing certification and standards will be necessary to ascertain the extent of greenhouse gas emissions throughout the supply chain as well as improving the enabling conditions including innovative finance and de-risking for facilitating international trade market creation and large-scale project development.
Reforming Processes for Syngas Production: A Mini-review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels
Mar 2022
Publication
Dedicated bioenergy combined with carbon capture and storage are important elements for the mitigation scenarios to limit the global temperature rise within 1.5 °C. Thus the productions of carbon-negative fuels and chemicals from biomass is a key for accelerating global decarbonisation. The conversion of biomass into syngas has a crucial role in the biomass-based decarbonisation routes. Syngas is an intermediate product for a variety of chemical syntheses to produce hydrogen methanol dimethyl ether jet fuels alkenes etc. The use of biomass-derived syngas has also been seen as promising for the productions of carbon negative metal products. This paper reviews several possible technologies for the production of syngas from biomass especially related to the technological options and challenges of reforming processes. The scope of the review includes partial oxidation (POX) autothermal reforming (ATR) catalytic partial oxidation (CPO) catalytic steam reforming (CSR) and membrane reforming (MR). Special attention is given to the progress of CSR for biomass-derived vapours as it has gained significant interest in recent years. Heat demand and efficiency together with properties of the reformer catalyst were reviewed more deeply in order to understand and propose solutions to the problems that arise by the reforming of biomass-derived vapours and that need to be addressed in order to implement the technology on a big scale.
The Use of Strontium Ferrite in Chemical Looping Systems
May 2020
Publication
This work reports a detailed chemical looping investigation of strontium ferrite (SrFeO3−δ) a material with the perovskite structure type able to donate oxygen and stay in a nonstoichiometric form over a broad range of oxygen partial pressures starting at temperatures as low as 250°C (reduction in CO measured in TGA). SrFeO3−δ is an economically attractive simple but remarkably stable material that can withstand repeated phase transitions during redox cycling. Mechanical mixing and calcination of iron oxide and strontium carbonate was evaluated as an effective way to obtain pure SrFeO3−δ. In–situ XRD was performed to analyse structure transformations during reduction and reoxidation. Our work reports that much deeper reduction from SrFeO3−δ to SrO and Fe is reversible and results in oxygen release at a chemical potential suitable for hydrogen production. Thermogravimetric experiments with different gas compositions were applied to characterize the material and evaluate its available oxygen capacity. In both TGA and in-situ XRD experiments the material was reduced below δ=0.5 followed by reoxidation either with CO2 or air to study phase segregation and reversibility of crystal structure transitions. As revealed by in-situ XRD even deeply reduced material regenerates at 900°C to SrFeO3−δ with a cubic structure. To investigate the catalytic behaviour of SrFeO3−δ in methane combustion experiments were performed in a fluidized bed rig. These showed SrFeO3−δ donates O2 into the gas phase but also assists with CH4 combustion by supplying lattice oxygen. To test the material for combustion and hydrogen production long cycling experiments in a fluidized bed rig were also performed. SrFeO3−δ showed stability over 30 redox cycles both in experiments with a 2-step oxidation performed in CO2 followed by air as well as a single step oxidation in CO2 alone. Finally the influence of CO/CO2 mixtures on material performance was tested; a fast and deep reduction in elevated pCO2 makes the material susceptible to carbonation but the process can be reversed by increasing the temperature or lowering pCO2.
Approaches and Methods to Demonstrate Repurposing of the UK's Local Transmission System (LTS) Pipelines for Transportation of Hydrogen
Sep 2021
Publication
Hydrogen has the potential as an energy solution to contribute to decarbonisation targets as it has the capability to deliver low-carbon energy at the scale required. For this to be realised the suitability of the existing natural gas pipeline networks for transporting hydrogen must be established. The current paper describes a feasibility study that was undertaken to assess the potential for repurposing the UK’s Local Transmission System (LTS) natural gas pipelines for hydrogen service. The analysis focused on SGN’s network which includes 3000 km of LTS pipelines in Scotland and the south of England. The characteristics of the LTS pipelines in terms of materials of construction and operation were first evaluated. This analysis showed that a significant percentage of SGN’s LTS network consists of lower strength grades of steel pipeline that operate at low stresses which are factors conducive to a pipeline’s suitability for hydrogen service. An assessment was also made of where existing approaches in pipeline operation may require modifications for hydrogen. The effects of changes in mechanical properties of steel pipelines on integrity and lifetime as a result of potential hydrogen degradation were demonstrated using fitness-for-purpose analysis. A review of pipeline risk assessment and Land-Use Planning (LUP) zone calculations for hydrogen was undertaken to identify any required changes. Case studies on selected sections of the LTS pipeline were then carried out to illustrate the potential changes to LUP zones. The work concluded with a summary of identified gaps that require addressing to ensure safe pipeline repurposing for hydrogen which cover materials performance inspection risk assessment land use planning and procedures.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Techno-economic Evaluation on a Hybrid Technology for Low Hydrogen Concentration Separation and Purification from Natural Gas Grid
Jul 2020
Publication
Hydrogen can be stored and distributed by injecting into existing natural grids then at the user site separated and used in different applications. The conventional technology for hydrogen separation is pressure swing adsorption (PSA). The recent NREL study showed the extraction cost for separating hydrogen from a 10% H2 stream with a recovery of 80% is around 3.3e8.3 US$/kg. In this document new system configurations for low hydrogen concentration separation from the natural gas grid by combining novel membrane-based hybrid technologies will be described in detail. The focus of the manuscript will be on the description of different configurations for the direct hydrogen separation which comprises a membrane module a vacuum pump and an electrochemical hydrogen compressor. These technological combinations bring substantial synergy effect of one another while improving the total hydrogen recovery purity and total cost of hydrogen. Simulation has been carried out for 17 different configurations; according to the results a configuration of two-stage membrane modules (in series) with a vacuum pump and an electrochemical hydrogen compressor (EHC) shows highest hydrogen purity (99.9997%) for 25 kg/day of hydrogen production for low-pressure grid. However this configuration shows a higher electric consumption (configuration B) due to the additional mechanical compressor between the two-stage membrane modules and the EHC. Whereas when the compressor is excluded and a double skin Pd membrane (PdDS) module is used in a single stage while connected to a vacuum pump (configuration A5) the hydrogen purity (99.92%) slightly decreases yet the power consumption considerably improves (1.53 times lower). Besides to these two complementary configurations the combination of a single membrane module a vacuum pump and the electrochemical compressor has been also carried out (configuration A) and results show that relatively higher purity can be achieved. Based on four master configurations this document presents a different novel hybrid system by integrating two to three technologies for hydrogen purification combined in a way that enhances the strengths of each of them.
