- Home
- A-Z Publications
- Publications
Publications
Ignore Variability, Overestimate Hydrogen Production - Quantifying the Effects of Electrolyzer Efficiency Curves on Hydrogen Producton from Renewable Energy Sources
May 2024
Publication
This study investigates the impact of including (or neglecting) the variable efficiency of hydrogen electrolyzers as a function of operating power in the modelling of green hydrogen produced from variable renewable energy sources. Results show that neglecting the variable electrolyzer efficiency as is commonly done in studies of green hydrogen leads to significant overestimation of hydrogen production in the range of 5–24%. The effects of the time resolution used in models are also investigated as well as the impact of including the option for the electrolyzer to switch to stand-by mode instead of powering down and electrolyzer ramp rate constraints. Results indicate that these have a minor effect on overall hydrogen production with the use of hour resolution data leading to overestimation in the range of 0.2–2% relative to using 5-min data. This study used data from three solar farms and three wind in Australia from which it is observed that wind farms produced 55% more hydrogen than the solar farms. The results in this study highlight the critical importance of including the variable efficiency of electrolyzers in the modelling of green hydrogen production. As this industry scales continuing to neglect this effect would lead to the overestimation of hydrogen production by tens of megatonnes.
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
Review of the Status and Prospects of Fiber Optic Hydrogen Sensing Technology
Aug 2023
Publication
With the unprecedented development of green and renewable energy sources the proportion of clean hydrogen (H2 ) applications grows rapidly. Since H2 has physicochemical properties of being highly permeable and combustible high-performance H2 sensors to detect and monitor hydrogen concentration are essential. This review discusses a variety of fiber-optic-based H2 sensor technologies since the year 1984 including: interferometer technology fiber grating technology surface plasma resonance (SPR) technology micro lens technology evanescent field technology integrated optical waveguide technology direct transmission/reflection detection technology etc. These technologies have been evolving from simply pursuing high sensitivity and low detection limits (LDL) to focusing on multiple performance parameters to match various application demands such as: high temperature resistance fast response speed fast recovery speed large concentration range low cross sensitivity excellent long-term stability etc. On the basis of palladium (Pd)-sensitive material alloy metals catalysts or nanoparticles are proposed to improve the performance of fiberoptic-based H2 sensors including gold (Au) silver (Ag) platinum (Pt) zinc oxide (ZnO) titanium oxide (TiO2 ) tungsten oxide (WO3 ) Mg70Ti30 polydimethylsiloxane (PDMS) graphene oxide (GO) etc. Various microstructure processes of the side and end of optical fiber H2 sensors are also discussed in this review.
Design and Optimization of a Type-C Tank for Liquid Hydrogen Marine Transport
May 2023
Publication
As one of the most promising renewable energy sources hydrogen has the excellent environmental benefit of producing zero emissions. A key technical challenge in using hydrogen across sectors is placed on its storage technology. The storage temperature of liquid hydrogen (20 K or 253 C) is close to absolute zero so the storage materials and the insulation layers are subjected to extremely stringent requirements against the cryogenic behaviour of the medium. In this context this research proposed to design a large liquid hydrogen type-C tank with AISI (American Iron and Steel Institution) type 316 L stainless steel as the metal barrier using Vapor-Cooled Shield (VCS) and Rigid Polyurethane Foams (RPF) as the insulation layer. A parametric study on the design of the insulation layer was carried out by establishing a thermodynamic model. The effects of VCS location on heat ingress to the liquid hydrogen transport tank and insulation temperature distribution were investigated and the optimal location of the VCS in the insulation was identified. Research outcomes finally suggest two optimal design schemes: (1) when the thickness of the insulation layer is determined Self-evaporation Vapor-Cooled Shield (SVCS) and Forcedevaporation Vapor-Cooled Shield (FVCS) can reduce heat transfer by 47.84% and 85.86% respectively; (2) when the liquid hydrogen evaporation capacity is determined SVCS and FVCS can reduce the thickness of the insulation layer by 50% and 67.93% respectively.
Solar–Hydrogen Storage System: Architecture and Integration Design of University Energy Management Systems
May 2024
Publication
As a case study on sustainable energy use in educational institutions this study examines the design and integration of a solar–hydrogen storage system within the energy management framework of Kangwon National University’s Samcheok Campus. This paper provides an extensive analysis of the architecture and integrated design of such a system which is necessary given the increasing focus on renewable energy sources and the requirement for effective energy management. This study starts with a survey of the literature on hydrogen storage techniques solar energy storage technologies and current university energy management systems. In order to pinpoint areas in need of improvement and chances for progress it also looks at earlier research on solar–hydrogen storage systems. This study’s methodology describes the system architecture which includes fuel cell integration electrolysis for hydrogen production solar energy harvesting hydrogen storage and an energy management system customized for the needs of the university. This research explores the energy consumption characteristics of the Samcheok Campus of Kangwon National University and provides recommendations for the scalability and scale of the suggested system by designing three architecture systems of microgrids with EMS Optimization for solar–hydrogen hybrid solar–hydrogen and energy storage. To guarantee effective and safe functioning control strategies and safety considerations are also covered. Prototype creation testing and validation are all part of the implementation process which ends with a thorough case study of the solar–hydrogen storage system’s integration into the university’s energy grid. The effectiveness of the system its effect on campus energy consumption patterns its financial sustainability and comparisons with conventional energy management systems are all assessed in the findings and discussion section. Problems that arise during implementation are addressed along with suggested fixes and directions for further research—such as scalability issues and technology developments—are indicated. This study sheds important light on the viability and efficiency of solar–hydrogen storage systems in academic environments particularly with regard to accomplishing sustainable energy objectives.
Review of Sampling and Analysis of Particulate Matter in Hydrogen Fuel
Sep 2023
Publication
This review presents state-of-the-art for representative sampling of hydrogen from hydrogen refueling stations. Documented sampling strategies are presented as well as examples of commercially available equipment for sampling at the hydrogen refueling nozzle. Filter media used for sampling is listed and the performance of some of the filters evaluated. It was found that the filtration efficiency of 0.2 and 5 mm filters were not significantly different when exposed to 200 and 300 nm particles. Several procedures for gravimetric analysis are presented and some of the challenges are identified to be filter degradation pinhole formation and conditioning of the filter prior to measurement. Lack of standardization of procedures was identified as a limitation for result comparison. Finally the review summarizes results including particulate concentration in hydrogen fuel quality data published. It was found that less than 10% of the samples were in violation with the tolerance limit.
Evaluation of the Technical Condition of Pipes during the Transportation of Hydrogen Mixtures According to the Energy Approach
Jun 2024
Publication
In this study a theoretical–experimental methodology for determining the stress–strain state in pipeline systems taking into account the hydrogen environment was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of the material’s resistance to strain at different hydrogen concentrations. The technique is based on the construction of complete diagrams of the destruction of the material based on the determination of true strains and stresses in the local volume using the method involving the optical–digital correlation of speckle images. A complex of research was carried out and true diagrams of material destruction were constructed depending on the previous elastic–plastic strain and the action of the hydrogen environment. The change in the concentration of hydrogen absorbed by the material was estimated depending on the value of the specific energy of destruction. A study was conducted on tubular samples and the degree of damage to the material of the inner wall under the action of hydrogen and stress from the internal pressure was evaluated according to the change in specific energy depending on the value of the true strain established with the help of an optical–digital correlator on the outer surface and the degree of damage was determined. It has been established that the specific fracture energy of 17G1S steel decreases by 70–90% under the influence of hydrogen. The effect of the change in the amount of strain energy on the thickness of the pipe wall is illustrated.
Progress and Prospect of the Novel Integrated SOFC-ICE Hybrid Power System: System Design, Mass and Heat Integration, System Optimization and Techno-economic Analysis
Jan 2023
Publication
This paper presents a review of system design and analysis control strategy optimization and heat and mass integration of integrated solid oxide fuel cell (SOFC) and reciprocating internal combustion engine (ICE) system. Facing the future power-fuel-power path both SOFC and ICE can adapt to a variety of fuels which is one evidence that ICE is amenable to integration with SOFC while SOFC is more efficient cleaner and quieter than ICE. Different system topologies are classified whose dynamic performances are also analyzed. In addition the heat and mass integration of system is discussed. Moreover the combustion modes of ICE which can be applied to steady combustion high efficiency and low emissions are analyzed and compared. Meanwhile the potential and methods of system waste heat recovery are discussed. The exergy analysis energy density and techno-economy are discussed. Finally the results are discussed in the last section with the final conclusion that SOFC-ICE systems are very suitable for long-distance transportation such as maritime and aviation which can also solve problems of the carbon and pollutant emissions with the background of engine cannot be replaced in maritime while the system can adapt a variety of alternative fuels.
Explosion Replication Test of FCEV Hydrogen Tank
Sep 2023
Publication
Due to the increased interest in alternative energy sources hydrogen device safety has become paramount. In this study we induced the explosion of a hydrogen tank from a fuel cell electric vehicle (FCEV) by igniting a fire beneath it and disabling the built-in temperature pressure relief device. Three Type 4 tanks were injected gaseous hydrogen at pressures of 700 350 and 10 bar respectively. The incident pressure generated by the tank explosion was measured by pressure transducers positioned at various points around the tank. A protective barrier was installed to examine its effect on the resulting damage and the reflected pressure was measured along the barrier. The internal pressure and external temperature of the tanks were measured in multiple locations. The 700- and 350-bar hydrogen tanks exploded approximately 10 and 16 min after burner ignition respectively. The 10-bar hydrogen tank did not explode but ruptured approximately 29 min after burner ignition The explosions generated blast waves fireballs and fragments. The impact on the surrounding area was evaluated and we verified that the blast pressure fireballs and fragments were almost completely blocked by the protective barrier. The results of this study are expected to improve safety on an FCEV accident scene.
The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities
Aug 2023
Publication
Hydrogen is being included in several decarbonization strategies as a potential contributor in some hard-to-abate applications. Among other challenges hydrogen storage represents a critical aspect to be addressed either for stationary storage or for transporting hydrogen over long distances. Ammonia is being proposed as a potential solution for hydrogen storage as it allows storing hydrogen as a liquid chemical component at mild conditions. Nevertheless the use of ammonia instead of pure hydrogen faces some challenges including the health and environmental issues of handling ammonia and the competition with other markets such as the fertilizer market. In addition the technical and economic efficiency of single steps such as ammonia production by means of the Haber–Bosch process ammonia distribution and storage and possibly the ammonia cracking process to hydrogen affects the overall supply chain. The main purpose of this review paper is to shed light on the main aspects related to the use of ammonia as a hydrogen energy carrier discussing technical economic and environmental perspectives with the aim of supporting the international debate on the potential role of ammonia in supporting the development of hydrogen pathways. The analysis also compares ammonia with alternative solutions for the long-distance transport of hydrogen including liquefied hydrogen and other liquid organic carriers such as methanol.
Lifetime Greenhouse Gas Emissions from Offshore Hydrogen Production
Aug 2023
Publication
With a limited global carbon budget it is imperative that decarbonisation decisions are based on accurate holistic accounts of all greenhouse gas (GHG) emissions produced to assess their validity. Here the upstream GHG emissions of potential UK offshore Green and Blue hydrogen production are compared to GHG emissions from hydrogen produced through electrolysis using UK national grid electricity and the ‘business-as-usual’ case of continuing to combust methane. Based on an operational life of 25 years and producing 0.5MtH2 per year for each hydrogen process the results show that Blue hydrogen will emit between 200-262MtCO2e of GHG emissions depending on the carbon capture rates achieved (39%–90%) Green hydrogen produced via electrolysis using 100% renewable electricity from offshore wind will emit 20MtCO2e and hydrogen produced via electrolysis powered by the National Grid will emit between 103-168MtCO2e depending of the success of its NetZero strategy. The ‘business-as-usual’ case of continuing to combust methane releases 250MtCO2e over the same lifetime. This study finds that Blue hydrogen at scale is not compatible with the Paris Agreement reduces energy security and will require a substantial GHG emissions investment which excludes it from being a ‘low carbon technology’ and should not be considered for any decarbonisation strategies going forward.
The Possibility of Powering a Light Aircraft by Releasing the Energy Stored in Hydrogen within a Fuel Cell Stack
Jun 2024
Publication
In this work we examine the possibility of converting a light propeller-driven aircraft powered by a spark-ignition reciprocating piston and internal combustion engine running on AVGAS into one powered by an electric motor driven by a proton exchange membrane fuel cell stack running on hydrogen. Our studies suggest that storing hydrogen cryogenically is a better option than storing hydrogen under pressure. In comparison to cryogenic tanks high-pressure tanks are extremely heavy and unacceptable for light aircraft. We show that the modified aircraft (including batteries) is no heavier than the original and that the layout of the major components results in lower movement of the aircraft center-of-gravity as the aircraft consumes hydrogen. However we acknowledge that our fuel cell aircraft cannot store the same amount of energy as the original running on AVGAS. Therefore despite the fact that the fuel cell stack is markedly more efficient than an internal combustion engine there is a reduction in the range of the fuel cell aircraft. One of our most important findings is that the quantity of energy that we need to dissipate to the surroundings via heat transfer is significantly greater from a fuel cell stack than from an internal combustion engine. This is particularly the case when we attempt to run the fuel cell stack at high current densities. To control this problem our strategy during the cruise phase is to run the fuel cell stack at its maximum efficiency where the current density is low. We size the fuel cell stack to produce at least enough power for cruise and when we require excess power we add the energy stored in batteries to make up the difference.
Levelised Cost of Dynamic Green Hydrogen Production: A Case Study for Australia's Hydrogen Hubs
Jun 2024
Publication
This study evaluates the levelised cost of hydrogen (LCOH) dynamically produced using the two dominant electrolysis technologies directly connected to wind turbines or photovoltaic (PV) panels in regions of Australia designated as hydrogen hubs. Hourly data are utilised to size the components required to meet the hydrogen demand. The dynamic efficiency of each electrolysis technology as a function of input power along with its operating characteristics and overload capacity are employed to estimate flexible hydrogen production. A sensitivity analysis is then conducted to capture the behaviour of the LCOH in response to inherent uncertainty in critical financial and technical factors. Additionally the study investigates the trade-offs between carbon cost and lifecycle emissions of green hydrogen. This approach is applied to ascertain the impact of internalising environmental costs on the cost-competitiveness of green hydrogen compared to grey hydrogen. The economic modelling is developed based on the Association for the Advancement of Cost Engineering (AACE) guidelines. The findings indicate that scale-up is key to reducing the LCOH by a meaningful amount. However scale-up alone is insufficient to reach the target value of AUD 3 (USD 2) except for PV-based plant in the Pilbara region. Lowered financial costs from scale-up can make the target value achievable for PV-based plants in Gladstone and Townsville and for wind-based plants in the Eyre Peninsula and Pilbara regions. For other hubs a lower electricity cost is required as it accounts for the largest portion of the LCOH.
Grid Ancillary Services using Electrolyzer-based Power-to-Gas Systems with Increasing Renewable Penetration
Nov 2023
Publication
Increasing penetrations of renewable-based generation have led to a decrease in the bulk power system inertia and an increase in intermittency and uncertainty in generation. Energy storage is considered to be an important factor to help manage renewable energy generation at greater penetrations. Hydrogen is a viable long-term storage alternative. This paper analyzes and presents use cases for leveraging electrolyzer-based power-to-gas systems for electric grid support. The paper also discusses some grid services that may favor the use of hydrogenbased storage over other forms such as battery energy storage. Real-time controls are developed implemented and demonstrated using a power-hardware-in-the-loop(PHIL) setup with a 225-kW proton-exchange-membrane electrolyzer stack. These controls demonstrate frequency and voltage support for the grid for different levels of renewable penetration (0% 25% and 50%). A comparison of the results shows the changes in respective frequencies and voltages as seen as different buses as a result of support from the electrolyzers and notes the impact on hydrogen production as a result of grid support. Finally the paper discusses the practical nuances of implementing the tests with physical hardware such as inverter/electrolyzer efficiency as well as the related constraints and opportunities.
Energy Storage Strategy - Narrative
Feb 2023
Publication
This narrative document sets out the main rationale for hydrogen storage development at scale in the UK: - To meet net zero the UK will need considerable energy storage - Hydrogen storage will be a major and essential part of this - Physical hydrogen storage is needed in the UK - Only geological hydrogen storage can deliver at the scale needed within the timescales for net zero - Geological hydrogen storage should be supported through a viable business model now to ensure it comes online in the 2030s.
Economic Performance Evaluation of Flexible Centralised and Decentralised Blue Hydrogen Production Systems Design Under Uncertainty
Sep 2023
Publication
Blue hydrogen is viewed as an important energy vector in a decarbonised global economy but its large-scale and capital-intensive production displays economic performance vulnerabities in the face of increased market and regulatory uncertainty. This study analyses flexible (modular) blue hydrogen production plant designs and evaluates their effectiveness to enhance economic performance under uncertainty. The novelty of this work lies in the development of a comprehensive techno-economic evaluation framework that considers flexible centralised and decentralised blue hydrogen plant design alternatives in the presence of irreducible uncertainty whilst explicitly considering the time value of money economies of scale and learning effects. A case study of centralised and decentralised blue hydrogen production for the transport sector in the San Francisco area is developed to highlight the underlying value of flexibility. The proposed methodological framework considers various blue hydrogen plant designs (fixed phased and flexible) and compares them using relevant economic indicators (net present value (NPV) capex value-at-risk/gain etc.) through a detailed Monte Carlo simulation framework. Results indicate that flexible centralised hydrogen production yields greater economic value than alternative designs despite the associated cost-premium of modularity. It is also shown that the value of flexibility increases under greater uncertainty higher learning rates and weaker economies of scale. Moreover sensitivity analysis reveals that flexible design remains the preferred investment option over a wide range of market and regulatory conditions except for high initial hydrogen demand. Finally this study demonstrates that major regulatory and market uncertainties surrounding blue hydrogen production can be effectively managed through the application of flexible engineering system design that protects the investment from major downside risks whilst allowing access to favourable upside opportunities.
Techno-economic Analysis and Predictive Operation of a Power-to-hydrogen for Renewable Microgrids
Oct 2023
Publication
To enhance renewable energy (RE) generation and maintain power balance energy storage systems are of utmost importance. This research introduces a cutting-edge Power-to-Hydrogen (PtH) framework that harnesses hydrogen as a clean and versatile energy storage medium. The primary focus of this study lies in optimizing power flow within a microgrid (G) equipped with RE and energy storage systems considering various factors such as RE generation power demand battery charge cycles and operational costs. To achieve the optimal balance between power generation and consumption a sophisticated mathematical solution is devised. This solution governs the charging and discharging patterns for both battery and electrolyzer ensuring a harmonious power equilibrium. The use of short-term forecasting further refines the optimization process adapting the parameters based on anticipated RE sources and load requirements. To fine-tune the power management solution for day-to-day operations an artificial neural fuzzy inference system (ANFIS)-based shortterm prediction model is employed. The predictive analysis provides confidence intervals for crucial aspects including power generation demand battery charging cycles and hydrogen generation. This facilitates precise cost estimation across various hydrogen and heat price ranges. the proposed PtH optimization framework offers an efficient approach to balance power generation and consumption in Gs driven by RE sources and energy storage. To validate the proposed approach numerical simulations are performed based on data from wind and solar farms load requirements and cost of energy. The results show that the proposed energy management strategy significantly reduces operational costs and optimizes PtH generation while maintaining power balance within the microgrid (G). The predictive approach helps fine-tune the optimization process improving efficiency and cost-effectiveness. The research convincingly demonstrate the economic advantages of adopting hydrogen as an energy storage medium paving the way for a cleaner and more sustainable energy future.
Sustainable Power Generation Expansion in Island Systems with Extensive RES and Energy Storage
Oct 2023
Publication
Insular networks constitute ideal fields for investment in renewables and storage due to their excellent wind and solar potential as well the high generation cost of thermal generators in such networks. Nevertheless in order to ensure the stability of insular networks network operators impose strict restrictions on the expansion of renewables. Storage systems render ideal solutions for overcoming the aforementioned restrictions unlocking additional renewable capacity. Among storage technologies hybrid battery-hydrogen demonstrates beneficial characteristics thanks to the complementary features that battery and hydrogen exhibit regarding efficiency self-discharge cost etc. This paper investigates the economic feasibility of a private investment in renewables and hybrid hydrogen-battery storage realized on the interconnected island of Crete Greece. Specifically an optimization formulation is proposed to optimize the capacity of renewables and hybrid batteryhydrogen storage in order to maximize the profit of investment while simultaneously reaching a minimum renewable penetration of 80% in accordance with Greek decarbonization goals. The numerical results presented in this study demonstrate that hybrid hydrogen-battery storage can significantly reduce electricity production costs in Crete potentially reaching as low as 64 EUR/MWh. From an investor’s perspective even with moderate compensation tariffs the energy transition remains profitable due to Crete’s abundant wind and solar resources. For instance with a 40% subsidy and an 80 EUR/MWh compensation tariff the net present value can reach EUR 400 million. Furthermore the projected cost reductions for electrolyzers and fuel cells by 2030 are expected to enhance the profitability of hybrid renewable-battery-hydrogen projects. In summary this research underscores the sustainable and economically favorable prospects of hybrid hydrogen-battery storage systems in facilitating Crete’s energy transition with promising implications for investors and the wider renewable energy sector.
Towards a Unified Theory of Domestic Hydrogen Acceptance: An Integrative, Comparative Review
Dec 2023
Publication
Hydrogen energy technologies are envisioned to play a critical supporting role in global decarbonisation. While low-carbon hydrogen is primarily targeted for reducing industrial emissions alongside decarbonising parts of the transport sector environmental benefits could also be achieved in the residential context. Presently gasdependent countries such as Japan and the United Kingdom are assessing the feasibility of deploying hydrogen home appliances as part of their national energy strategies. However prospects for the transition will hinge on consumer acceptance alongside an array of other socio-technical factors. To support potential ambitions for large-scale and sustained technology diffusion this study advances a Unified Theory of Domestic Hydrogen Acceptance. Through an integrative comparative literature review targeting hydrogen and domestic energy studies the paper proposes a novel Domestic Hydrogen Acceptance Model (DHAM) which accounts for the cognitive and emotional dimensions of human perceptions. Through this dual interplay the proposed framework can increase the predictive power of hydrogen acceptance models.