Experimental Investigation on the Burning Behavior of Homogenous H2-CO-Air Mixtures in an Obstructed Semi-confined Channel
Sep 2021
Publication
In the current work the combustion behavior of hydrogen-carbon monoxide-air mixtures in semiconfined geometries is investigated in a large horizontal channel facility (dimensions 9 m x 3 m x 0.6 m (L x W x H)) as a part of a joint German nuclear safety project. In the channel with evenly distributed obstacles (blockage ratio 50%) and an open to air ground face homogeneous H2-CO-air mixtures are ignited at one end. The combustion behavior of the mixture is analyzed using the signals of pressure sensors modified thermocouples and ionization probes for flame front detection that are distributed along the channel ceiling. In the experiments various fuel concentrations (cH2 + cCO = 14 to 22 Vol%) with different H2:CO ratios (75:25 50:50 and 25:75) are used and the transition regions for a significant flame acceleration to sonic speed (FA) as well as to a detonation (DDT) are investigated. The conditions for the onset of these transitions are compared with earlier experiments performed in the same facility with H2-air mixtures. The results of this work will help to allow a more realistic estimation of the pressure loads generated by the combustion of H2-CO-air mixtures in obstructed semi-confined geometries.
Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of its Economic Viability
Jan 2021
Publication
The solar to hydrogen (STH) efficiency of photovoltaic-electrolysis (PV-E) setups is a key parameter to lower the cost of green hydrogen produced. Commercial c-Si solar cells have neared saturation with respect to their efficiency which warrants the need to look at alternative technologies. In this work we report a concentrator photovoltaic-electrolysis (CPV-E) setup with a STH efficiency of 28% at 41 suns (without the use of Fresnel lenses) the highest reported efficiency using an alkaline system to date. Using this as a base case we carried out a detailed techno-economic (TEA) analysis which showed that despite the high cost associated with CPV cells the levelized cost of hydrogen (LCOH) is at $5.9 kg1 close to that from c-Si solar farms ($4.9 kg1 ) primarily due to the high STH efficiency. We also report sensitivity analysis of factors affecting both CPV and alkaline electrolyser systems such as the CPV module efficiency and installed capacity electrolyser stack lifetime operating current density and working hours. Our results indicate that in a scenario where the installed capacity of CPV technology matches that of silicon and with an electrolyser operating current density of 0.7 A cm2 the LCOH from CPV electrolysis systems can be.
CO2 Emissions Reduction through Increasing H2 Participation in Gaseous Combustible—Condensing Boilers Functional Response
Apr 2022
Publication
Considering the imperative reduction in CO2 emissions both from household heating and hot water producing facilities one of the mainstream directions is to reduce hydrocarbons in combustibles by replacing them with hydrogen. The authors analyze condensing boilers operating when hydrogen is mixed with standard gaseous fuel (CH4 ). The hydrogen (H2 ) volumetric participation in the mixture is considered to vary in the range of 0 to 20%. The operation of the condensing boilers will be numerically modeled by computational programs and prior validated by experimental studies concluded in a European Certified Laboratory. The study concluded that an increase in the combustible flow with 16% will compensate the maximum H2 concentration situation with no other implications on the boiler’s thermal efficiency together with a decrease in CO2 emissions by approximately 7%. By assuming 0.9 (to/year/boiler) the value of CO2 emissions reduction for the condensing boiler determined in the paper and extrapolating it for the estimated number of boilers to be sold for the period 2019–2024 a 254700-ton CO2/year reduction resulted.
Present and Projected Developments in Hydrogen Production: A Technological Review
Mar 2022
Publication
Energy supplies that are safe environmentally friendly dependable and cost-effective are important for society's long-term growth and improved living standards though political social and economic barriers may inhibit their availability. Constantly increasing energy demand is induced by substantial population growth and economic development putting an increasing strain on fossil fuel management and sustainability which account for a major portion of this rising energy demand and moreover creates difficulties because of greenhouse gas emissions growth and the depletion of resources. Such impediments necessitate a global shift away from traditional energy sources and toward renewables. Aside from its traditional role is viewed as a promising energy vector and is gaining international attention as a promising fuel path as it provides numerous benefits in use case scenarios and unlike other synthesized carbon-based fuels could be carbon-free or perhaps even negative on a life-cycle criterion. Hydrogen ( ) is one of the most significant chemical substances on earth and can be obtained as molecular dihydrogen through various techniques from both non-renewable and renewable sources. The drive of this paper is to deliver a technological overview of hydrogen production methods. The major challenges development and research priorities and potential prospects for production was discussed.
No more items...