Hydrogen-Powered Aircraft at Airports: A Review of the Infrastructure Requirements and Planning Challenges
Nov 2023
Publication
Hydrogen-fueled aircraft are a promising innovation for a sustainable future in aviation. While hydrogen aircraft design has been widely studied research on airport requirements for new infrastructure associated with hydrogen-fueled aircraft and its integration with existing facilities is scarce. This study analyzes the current body of knowledge and identifies the planning challenges which need to be overcome to enable the operation of hydrogen flights at airports. An investigation of the preparation of seven major international airports for hydrogen-powered flights finds that although there is commitment airports are not currently prepared for hydrogen-based flights. Major adjustments are required across airport sites covering land use plans airside development utility infrastructure development and safety security and training. Developments are also required across the wider aviation industry including equipment updates such as for refueling and ground support and supportive policy and regulations for hydrogen-powered aircraft. The next 5–10 years is identified from the review as a critical time period for airports given that the first commercial hydrogen-powered flight is likely to depart in 2026 and that the next generation of short-range hydrogen-powered aircraft is predicted to enter service between 2030 and 2035.
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
Numerical Modelling of a Heavy-duty Diesel-hydrogen Dual-fuel Engine with Late High Pressure Hydrogen Direct Injection and Diesel Pilot
Sep 2023
Publication
Direct gaseous fuel injection in internal combustion engines is a potential strategy for improving in-cylinder combustion processes and performance while reducing emissions and increasing hydrogen energy share (HES). Through use of numerical modelling the current study explores combustion in a compression ignition engine utilising a late compression/early power stroke direct gaseous hydrogen injection ignited by a diesel pilot at up to 99% HES. The combustion process of hydrogen in this type of engine is mapped out and compared to that of the same engine using methane direct injection. Four distinct phases of combustion are found which differ from that of pure diesel operation. Interaction of the injected gas jet with the chamber walls is found to have a considerable impact on performance and emission characteristics and is a factor which needs to be explored in greater detail in future studies. Considerable performance increase and carbon-based emission reductions are identified at up to 99% HES at high load but low load performance greatly deteriorated when 95% HES was exceeded due to a much reduced diesel pilot struggling to ignite the main hydrogen injection.
Re-enacting the Hydrogen Tank Explosion of a Fuel-cell Electric Vehicle: An Experimental Study
May 2023
Publication
With the world-wide decision to reduce carbon emissions through the Paris Agreement (2015) the demand for hydrogen-fuelled vehicles has been increasing. Although hydrogen is not a toxic gas it has a wide flammable range (4e75%) and can explode due to static electricity. Therefore studies on hydrogen safety are urgently required. In this study an explosion was induced by applying fire to the lower part of a fuel cell electric vehicle (FCEV). Out of three compressed hydrogen storage tanks installed in the vehicle two did not have hydrogen fuel and one was filled with compressed gaseous hydrogen of 700 bar and forcedly deactivated its temperature-activated pressure relief device. The side-on overpressure transducers were installed by distance in main directions to measure the side-on overpressure generated by the vehicle explosion. A 10 m-long protective barrier was installed on which reflected overpressure displacement and acceleration were measured to examine the effect of attenuation of explosion damage in the event of an accident. The vehicle exploded approximately 11 min after ignition generating a blast wave fireballs and fragments. The results of the experiment showed that the protective barrier could almost completely block explosive pressure smoke and scattering generated during an explosion. Through Probit function analysis the probabilities of an accident occurring were derived based on peak overpressure peak impulse and scattering. The results of this study can be used to develop standard operating procedures (SOPs) for firefighters as the base data for setting the initial operation location and deriving the safe separation distance.
Risk Assessment of Explosion Accidents in Hydrogen Fuel-Cell Rooms Using Experimental Investigations and Computational Fluid Dynamics Simulations
Oct 2023
Publication
For the safe utilization and management of hydrogen energy within a fuel-cell room in a hydrogen-fueled house an explosion test was conducted to evaluate the potential hazards associated with hydrogen accident scenarios. The overpressure and heat radiation were measured for an explosion accident at distances of 1 2 3 5 and 10 m for hydrogen–air mixing ratios of 10% 25% 40% and 60%. When the hydrogen–air mixture ratio was 40% the greatest overpressure was 24.35 kPa at a distance of 1 m from the fuel-cell room. Additionally the thermal radiation was more than 1.5 kW/m2 which could cause burns at a distance of 5 m from the hydrogen fuel-cell room. Moreover a thermal radiation in excess of 1.5 kW/m2 was computed at a distance of 3 m from the hydrogen fuel-cell room when the hydrogen–air mixing ratio was 25% and 60%. Consequently an explosion in the hydrogen fuel-cell room did not considerably affect fatality levels but could affect the injury levels and temporary threshold shifts. Furthermore the degree of physical damage did not reach major structural damage levels causing only minor structural damage.
Increasing Energy Efficiency of Hydrogen Refueling Stations via Optimal Thermodynamic Paths
Sep 2023
Publication
This work addresses the energy efficiency of hydrogen refueling stations (HRS) using a first principles model and optimal control methods to find minimal entropy production operating paths. The HRS model shows good agreement with experimental data achieving maximum state of charge and temperature discrepancies of 1 and 7% respectively. Model solution and optimization is achieved at a relatively low computational time (40 s) when compared to models of the same degree of accuracy. The entropy production mapping indicates the flow control valve as the main source of irreversibility accounting for 85% of the total entropy production in the process. The minimal entropy production refueling path achieves energy savings from 20 to 27% with respect to the SAE J2601 protocol depending on the ambient temperature. Finally the proposed method under nearreversible refueling conditions shows a theoretical reduction of 43% in the energy demand with respect to the SAE J2601 protocol.
Integration of Underground Green Hydrogen Storage in Hybrid Energy Generation
May 2024
Publication
One of the major challenges in harnessing energy from renewable sources like wind and solar is their intermittent nature. Energy production from these sources can vary based on weather conditions and time of day making it essential to store surplus energy for later use when there is a shortfall. Energy storage systems play a crucial role in addressing this intermittency issue and ensuring a stable and reliable energy supply. Green hydrogen sourced from renewables emerges as a promising solution to meet the rising demand for sustainable energy addressing the depletion of fossil fuels and environmental crises. In the present study underground hydrogen storage in various geological formations (aquifers depleted hydrocarbon reservoirs salt caverns) is examined emphasizing the need for a detailed geological analysis and addressing potential hazards. The paper discusses challenges associated with underground hydrogen storage including the requirement for extensive studies to understand hydrogen interactions with microorganisms. It underscores the importance of the issue with a focus on reviewing the the various past and present hydrogen storage projects and sites as well as reviewing the modeling studies in this field. The paper also emphasizes the importance of incorporating hybrid energy systems into hydrogen storage to overcome limitations associated with standalone hydrogen storage systems. It further explores the past and future integrations of underground storage of green hydrogen within this dynamic energy landscape.
An Overview of Challenges for the Future of Hydrogen
Oct 2023
Publication
Hydrogen’s wide availability and versatile production methods establish it as a primary green energy source driving substantial interest among the public industry and governments due to its future fuel potential. Notable investment is directed toward hydrogen research and material innovation for transmission storage fuel cells and sensors. Ensuring safe and dependable hydrogen facilities is paramount given the challenges in accident control. Addressing material compatibility issues within hydrogen systems remains a critical focus. Challenges roadmaps and scenarios steer long-term planning and technology outlooks. Strategic visions align actions and policies encompassing societal and ecological dimensions. The confluence of hydrogen’s promise with material progress holds the prospect of reshaping our energy landscape sustainably. Forming collective future perspectives to foresee this emerging technology’s potential benefits is valuable. Our review article comprehensively explores the forthcoming challenges in hydrogen technology. We extensively examine the challenges and opportunities associated with hydrogen production incorporating CO2 capture technology. Furthermore the interaction of materials and composites with hydrogen particularly in the context of hydrogen transmission pipeline and infrastructure are discussed to understand the interplay between materials and hydrogen dynamics. Additionally the exploration extends to the embrittlement phenomena during storage and transmission coupled with a comprehensive examination of the advancements and hurdles intrinsic to hydrogen fuel cells. Finally our exploration encompasses addressing hydrogen safety from an industrial perspective. By illuminating these dimensions our article provides a panoramic view of the evolving hydrogen landscape.
Synergy of Carbon Capture, Waste Heat Recovery and Hydrogen Production for Industrial Decarbonisation
May 2024
Publication
Industry is the biggest sector of energy consumption and greenhouse gas emissions whose decarbonisation is essential to achieve the Sustainable Development Goals. Carbon capture energy efficiency improvement and hydrogen are among the main strategies for industrial decarbonization. However novel approaches are needed to address the key requirements and differences between sectors to ensure they can work together to well integrate industrial decarbonisation with heat CO2 and hydrogen. The emerging Calcium Looping (CaL) is attracting interest in designing CO2-involved chemical processes for heat capture and storage. The reversibility relatively high-temperature (600 to 900 ◦C) and high energy capacity output as well as carbon capture function make CaL well-fit for CO2 capture and utilisation and waste heat recovery from industrial flue gases. Meanwhile methane dry reforming (MDR) is a promising technology to produce blue hydrogen via the consumption of two major greenhouse gases i.e. CO2 and CH4. It has great potential to combine the two technologies to achieve insitu CO2 utilization with multiple benefits. In this paper progresses on the reaction conditions and performance of CaL for CO2 capture and industrial waste heat recovery as well as MDR were screened. Secondly recent approaches to CaL-MDR synergy have been reviewed to identify the advantages. The major challenges in such a synergistic process include MDR catalyst deactivation CaL sorbents sintering and system integration. Thirdly the paper outlooks future work to explore a rational design of a multi-function system for the proposed synergistic process.
X-ray Absorpton Spectroscopy Study on Hydrogen Recombination Catalysts of Palladium Nanoparticles on Titanium Oxide under Wet Condition
Sep 2023
Publication
Hydrogen recombination catalyst is useful tool for reducing hydrogen in closed area. The catalyst is known to be poisoned under wet condition in long time use. The study is focused on the behavior of pre-oxidized Pd nanoparticle as the hard-used catalyst in high humidity environment by comparison of alumina and titanium oxide supports using in situ X-ray absorption spectroscopy technique. The reduction of surface oxide layer of Pd/TiO2 was promoted by water during hydrogen recombination although the reduction reaction of Pd/Al2O3 was inhibited by water.
Global Hydrogen Review 2023
Sep 2023
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation. The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals the Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies at the same time as creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry. This year’s report includes a focus on demand creation for low-emission hydrogen. Global hydrogen use is increasing but demand remains so far concentrated in traditional uses in refining and the chemical industry and mostly met by hydrogen produced from unabated fossil fuels. To meet climate ambitions there is an urgent need to switch hydrogen use in existing applications to low-emission hydrogen and to expand use to new applications in heavy industry or long-distance transport.
Quantitative Risk Assessment of Hydrogen Refueling Station in Cheonan City of South Korea
Oct 2023
Publication
The average temperature of the Earth has risen due to the accumulation of greenhouse gases emitted from the usage of fossil fuels. The consequential climate changes have caused various problems fueling the growing demand for environmentally friendly energy sources that can replace fossil fuels. Batteries and hydrogen have thus been utilized as substitute energy sources for automobiles to reduce fossil fuel consumption. Consequently the number of hydrogen refueling stations is increasing due to an increase in the number of hydrogen-powered vehicles. However several incidents have been reported in the United States of America and Japan where hydrogen refueling stations have been operating for a long time. A risk assessment of hydrogen refueling stations operating in urban areas was performed in this study by calculating the risk effect range using a process hazard analysis tool (PHAST) v8.7 from DNV-GL and a hydrogen risk assessment model (HyRAM) from Sandia National Laboratories (SNL). The societal risk was assessed through a probit model based on the calculation results. The assessment results showed that the risk caused by jet fire and overpressure in an incident is lower than the ‘as low as reasonably practicable’ (ALARP) level.
A Priority-based Failure Mode and Effects Analysis (FMEA) Method for Risk Assessment of Hydrogen Applications Onboard Maritime Vessels
Sep 2023
Publication
The maritime industry is gaining momentum towards a more decarbonized and sustainable path. However most of the worldwide fleet still relies on fossil fuels for power producing harmful environmental emissions. Hydrogen as a clean fuel is a promising alternative but its unique properties pose significant safety challenges. For instance hydrogen has a wide flammability range inherently increasing the risk of ignition. Moreover its comparatively low volumetric energy density necessitates faster filling rates and larger volumes for bunkering and onboard storage leading to higher risk rates. Therefore the use of hydrogen for maritime applications requires the development of specialized riskbased approaches according to safety engineering principles and techniques. The key safety implications are discussed and reviewed with focus on onboard hydrogen storage handling and refueling while a priority-based Failure Mode and Effects Analysis (FMEA) method for risk assessment is proposed based on the revised guidelines of Automotive Industry Action Group (AIAG) and German Association of the Automotive Industry (VDA). The revised AIAG-VDA FMEA method replaces the conventional Risk Priority Number (RPN) with a new Action Priority (AP) rating enabling the prioritization of recommended actions for risk reduction. The paper aims to a more profound understanding of the safety risks associated with hydrogen as a maritime fuel and to provide an effective risk assessment method for hydrogen applications onboard maritime vessels.
Caveats of Green Hydrogen for Decarbonisation of Heating in Buildings
Oct 2023
Publication
Hydrogen (H2) has rapidly become a topic of great attention when discussing routes to net-zero carbon emissions. About 14% of CO2 emissions globally are directly associated with domestic heating in buildings. Replacing natural gas (NG) with H2 for heating has been highlighted as a rapid alternative for mitigating these emissions. To realise this not only the production challenges but also potential obstacles in the transmission/distribution and combustion of H2 must be technically identified and discussed. This review in addition to delineating the challenges of H2 in NG grid pipelines and H2 combustion also collates the results of the state-of-the-art technologies in H2-based heating systems. We conclude that the sustainability of water and renewable electricity resources strongly depends on sizing siting service life of electrolysis plants and post-electrolysis water disposal plans. 100% H2 in pipelines requires major infrastructure upgrades including production transmission pressurereduction stations distribution and boiler rooms. H2 leakage instigates more environmental risks than economic ones. With optimised boilers burning H2 could reduce GHG emissions and obtain an appropriate heating efficiency; more data from boiler manufacturers must be provided. Overall green H2 is not the only solution to decarbonise heating in buildings and it should be pursued abreast of other heating technologies.
Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks
Jan 2024
Publication
Subcooled liquid hydrogen (sLH2) is an onboard storage as well as a hydrogen refueling technology that is currently being developed by Daimler Truck and Linde to boost the mileage of heavy-duty trucks while also improving performance and reducing the complexity of hydrogen refueling stations. In this article the key technical aspects advantages challenges and future developments of sLH2 at vehicle and infrastructure levels will be explored and highlighted.
Identifying Social Aspect Related to the Hydrogen Economy: Review, Synthesis, and Research Perspectives
Oct 2023
Publication
Energy transition will reshape the power sector and hydrogen is a key energy carrier that could contribute to energy security. The inclusion of sustainability criteria is crucial for the adequate design/deployment of resilient hydrogen networks. While cost and environmental metrics are commonly included in hydrogen models social aspects are rarely considered. This paper aims to identify the social criteria related to the hydrogen economy by using a systematic hybrid literature review. The main contribution is the identification of twelve social aspects which are described ranked and discussed. “Accessibility” “Information” “H2 markets” and “Acceptability” are now emerging as the main themes of hydrogen-related social research. Identified gaps are e.g. lack of the definition of the value of H2 for society insufficient research for “socio-political” aspects (e.g. geopolitics wellbeing) scarce application of social lifecycle assessment and the low amount of works with a focus on social practices and cultural issues.
Rule-Based Operation Mode Control Strategy for the Energy Management of a Fuel Cell Electric Vehicle
Jun 2024
Publication
Hydrogen due to its high energy density stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a modification of the electric car by adding a proton exchange membrane fuel cell (PEMFC) to the battery pack and electric motor that is capable of converting hydrogen into electric energy. In order to control the energy flow of so many elements an optimal energy management system (EMS) is needed where rule-based strategies represent the smallest computational burden and are the most widely used in the industry. In this work a rulebased operation mode control strategy for the EMS of an FCEV validated by different driving cycles and several tests at the strategic points of the battery state of charge (SOC) is proposed. The results obtained in the new European driving cycle (NEDC) show the 12 kW battery variation of 2% and a hydrogen consumption of 1.2 kg/100 km compared to the variation of 1.42% and a consumption of 1.08 kg/100 km obtained in the worldwide harmonized light-duty test cycle (WLTC). Moreover battery tests have demonstrated the optimal performance of the proposed EMS strategy
Modelling Underground Hydrogen Storage: A State-of-the-art Review of Fundamental Approaches and Findings
Dec 2023
Publication
This review presents a state-of-the-art of geochemical geomechanical and hydrodynamic modelling studies in the Underground Hydrogen Storage (UHS) domain. Geochemical modelling assessed the reactivity of hydrogen and res pective fluctuations in hydrogen losses using kinetic reaction rates rock mineralogy brine salinity and the integration of hydrogen redox reactions. Existing geomechanics studies offer an array of coupled hydromechanical models suggesting a decline in rock failure during the withdrawal phase in aquifers compared to injection phase. Hydrodynamic modelling evaluations indicate the critical importance of relative permeability hysteresis in determining the UHS performance. Solubility and diffusion of hydrogen gas appear to have minimal impact on UHS. Injection and production rates cushion gas deployment and reservoir heterogeneity however significantly affect the UHS performance stressing the need for thorough modelling and experimental studies. Most of the current UHS modelling efforts focus on assessing the hydrodynamic aspects which are crucial for understanding the viability and safety of UHS. In contrast the lesser-explored geochemical and geomechanical considerations point to potential research gaps. A variety of modelling software tools such as CMG Eclipse COMSOL and PHREEQC evaluated those UHS underlying effects along with a few recent applications of datadriven-based Machine Learning (ML) techniques for enhanced accuracy. This review identified several unresolved challenges in UHS modelling: pronounced lack of expansive datasets leading to a gap between model predictions and their practical reliability; need robust methodologies capable of capturing natural subsurface heterogeneity while upscaling from precise laboratory data to field-scale conditions; demanding intensive computational resources and novel strategies to enhance simulation efficiency; and a gap in addressing geological uncertainties in subsurface environments suggesting that methodologies from oil reservoir simulations could be adapted for UHS. This comprehensive review offers a critical synthesis of the prevailing approaches challenges and research gaps in the domain of UHS thus providing a valuable reference document for further modelling efforts facilitating the informed advancements in this critical domain towards the realization of sustainable energy solutions.
Impacts of Green Hydrogen for Steel, Ammonia, and Long-distance Transport on the Cost of Meeting Electricity, Heat, Cold, and Hydrogen Demand in 145 Countries Running on 100% Wind-water-solar
May 2023
Publication
As the world moves to clean renewable energy questions arise as to how best to produce and use hydrogen. Here we propose using hydrogen produced only by electrolysis with clean renewable electricity (green hydrogen). We then test the impact of producing such hydrogen intermittently versus continuously for steel and ammonia manufacturing and long-distance transport via fuel cells on the cost of matching electricity heat cold and hydrogen demand with supply and storage on grids worldwide. An estimated 79 32 and 91 Tg-H2/y of green hydrogen are needed in 2050 among 145 countries for steel ammonia and long-distance transport respectively. Producing and compressing such hydrogen for these processes may consume ~12.1% of the energy needed for end-use sectors in these countries after they transition to 100% wind-water-solar (WWS) in all such sectors. This is less than the energy needed for fossil fuels to power the same processes. Due to the variability of WWS electricity producing green hydrogen intermittently rather than continuously thus with electrolyzer use factors significantly below unity (0.2–0.65) may reduce overall energy costs with 100% WWS. This result is subject to model uncertainties but appears robust. In sum grid operators should incorporate intermittent green hydrogen production and use in planning.
Hydrogen Towards Sustainable Transition: A Review of Production, Economic, Environmental Impact and Scaling Factors
Sep 2023
Publication
Currently meeting the global energy demand is largely dependent on fossil fuels such as natural gas coal and oil. Fossil fuels represent a danger to the Earth’s environment and its biological systems. The utilisation of these fuels results in a rise in atmospheric CO2 levels which in turn triggers global warming and adverse changes in the climate. Furthermore these represent finite energy resources that will eventually deplete. There is a pressing need to identify and harness renewable energy sources as a replacement for fossil fuels in the near future. This shift is expected to have a minimal environmental impact and would contribute to ensuring energy security. Hydrogen is considered a highly desirable fuel option with the potential to substitute depleting hydrocarbon resources. This concise review explores diverse methods of renewable hydrogen production with a primary focus on solar wind geothermal and mainly water-splitting techniques such as electrolysis thermolysis photolysis and biomass-related processes. It addresses their limitations and key challenges hampering the global hydrogen economy’s growth including clean value chain creation storage transportation production costs standards and investment risks. The study concludes with research recommendations to enhance production efficiencies and policy suggestions for governments to mitigate investment risks while scaling up the hydrogen economy.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Price Promises, Trust Deficits and Energy Justice: Public Perceptions of Hydrogen Homes
Oct 2023
Publication
In an era characterised by political instability economic uncertainty and mounting environmental pressures hydrogen fuel is being positioned as a critical piece of the global energy security and clean energy agenda. The policy push is noteworthy in the United Kingdom where the government is targeting industrial decarbonisation via hydrogen while exploring a potential role for hydrogen-fuelled home appliances. Despite the imperative to secure social acceptance for accelerating the diffusion of low-carbon energy technologies public perceptions of hydrogen homes remain largely underexplored by the researcher community. In response this analysis draws on extensive focus group data to understand the multi-dimensional nature of social acceptance in the context of the domestic hydrogen transition. Through an integrated mixed-methods multigroup analysis the study demonstrates that socio-political and market acceptance are strongly interlinked owing to a trust deficit in the government and energy industry coupled to underlying dissatisfaction with energy markets. At the community level hydrogen homes are perceived as a potentially positive mechanism for industrial regeneration and local economic development. Households consider short-term disruptive impacts to be tolerable provided temporary disconnection from the gas grid does not exceed three days. However to strengthen social acceptance clearer communication is needed regarding the spatial dynamics and equity implications of the transition. The analysis concludes that existing trust deficits will need to be overcome which entails fulfilling not only a ‘price promise’ on the cost of hydrogen appliances but also enacting a ‘price pledge’ on energy bills. These deliverables are fundamental to securing social acceptance for hydrogen homes.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
Techno-economic Study of a 100-MW-class Multi-energy Vehicle Charging/Refueling Station: Using 100% Renewable, Liquid Hydrogen, and Superconductor Technologies
Dec 2022
Publication
Renewable energies such as the wind energy and solar energy generate low-carbon electricity which can directly charge battery electric vehicles (BEVs). Meanwhile the surplus electricity can be used to produce the “green hydrogen” which provides zero-emission hydrogen fuels to those fuel cell electric vehicles (FCEVs). In order to charge/refuel multi-energy vehicles we propose a novel scheme of hybrid hydrogen/electricity supply using cryogenic and superconducting technologies. In this scheme the green hydrogen is further liquefied into the high-density and low-pressure liquid hydrogen (LH2) for bulk energy storage and transmission. Taking the advantage of the cryogenic environment of LH2 (20 K) it can also be used as the cryogen to cool down super conducting cables to realize the virtually zero-loss power transmission from 100 % renewable sources to vehicle charging stations. This hybrid LH2/electricity energy pipeline can realize long-distance large-capacity and high efficiency clean energy transmission to fulfil the hybrid energy supply demand for BEVs and FCEVs. For the case of a 100 MW-class hybrid hydrogen/electricity supply station the system principle and energy management strategy are analyzed through 9 different operating sub-modes. The corresponding static and dynamic economic modeling are performed and the economic feasibility of the hybrid hydrogen/electricity supply is verified using life-cycle analysis. Taking an example of wind power capacity 1898 MWh and solar power capacity 1619 MWh per day the dynamic payback period is 15.06 years the profitability index is 1.17 the internal rate of return is 7.956 % and the accumulative NPV is 187.92 M$. The system design and techno-economic analysis can potentially offer a technically/economically superior solution for future multi-energy vehicle charging/refueling systems.
Contribution to Net Zero Emissions of Integrating Hydrogen Production in Wastewater Treatment Plants
Jul 2023
Publication
The reliability of renewable hydrogen supply for off-take applications is critical to the future sustainable energy economy. Integrated water electrolysis can be deployed at distributed municipal wastewater treatment plants (WWTP) creating opportunity for reduction in carbon emissions through direct and indirect use of the electrolysis output. A novel energy shifting process where the co-produced oxygen is compressed and stored to enhance the utilisation of intermittent renewable electricity is analysed. The hydrogen produced can be used in local fuel cell electric buses to replace incumbent diesel buses for public transport. However quantifying the extent of carbon emission reduction of this conceptual integrated system is key. In this study the integration of hydrogen production at a case study WWTP of 26000 EP capacity and using the hydrogen in buses was compared with two conventional systems: the base case of a WWTP with grid electricity consumption offset by solar PV and the community’s independent use of diesel buses for transport and the non-integrated configuration with hydrogen produced at the bus refuelling location operated independently of the WWTP. The system response was analysed using a Microsoft Excel simulation model with hourly time steps over a 12-month time frame. The model included a control scheme for the reliable supply of hydrogen for public transport and oxygen to the WWTP and considered expected reductions in carbon intensity of the national grid level of solar PV curtailment electrolyser efficiency and size of the solar PV system. Results showed that by 2031 when Australia’s national electricity is forecast to achieve a carbon intensity of less than 0.186 kg CO2-e/kWh integrating water electrolysis at a municipal WWTP for producing hydrogen for use in local hydrogen buses produced less carbon emissions than continuing to use diesel buses and offsetting emissions by exporting renewable electricity to the grid. By 2034 an annual reduction of 390 t–CO2–e is expected after changing to the integrated configuration. Considering electrolyser efficiency improvements and curtailment of renewable electricity the reduction increases to 872.8 t–CO2–e.
Low-carbon Economic Operation of IES Based on Life Cycle Method and Hydrogen Energy Utilization
Aug 2023
Publication
The Integrated Energy System (IES) that coordinates multiple energy sources can effectively improve energy utilization and is of great significance to achieving energy conservation and emission reduction goals. In this context a low-carbon and economic dispatch model for IES is proposed. Firstly a hydrogen energy-based IES (H2-IES) is constructed to refine the utilization process of hydrogen energy. Secondly the carbon emissions of different energy chains throughout their life cycle are analyzed using the life cycle assessment method (LCA) and the carbon emissions of the entire energy supply and demand chain are considered. Finally a staged carbon trading mechanism is adopted to promote energy conservation and emission reduction. Based on this an IES low-carbon and economic dispatch model is constructed with the optimization goal of minimizing the sum of carbon trading costs energy procurement costs and hydrogen sales revenue while considering network constraints and constraints on key equipment. By analyzing the model under different scenarios the introduction of life cycle assessment staged carbon trading and hydrogen energy utilization is shown to promote low-carbon and economic development of the comprehensive energy system.
Technical Performance and Environmental Assessment of an Ionic Liquid-based CCS Process for Hydrogen Production
Apr 2023
Publication
Hydrogen (H2) production combined with carbon capture and storage (CCS) is anticipated to be an important technology contributing to reduce the carbon footprint of current fossil-based H2 production systems. This work addresses for the first time the techno-environmental assessment of a CCS process based on the ionic liquid [Bmim][Acetate] for H2 production by steam methane reforming (SMR) and the comparison to conventional amine-based systems. Two different SMR plants using MDEA or [Bmim][Acetate] for CO2 capture were rigorously modelled using Aspen Plus to compute material and energy needs and emissions. Literature and simulation results were then used to perform a life cycle impact assessment (LCIA) of these processes based on the ReCiPe model. Solvent synthesis CCS process and hydrogen production stages were considered for the cradle-to-gate analysis. Results showed that although [Bmim][Acetate] is a priori more harmful to the environment than amines (in a kg-to-kg comparison) LCIAs carried out for both CCS processes showed from 5 to 17 % lower environmental impacts values for all estimated categories when using [Bmim][Acetate] due to a 9.4 % more energy-efficient performance than MDEA which also reduced a 17.4 % the total utility cost. Indeed if a typical amine loss rate of 1.6 kg/tCO2 is assumed the values of the environmental impacts increase up to 14 % for the IL-based CCS plant but still maintaining its favorable results over MDEA. As consequence the SMR plant with the IL-based CCS system exhibited 3–20 % lower values for most of the studied impact categories. These results contribute to shed some light on evaluating the sustainability of ILs with respect to conventional solvents for CO2 capture and to guide the synthesis of new more sustainable ILs but also they would be used to compare the environmental burdens from the synthesis and process performance of other promising ILs for CO2 capture that are not environmentally assed yet.
Techno-economic Analysis to Identify the Optimal Conditions for Green Hydrogen Production
Jun 2023
Publication
The intermittency of renewable energy sources necessitates energy storage to meet the full demand and balancing requirements of the grid. Green hydrogen (H2) is a chemical energy carrier that can be used in a flexible manner and store large amounts of energy for long periods of time. This techno-economic analysis investigates H2 production from wind using commercially available desalination and electrolysis units. Proton exchange membrane and alkaline electrolyser units are utilised and compared. The intermittency of wind is examined with comparison against grid-bought electricity. A model is developed to determine the selling price required to ensure profitability over a 10-year period. Firstly where H2 is produced using energy from the grid with electricity purchased when below a specified price point or between specified hours. In the second scenario a wind turbine is owned by the user and the electricity price is not considered while the turbine capital expenditure is. The price of H2 production from wind is found to be comparable with natural gas derived H2 at a larger scale with a minimum selling price calculated to be 4.85 £/kg at a setpoint of 500 kg of H2/hr. At a setpoint of 50 kg of H2/hr this is significantly higher at 12.10 £/kg. In both cases the alkaline electrolyser produced cheaper H2. This study demonstrates an economy of scale with H2 prices decreasing with increased scale. H2 prices are also closely linked to the capital expenditure with the equipment size space and safety identified as limiting factors.
Life-Cycle and Applicational Analysis of Hydrogen Production and Powered Inland Marine Vessels
Aug 2023
Publication
Green energy is at the forefront of current policy research and engineering but some of the potential fuels require either a lot of deeper research or a lot of infrastructure before they can be implemented. In the case of hydrogen both are true. This report aims to analyse the potential of hydrogen as a future fuel source by performing a life-cycle assessment. Through this the well-to-tank phase of fuel production and the usage phase of the system have been analysed. Models have also been created for traditional fuel systems to best compare results. The results show that hydrogen has great potential to convert marine transport to operating off green fuels when powered through low-carbon energy sources which could reduce a huge percentage of the international community’s greenhouse gas emissions. Hydrogen produced through wind powered alkaline electrolysis produced emission data 5.25 g of CO2 equivalent per MJ compared to the 210 g per MJ produced by a medium efficiency diesel equivalent system a result 40 times larger. However with current infrastructure in most countries not utilising a great amount of green energy production the effects of hydrogen usage could be more dangerous than current fuel sources owing to the incredible energy requirements of hydrogen production with even grid (UK) powered electrolysis producing an emission level of 284 g per MJ which is an increase against standard diesel systems. From this the research concludes that without global infrastructure change hydrogen will remain as a potential fuel rather than a common one.
Techno-economic Feasibility of Hybrid PV/wind/battery/thermal Storage Trigeneration System: Toward 100% Energy Independency and Green Hydrogen Production
Dec 2022
Publication
With the clear adverse impacts of fossil fuel-based energy systems on the climate and environment ever-growing interest and rapid developments are taking place toward full or nearly full dependence on renewable energies in the next few decades. Estonia is a European country with large demands for electricity and thermal energy for district heating. Considering it as the case study this work explores the feasibility and full potential of optimally sized photovoltaic (PV) wind and PV/wind systems equipped with electric and thermal storage to fulfill those demands. Given the large excess energy from 100% renewable energy systems for an entire country this excess is utilized to first meet the district heating demand and then to produce hydrogen fuel. Using simplified models for PV and wind systems and considering polymer electrolyte membrane (PEM) electrolysis a genetic optimizer is employed for scanning Estonia for optimal installation sites of the three systems that maximize the fulfillment of the demand and the supply–demand matching while minimizing the cost of energy. The results demonstrate the feasibility of all systems fully covering the two demands while making a profit compared to selling the excess produced electricity directly. However the PV-driven system showed enormous required system capacity and amounts of excess energy with the limited solar resources in Estonia. The wind system showed relatively closer characteristics to the hybrid system but required a higher storage capacity by 75.77%. The hybrid PV/wind-driven system required a total capacity of 194 GW most of which belong to the wind system. It was also superior concerning the amount (15.05 × 109 tons) and cost (1.42 USD/kg) of the produced green hydrogen. With such full mapping of the installation capacities and techno-economic parameters of the three systems across the country this study can assist policymakers when planning different country-scale cogeneration systems.
Safe Design for Large Scale H2 Production Facilities
Sep 2023
Publication
To contribute to a more diverse and efficient energy infrastructure large quantities of hydrogen are requested for industries (e.g. mining refining fertilizers…). These applications need large scale facilities such as dozens of electrolyzer stacks from atmospheric pressure to 30 bar with a total capacity ranging from 100 up to 400 MW and associated hydrogen storage from a few to 50 tons.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants
Nov 2016
Publication
This paper introduces a value chain design for transportation fuels and a respective business case taking into account hybrid PV-Wind power plants electrolysis and hydrogen-to-liquids (H2tL) based on hourly resolved full load hours (FLh). The value chain is based on renewable electricity (RE) converted by power-to-liquids (PtL) facilities into synthetic fuels mainly diesel. Results show that the proposed RE-diesel value chains are competitive for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost) depending on the chosen specific value chain and assumptions for cost of capital available oxygen sales and CO2 emission costs. A sensitivity analysis indicates that the RE-PtL value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy and a special focus on mid to long-term electrolyser and H2tL efficiency improvements. The substitution of fossil fuels by hybrid PV-Wind power plants could create a PV-wind market potential in the order of terawatts.
Precise Dynamic Modelling of Real-World Hybrid Solar-Hydrogen Energy Systems for Grid-Connected Buildings
Jul 2023
Publication
Hybrid renewable hydrogen energy systems could play a key role in delivering sustainable solutions for enabling the Net Zero ambition; however the lack of exact computational modelling tools for sizing the integrated system components and simulating their real-world dynamic behaviour remains a key technical challenge against their widespread adoption. This paper addresses this challenge by developing a precise dynamic model that allows sizing the rated capacity of the hybrid system components and accurately simulating their real-world dynamic behaviour while considering effective energy management between the grid-integrated system components to ensure that the maximum possible proportion of energy demand is supplied from clean sources rather than the grid. The proposed hybrid system components involve a solar PV system electrolyser pressurised hydrogen storage tank and fuel cell. The developed hybrid system model incorporates a set of mathematical models for the individual system components. The developed precise dynamic model allows identifying the electrolyser’s real-world hydrogen production levels in response to the input intermittent solar energy production while also simulating the electrochemical behaviour of the fuel cell and precisely quantifying its real-world output power and hydrogen consumption in response to load demand variations. Using a university campus case study building in Scotland the effectiveness of the developed model has been assessed by benchmarking comparison between its results versus those obtained from a generic model in which the electrochemical characteristics of the electrolyser and fuel cell systems were not taken into consideration. Results from this comparison have demonstrated the potential of the developed model in simulating the real-world dynamic operation of hybrid solar hydrogen energy systems for grid-connected buildings while sizing the exact capacity of system components avoiding oversizing associated with underutilisation costs and inaccurate simulation.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Energy Storage Strategy - Phase 2
Feb 2023
Publication
This document is phase 2 of the energy storage strategy study and it covers the storage challenges of the energy transition. We start in section 3 by covering historical and current natural gas imports into the UK and what these could look like in the future. In section 4 we explore what demand for hydrogen could look like – this has a high level of uncertainty and future policy decisions will have significant impacts on hydrogen volumes and annual variations. We generated two hydrogen storage scenarios based on National Grid’s Future Energy Scenarios and the Climate Change Committee’s Sixth Carbon Budget to assess the future need for hydrogen storage in the UK. We also looked at an extreme weather scenario resulting from an area of high-pressure settled over the British Isles resulting in very low ambient temperatures an unusually high demand for heating and almost no wind generation. In section 5 we investigate options for hydrogen storage and build on work previously carried out by SGN. We discuss the differences between the properties of hydrogen and natural gas and how this affects line pack and depletion of line pack. We discuss flexibility on the supply and demand side and how this can impact on hydrogen storage. We provide a summary table which compares the various options for storage. In section 5 we explore hydrogen trade and options for import and export. Using information from other innovation projects we also discuss production of hydrogen from nuclear power and the impact of hybrid appliances on gas demand for domestic heat. In section 7 we discuss the outputs from a stakeholder workshop with about 40 stakeholders across industry academia and government. The workshop covered UK gas storage strategy to date hydrogen demand and corresponding storage scenarios to 2050 including consideration of seasonal variation and storage options.
Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market
Jul 2023
Publication
The rapid expansion of renewable energies has the potential to decarbonize the electricity supply. This is more challenging in difficult-to-electrify sectors. The use of hydrogen provides a massive potential for this issue. However expanding hydrogen production increases electricity demand while providing additional flexibility to the electricity market. This paper mainly aims to analyze the economic effects of this sector coupling between the European electricity and national hydrogen markets. The developed energy market model jointly considers both markets to reach an overall welfare optimum. A novel modeling approach allows the interaction of these markets without the need for several iterative optimization runs. This allows for a detailed analysis of various market participants’ changes in consumer and producer surpluses. The optimization is conducted in 13 connected Central European countries to account for various power plant fleets generation mixes and electricity prices. Results show an overall welfare increase of EUR 4 to 28 billion in 2030 and an EUR 5 to 158 billion increase in 2040. However there is a surplus shift from consumers to producers. The consumer surplus is reduced by up to EUR 44 billion in 2030 and EUR 60 billion while producers benefit to achieve the overall welfare benefits. The reduction of consumer surplus changes if significant price peaks occur. Fuel cell applications can avoid these price peaks resulting in a surplus shift from thermal power plants to consumers. Hence consumer surplus can increase by up to EUR 146 billion in the respective 2040 scenarios. Pink hydrogen accounts for a sizable portion of total hydrogen production up to 58 percent in 2030 and up to 30 percent in 2040. As a result nuclear power plants that are nearly entirely allocated in France stand to benefit greatly from this sector coupling. Additional efforts could be made to address the link between hydrogen and natural gas prices. Furthermore the potential for cross-border hydrogen trade and the implementation of national legal and regulatory frameworks could be assessed.
Effective Thermal Conductivity of Insulation Materials for Cryogenic LH2 Storage Tanks: A Review
Nov 2022
Publication
An accurate estimation of the effective thermal conductivity of various insulation materials is essential in the evaluation of heat leak and boil-off rate from liquid hydrogen storage tanks. In this work we review the existing experimental data and various proposed correlations for predicting the effective conductivity of insulation systems consisting of powders foams fibrous materials and multilayer systems. We also propose a first principles-based correlation that may be used to estimate the dependence of the effective conductivity as a function of temperature interstitial gas composition pressure and structural properties of the material. We validate the proposed correlation using available experimental data for some common insulation materials. Further improvements and testing of the proposed correlation using laboratory scale data obtained using potential LH2 tank insulation materials are also discussed.
Prediction of Transient Hydrogen Flow of Proton Exchange Membrane Electrolyzer Using Artificial Neural Network
Aug 2023
Publication
A proton exchange membrane (PEM) electrolyzer is fed with water and powered by electric power to electrochemically produce hydrogen at low operating temperatures and emits oxygen as a by-product. Due to the complex nature of the performance of PEM electrolyzers the application of an artificial neural network (ANN) is capable of predicting its dynamic characteristics. A handful of studies have examined and explored ANN in the prediction of the transient characteristics of PEM electrolyzers. This research explores the estimation of the transient behavior of a PEM electrolyzer stack under various operational conditions. Input variables in this study include stack current oxygen pressure hydrogen pressure and stack temperature. ANN models using three differing learning algorithms and time delay structures estimated the hydrogen mass flow rate which had transient behavior from 0 to 1 kg/h and forecasted better with a higher count (>5) of hidden layer neurons. A coefficient of determination of 0.84 and a mean squared error of less than 0.005 were recorded. The best-fitting model to predict the dynamic behavior of the hydrogen mass flow rate was an ANN model using the Levenberg–Marquardt algorithm with 40 neurons that had a coefficient of determination of 0.90 and a mean squared error of 0.00337. In conclusion optimally fit models of hydrogen flow from PEM electrolyzers utilizing artificial neural networks were developed. Such models are useful in establishing an agile flow control system for the electrolyzer system to help decrease power consumption and increase efficiency in hydrogen generation.
Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence
Apr 2024
Publication
Utilizing renewable energy sources (RESs) such as wind and solar to convert electrical energy into hydrogen energy can promote the accommodation of green electricity. This paper proposes an optimal capacity planning approach for an industrial electricity-hydrogen multi-energy system (EHMES) aimed to achieve the local utilization of RES and facilitate the transition to carbon reduction in industrial settings. The proposed approach models the EHMES equipment in detail and divides the system’s investment and operation into producer and consumer sides with energy trading for effective integration. Through this effort the specialized management for different operators and seamless incorporation of RES into industrial users can be achieved. In addition the variations in investment and operating costs of equipment across different installed capacities are considered to ensure a practical alignment with real-world scenarios. By conducting a detailed case study the influence of various factors on the capacity configuration outcomes within an EHMES is analyzed. The results demonstrate that the proposed method can effectively address the capacity configuration of equipment within EHMES based on the local accommodation of RES and variable unit cost sequence. Wind power serves as the primary source of green electricity in the system. Energy storage acts as crucial equipment for enhancing the utilization rate of RES.
An Integrated Framework for Optimal Infrastructure Planning for Decarbonising Heating
Apr 2023
Publication
This paper presents the HEGIT (Heat Electricity and Gas Infrastructure and Technology) model for optimal infrastructure planning for decarbonising heating in buildings. HEGIT is an optimisation model based on Mixed Integer Linear Programming. The model co-optimises the integrated operation and capacity expansion planning of electricity and gas grids as well as heating technologies on the consumer side while maintaining the security of supply and subject to different environmental operational and system-wide constraints. The three main features of the HEGIT model are: • It incorporates an integrated unit commitment and capacity expansion problem for coordinated operation and long-term investment planning of the electricity and gas grids. • It incorporates the flexible operation of heating technologies in buildings and demand response in operation and long-term investment planning of gas and electricity grids. • It incorporates a multi-scale techno-economic representation of heating technologies design features into the whole energy system modelling and capacity planning. These features enable the model to quantify the impacts of different policies regarding decarbonising heating in buildings on the operation and long-term planning of electricity and gas grids identify the cost-optimal use of available resources and technologies and identify strategies for maximising synergies between system planning goals and minimising trade-offs. Moreover the multi-scale feature of the model allows for multi-scale system engineering analysis of decarbonising heating including system-informed heating technology design identifying optimal operational setups at the consumer end and assessing trade-offs between consumer investment in heating technologies and infrastructure requirements in different heat decarbonisation pathways.
Hydrogen Refueling Method for Heavy-duty FCV with Pressure Loss Compensation
Apr 2024
Publication
Current hydrogen stations are using a constant dispenser pressure ramp rate method. When a flow rate increases for heavy duty vehicle a large pressure loss occurs and it slows down refueling. This study developed a new method (cTPR method) that has the constant pressure ramp rate in the tank by compensating for the tube pressure loss without any feedback from the vehicle. A refueling simulation confirmed that a refueling was shortened − 49s with a lower ending gas temperature. Testing confirmed that the cTPR method can be realized simply by changing the control without any hardware modification.
Efficiency and Optimal Load Capacity of E-Fuel-Based Energy Storage Systems
Apr 2023
Publication
This work evaluates the effectiveness of chemical-based solutions for storing large amounts of renewable electricity. Four “Power-to-X-to-Power” pathways are examined comprising hydrogen methane methanol and ammonia as energy carriers. The pathways are assessed using a model scenario where they are produced with electricity from an onshore wind farm stored in suitable facilities and then reconverted to electricity to meet the energy demand of a chemical site. An energy management and storage capacity estimation tool is used to calculate the annual load coverage resulting from each pathway. All four pathways offer a significant increase in load coverage compared to a scenario without storage solution (56.19%). The hydrogen-based pathway has the highest load coverage (71.88%) and round-trip efficiency (36.93%) followed by the ammonia-based (69.62% 31.37%) methanol-based (67.85% 27.00%) and methane-based (67.64% 26.47% respectively) pathways. The substantially larger storage capacity required for gaseous energy carriers to ensure a steady supply to the consumer could be a decisive factor. The hydrogen pathway requires a storage volume up to 10.93 times larger than ammonia and 16.87 times larger than methanol. Notably ammonia and methanol whose load coverages are only 2.26 and 4.03 percentage points lower than that of hydrogen offer the possibility of implementing site-specific storage solutions avoiding potential bottlenecks due to limited pipeline and cavern capacities.
Design and Modeling of a Co-flow Reactor for Turquoise Hydrogen Production
May 2024
Publication
This work focuses on the design of a reactor for producing clean hydrogen from methane pyrolysis in the form of the so-called “turquoise hydrogen”. In addition to its simple geometry the fundamental concept and the main novelty of the proposed method rely on using part of the methane to produce the required heat needed for the thermal decomposition of methane (TDM). The reactor configuration for hydrogen production is shown to produce significant advantages in terms of greenhouse gas (GHG) emissions. A reactive flow CFD model incorporating also soot formation mechanism has been first developed and validated with experimental results available in the literature and then used to design and characterize the performances of proposed reactor configuration. 3D CFD simulations have been carried out to predict the behavior of the reactor configuration; a sensitivity analysis is used for clearing the aspect related to key environmental parameters e.g. the global warming impact (GWI). The real potential of the proposed design resides in the low emissions and high efficiency with which hydrogen is produced at the various operating conditions (very flexible reactor) albeit subject to the presence of carbon by-product. This suggests that this type of methane conversion system could be a good substitute for the most common hydrogen production technologies.
Energy Management Strategy for a Net Zero Emission Islanded Photovoltaic Microgrid-Based Green Hydrogen System
Apr 2024
Publication
Investing in green hydrogen systems has become a global objective to achieve the net-zero emission goal. Therefore it is seen as the primary force behind efforts to restructure the world’s energy lessen our reliance on gas attain carbon neutrality and combat climate change. This paper proposes a power management for a net zero emission PV microgrid-based decentralized green hydrogen system. The hybrid microgrid combines a fuel cell battery PV electrolyzer and compressed hydrogen storage (CHSU) unit aimed at power sharing between the total components of the islanded DC microgrid and minimizing the equivalent hydrogen consumption (EHC) by the fuel cell and the battery. In order to minimize the EHC and maintain the battery SOC an optimization-based approach known as the Equivalent Consumption Minimization Strategy (ECMS) is used. A rulebased management is used to manage the power consumed by the electrolyzer and the CHSU by the PV system in case of excess power. The battery is controlled by an inverse droop control to regulate the dc bus voltage and the output power of the PV system is maximized by the fuzzy logic controller-based MPPT. As the hybrid microgrid works in the islanded mode a two-level hierarchical control is applied in order to generate the voltage and the frequency references. The suggested energy management approach establishes the operating point for each system component in order to enhance the system’s efficiency. It allows the hybrid system to use less hydrogen while managing energy more efficiently.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Future of Hydrogen in Industry: Initial Industrial Site Surveys
Jul 2023
Publication
This is a summary report of a study which aimed to understand the safety feasibility cost and impacts for 7 industrial sites to switch from natural gas to 100% hydrogen for heating. The volunteer industrial sites:<br/>♦ are located away from industrial clusters<br/>♦ use natural gas to meet most of their energy demand<br/>♦ will likely be most impacted by decisions on the future of the natural gas grid<br/>We have published the report in order to share its findings with other industrial sites and wider industry in particular those considering hydrogen as an option for decarbonisation.<br/>Note that:<br/>♦ some work was carried out on a non-hydrogen alternative energy source but to a lesser level of detail and not to determine the optimal decarbonisation solution<br/>♦ the findings do not apply to other end user environments because of differences between these environments and the consumption of gas<br/>The study was commissioned in 2022 by the former Department for Business and Energy and undertaken by AECOM and their safety sub-contractor ESR.<br/>The evidence will inform strategic decisions in 2026 on the role of low carbon hydrogen as a replacement for natural gas heating.
Techno-economic Assessment on Hybrid Energy Storage Systems Comprising Hydrogen and Batteries: A Case Study in Belgium
Jun 2023
Publication
This paper introduces a Techno-Economic Assessment (TEA) on present and future scenarios of different energy storage technologies comprising hydrogen and batteries: Battery Energy Storage System (BESS) Hydrogen Energy Storage System (H2ESS) and Hybrid Energy Storage System (HESS). These three configurations were assessed for different time horizons: 2019 2022 and 2030 under both on-grid and off-grid conditions. For 2030 a sensitivity analysis under different energy scenarios was performed covering other trends in on-grid electric consumption and prices CO2 taxation and the evolution of hydrogen technology prices from 2019 until 2030. The selected case study is the Research Park Zellik (RPZ) a CO2- neutral sustainable Local Energy Community (LEC) in Zellik Belgium. The software HOMER (Hybrid Optimisation Model for Electric Renewable) has been selected to design model and optimise the defined case study. The results showed that BESS was the most competitive when the electric grid was available among the three possible storage options. Additionally HESS was overall more competitive than H2ESS-only regardless of the grid connection mode. Finally as per HESS hydrogen was proved to play a complementary role when combined with batteries enhancing the flexibility of the microgrid and enabling deeper decarbonisation by reducing the electricity bought from the grid increasing renewable energy production and balancing toward an island operating mode.
Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System
Jul 2022
Publication
A proton exchange membrane fuel cell (PEMFC) system requires an adequate hydrogen supply and circulation to achieve its expected performance and operating life. An ejector-based hydrogen circulation system can reduce the operating and maintenance costs noise and parasitic power consumption by eliminating the recirculation pump. However the ejector’s hydrogen entrainment capability restricted by its geometric parameters and flow control variability can only operate properly within a relatively narrow range of fuel cell output power. This research introduced the optimal design and operation control methods of a dual-ejector hydrogen supply/circulation system to support the full range of PEMFC system operations. The technique was demonstrated on a 70 kW PEMFC stack with an effective hydrogen entrainment ratio covering 8% to 100% of its output power. The optimal geometry design ensured each ejector covered a specific output power range with maximized entrainment capability. Furthermore the optimal control of hydrogen flow and the two ejectors’ opening and closing times minimized the anode gas pressure fluctuation and reduced the potential harm to the PEMFC’s operation life. The optimizations were based on dedicated computational fluid dynamics (CFD) and system dynamics models and simulations. Bench tests of the resulting ejector-based hydrogen supply/circulation system verified the simulation and optimization results.
Design of a Multi-inlet Solar Thermochemical Reactor for Steam Methane Reforming with Improved Performance
Feb 2023
Publication
Reactor structure design plays an important role in the performance of solar-thermal methane reforming reactors. Based on a conventional preheating reactor this study proposed a cylindrical solar methane reforming reactor with multiple inlets to vary the temperature field distribution which improved the temperature of the reaction region in the reactor thereby improving the reactor performance. A multi-physical model that considers mass momentum species and energy conservation as well as thermochemical reaction kinetics of methane reforming was applied to numerically investigate the reactor performance and analyze the factors that affect performance improvement. It was found that compared with a conventional preheating reactor the proposed cylindrical reactor with inner and external inlets for gas feeding enhanced heat recovery from the exhausted gas and provided a more suitable temperature field for the reaction in the reactor. Under different operating conditions the methane conversion in the cylindrical reactor with multi-inlet increased by 9.5% to 19.1% and the hydrogen production was enhanced by 12.1% to 40.3% in comparison with the conventional design even though the total reaction catalyst volume was reduced.
Review and Meta-analysis of Recent Life Cycle Assessments of Hydrogen Production
Apr 2023
Publication
The world is facing an urgent global climate challenge and hydrogen (H2) is increasingly valued as a carbon-free energy carrier that can play a prominent role in decarbonising economies. However the environmental impact of the different methods for hydrogen production are sometimes overlooked. This work provides a comprehensive overview of the environmental impacts and costs of a diverse range of methods for producing hydrogen. Ninety nine life cycle assessments (LCAs) of hydrogen production published between 2015 and 2022 are categorised by geography production method energy source goal and scope and compared by data sources and methodology. A meta-analysis of methodological choices is used to identify a subset of mutually comparable studies whose results are then compared initially by global warming potential (GWP) then low-GWP scenarios are compared by other indicators. The results show that the lowest GWP is achieved by methods that are currently more expensive (~US $4–9/kg H2) compared to the dominant methods of producing hydrogen from fossil fuels (~US $1–2/kg H2). The research finds that data are currently limited for comparing environmental indicators other than GWP such as terrestrial acidification or freshwater eutrophication. Recommendations are made for future LCAs of hydrogen production.
Buoyant Jet Model to Predict a Vertical Thermal Stratification During Refueling of Gaseous Hydrogen Tanks in Horizontal Position with Axial Injection
Sep 2023
Publication
Thermodynamic modeling of hydrogen tank refueling i.e. 0 dimension (0D) model considers the gas in the tank as a single homogeneous volume. Based on thermodynamic considerations i.e. mass and energy balance equations the gas temperature and pressure predicted at each time step are volume-averaged. These models cannot detect the onset of the thermal stratification nor the maximum local temperature of the gas inside the tank.<br/>For safety reasons the temperature must be maintained below 85 °C in the composite tank. When thermal stratification occurs the volume-averaged gas temperature predicted by 0D models can be below 85 °C while local temperature may significantly exceed 85 °C. Then thermally stratified scenarios must be predicted to still employ 0D models safely.<br/>Up to now only computational fluid dynamics (CFD) approaches can predict the onset of the thermal stratification and estimate the amplitude of thermal gradients. However CFD approaches require much larger computational resources and CPU time than 0D models. This makes it difficult to use CFD for parametric studies or a live-stream temperature prediction for embedded applications. Previous CFD studies revealed the phenomenon of jet deflection during horizontal refueling of hydrogen tanks. The cold hydrogen injected into the warm gas bulk forms a round jet sinking down towards the lower part of the tank due to buoyancy forces. The jet breaks the horizontal symmetry and dumps the cold gas towards the lower part of the tank.<br/>The jet behavior is a key factor for the onset of the thermal stratification for horizontally filled tanks. Free round jets released in a homogeneous environment with a different density than the jet density were extensively investigated in the literature. A buoyant round jet modeling can be applied to predict the jet deflection in the tank. It requires initial conditions that can be provided by 0D refueling models. Therefore 0D models coupled with a buoyant round jet modeling can be used to predict the onset of the thermal stratification without CFD simulation. This approach clarifies the validity domain of 0D models and thus improves the safety of engineering applications
A Zero CO2 Emissions Large Ship Fuelled by an Ammonia-hydrogen Blend: Reaching the Decarbonisation Goals
Aug 2023
Publication
To reach the decarbonisation goals a zero CO2 emissions large ship propulsion system is proposed in this work. The ship selected is a large ferry propelled by an internal combustion engine fuelled by an ammonia-hydrogen blend. The only fuel loaded in the vessel will be ammonia. The hydrogen required for the combustion in the engine will be produced onboard employing ammonia decomposition. The heat required for this decomposition section will be supplied by using the hot flue gases of the combustion engine. To address the issues regarding NOx emissions a selective catalytic reduction (SCR) reactor was designed. The main operating variables for all the equipment were computed for engine load values of 25% 50% 75% and 100%. Considering the lowest SCR removal rate (91% at an engine load of 100%) the NOx emissions of the vessel were less than 0.5 g/kWh lower than the IMO requirements. An energy analysis of the system proposed to transform ammonia into energy for shipping was conducted. The global energy and exergy efficiencies were 42.4% and 48.1%. In addition an economic analysis of the system was performed. The total capital cost (CAPEX) for the system can be estimated at 8.66 M€ (784 €/kW) while the operating cost (OPEX) ranges between 210 €/MWh (engine load 100%) and 243 €/MWh (engine load of 25%). Finally a sensitivity analysis for the price of ammonia was performed resulting in the feasibility of reducing the operating cost to below 150 €/MWh in the near horizon.
Decommissioning Platforms to Offshore Solar System: Road to Green Hydrogen Production from Seawater
May 2023
Publication
With more than 140 offshore platforms identified in Malaysian water to be decommissioned within 10 years it is critical for the Oil and Gas operators to re-evaluate the overall decommissioning strategies for a more sustainable approach. A revision to the current decommissioning options with inclusion of green decommissioning plan to the overall decision tree will assist in accelerating sustainable decision making. Using the advantage of the available 3D modelling from Naviswork and convert to PVSyst software for solar analysis to the one of the shortlisted offshore gas complexes in Malaysia three solar powered generation scenario was evaluated with aimed to establish the best integrated system on a modified decommissioned unmanned processing platform to generate cleaner energy. Financial assessment inclusive of Levelized Cost of Electricity as well as environmental assessment for each scenario are evaluated together. From the study optimum tilt angle was determined resulted to best annual solar yield of 257MWh with performance ratio (PR) of 87% for on-grid scenario 1. Off-grid scenario 3 is used to understand the estimated green hydrogen production. A desktop investigation conducted to three (3) type of electrolysers resulted to 8.6 kg to 18 kg of green hydrogen based on the average daily solar yield produced in scenario 3. Using Proton Electron Membrane electrolyser to simulate the PV solar-to-hydrogen offshore system it is observed that 98% of annual solar fraction can be achieved with annual performance ratio of 74.5% with levelized cost of Hydrogen (LCOH) of $10.95 per kg. From financial assessment this study justifies platforms repurpose to renewable energy concept to be an attractive option since cost to decommission the identified complex was observed to be 11 times greater compared to investing for this proposed concept.
An Experimental Study on the Large-Volume Liquid Hydrogen Release in an Open Space
Apr 2024
Publication
Liquid hydrogen is one of the high-quality energy carriers but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper a series of open-space large-volume liquid hydrogen release experiments are performed to observe the evolution of visible clouds during the release and an array of hydrogen concentration sensors is set up to monitor the fluctuation in hydrogen concentration at different locations. Based on the experimental conditions the diffusion of hydrogen clouds in the atmosphere under different release hole diameters and different ground materials is compared. The results show that with the release of liquid hydrogen the white visible cloud formed by air condensation or solidification is generated rapidly and spread widely and the visible cloud is most obvious near the ground. With the termination of liquid hydrogen release solid air is deposited on the ground and the visible clouds gradually shrink from the far field to the release source. Hydrogen concentration fluctuations in the far field in the case of the cobblestone ground are more dependent on spontaneous diffusion by the hydrogen concentration gradient. In addition compared with the concrete ground the cobblestone ground has greater resistance to liquid hydrogen extension; the diffusion of hydrogen clouds to the far field lags. The rapid increase stage of hydrogen concentration at N8 in Test 7 lags about 3 s behind N12 in Test 6 N3 lags about 7.5 s behind N1 and N16 lags about 8.25 s behind N14. The near-source space is prone to high-concentration hydrogen clouds. The duration of the high-concentration hydrogen cloud at N12 is about 15 s which is twice as long as the duration at N8 increasing the safety risk of the near-source space.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model
Nov 2023
Publication
To achieve carbon neutrality in Japan by 2050 renewable energy needs to be used as the main energy source. Based on the constraints of various renewable energies the importance of hydrogen cannot be ignored. This study aimed to investigate the diffusion of hydrogen demand technologies in various sectors and used projections and assumptions to investigate the hydrogen supply side. By performing simulations with the E3ME-FTT model and comparing various policy scenarios with the reference scenario the economic and environmental impacts of the policy scenarios for hydrogen diffusion were analyzed. Moreover the impact of realizing carbon neutrality by 2050 on the Japanese economy was evaluated. Our results revealed that large-scale decarbonization via hydrogen diffusion is possible (90% decrease of CO2 emissions in 2050 compared to the reference) without the loss of economic activity. Additionally investments in new hydrogen-based and other low-carbon technologies in the power sector freight road transport and iron and steel industry can improve the gross domestic product (1.6% increase in 2050 compared to the reference) as they invoke economic activity and require additional employment (0.6% increase in 2050 compared to the reference). Most of the employment gains are related to decarbonizing the power sector and scaling up the hydrogen supply sector while a lot of job losses can be expected in the mining and fossil fuel industries.
Model to Inform the Expansion of Hydrogen Distribution Infrastructure
Jul 2023
Publication
A growing hydrogen economy requires new hydrogen distribution infrastructure to link geographically distributed hubs of supply and demand. The Hydrogen Optimization with Deployment of Infrastructure (HOwDI) Model helps meet this requirement. The model is a spatially resolved optimization framework that determines location-specific hydrogen production and distribution infrastructure to cost-optimally meet a specified location-based demand. While these results are useful in understanding hydrogen infrastructure development there is uncertainty in some costs that the model uses for inputs. Thus the project team took the modeling effort a step further and developed a Monte Carlo methodology to help manage uncertainties. Seven scenarios were run using existing infrastructure and new demand in Texas exploring different policy and tax approaches. The inclusion of tax credits increased the percentage of runs that could deliver hydrogen at <$4/kg from 31% to 77% and decreased the average dispensed cost from $4.35/kg to $3.55/kg. However even with tax credits there are still some runs where unabated SMR is deployed to meet new demand as the low-carbon production options are not competitive. Every scenario except for the zero-carbon scenario (without tax credits) resulted in at least 20% of the runs meeting the $4/kg dispensed fuel cost target. This indicates that multiple pathways exist to deliver $4/kg hydrogen.
Enabling Industrial Decarbonization: A MILP Optimization Model for Low-carbon Hydrogen Supply Chains
Jun 2024
Publication
This study develops a an optimization model focused on the layout and dispatch of a low-carbon hydrogen supply chain. The objective is to identify the lowest Levelized Cost of Hydrogen for a given demand. The model considers various elements including electricity supply from the local grid and renewable sources (photovoltaic and wind) alongside hydrogen production compression storage and transportation to end users. Applied to an industrial case study in Sweden the findings indicate that the major cost components are linked to electricity generation and investment in electrolyzers with the LCOH reaching 5.2 EUR/kgH2 under typical demand conditions. Under scenarios with higher peak demands and greater demand volatility the LCOH increases to 6.8 EUR/kgH2 due to the need for additional renewable energy capacity. These results highlight the critical impact of electricity availability and demand fluctuations on the LCOH emphasizing the complex interdependencies within the hydrogen supply chain. This study provides valuable insights into the feasibility and cost-effectiveness of adopting hydrogen as an energy carrier for renewable electricity in the context of decarbonizing industrial processes in the energy system.
Genesis and Energy Significance of Natural Hydrogen
Jan 2023
Publication
H2 is clean energy and an important component of natural gas. Moreover it plays an irreplaceable role in improving the hydrocarbon generation rate of organic matter and activating ancient source rocks to generate hydrocarbon in Fischer-Tropsch (FT) synthesis and catalytic hydrogenation. Compared with hydrocarbon reservoir system a complete hydrogen (H2) accumulation system consists of H2 source,reservoirs and seal. In nature the four main sources of H2 are hydrolysis organic matter degradation the decomposition of substances such as methane and ammonia and deep mantle degassing. Because the complex tectonic activities the H2 produced in a geological environment is generally a mixture of various sources. Compared with the genetic mechanisms of H2 the migration and preservation of H2 especially the H2 trapping are rarely studied. A necessary condition for large-scale H2 accumulation is that the speed of H2 charge is much faster than diffusion loss. Dense cap rock and continuous H2 supply are favorable for H2 accumulation. Moreover H2O in the cap rock pores may provide favorable conditions for short-term H2 accumulation.
Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-scaled Testing System and Performance Evaluation
Aug 2022
Publication
Green hydrogen produced by water electrolysis is one of the most promising technologies to realize the efficient utilization of intermittent renewable energy and the decarbonizing future. Among various electrolysis technologies the emerging anion-exchange membrane water electrolysis (AEMWE) shows the most potential for producing green hydrogen at a competitive price. In this review we demonstrate a comprehensive introduction to AEMWE including the advanced electrode design the lab-scaled testing system establishment and the electrochemical performance evaluation. Specifically recent progress in developing high activity transition metal-based powder electrocatalysts and self-supporting electrodes for AEMWE is summarized. To improve the synergistic transfer behaviors between electron charge water and gas inside the gas diffusion electrode (GDE) two optimizing strategies are concluded by regulating the pore structure and interfacial chemistry. Moreover we provide a detailed guideline for establishing the AEMWE testing system and selecting the electrolyzer components. The influences of the membrane electrode assembly (MEA) technologies and operation conditions on cell performance are also discussed. Besides diverse electrochemical methods to evaluate the activity and stability implement the failure analyses and realize the in-situ characterizations are elaborated. In end some perspectives about the optimization of interfacial environment and cost assessments have been proposed for the development of advanced and durable AEMWE.
Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System
Aug 2023
Publication
Renewable energy solutions play a crucial role in addressing the growing energy demands while mitigating environmental concerns. This study examines the techno-economic viability and sensitivity of utilizing solar photovoltaic/polymer electrolyte membrane (PEM) fuel cells (FCs) to meet specific power demands in NEOM Saudi Arabia. The novelty of this study lies in its innovative approach to analyzing and optimizing PV/PEMFC systems aiming to highlight their economic feasibility and promote sustainable development in the region. The analysis focuses on determining the optimal size of the PV/PEMFC system based on two critical criteria: minimum cost of energy (COE) and minimum net present cost (NPC). The study considers PEMFCs with power ratings of 30 kW 40 kW and 50 kW along with four PV panel options: Jinko Solar Powerwave Tindo Karra and Trina Solar. The outcomes show that the 30 kW PEMFC and the 201 kW Trina Solar TSM-430NEG9R.28 are the most favorable choices for the case study. Under these optimal conditions the study reveals the lowest values for NPC at USD 703194 and COE at USD 0.498 per kilowatt-hour. The levelized cost of hydrogen falls within the range of USD 15.9 to 23.4 per kilogram. Furthermore replacing the 30 kW Trina solar panel with a 50 kW Tindo PV module results in a cost reduction of 32%. The findings emphasize the criticality of choosing optimal system configurations to attain favorable economic outcomes thereby facilitating the adoption and utilization of renewable energy sources in the region. In conclusion this study stands out for its pioneering and thorough analysis and optimization of PV/PEMFC systems providing valuable insights for sustainable energy planning in NEOM Saudi Arabia.
Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm
Jan 2023
Publication
Hydrogen is a new promising energy source. Three operating parameters including inlet gas flow rate pH and impeller speed mainly determine the biohydrogen production from membrane bioreactor. The work aims to boost biohydrogen production by determining the optimal values of the control parameters. The proposed methodology contains two parts: modeling and parameter estimation. A robust ANIFS model to simulate a membrane bioreactor has been constructed for the modeling stage. Compared with RMS thanks to ANFIS the RMSE decreased from 2.89 using ANOVA to 0.0183 using ANFIS. Capturing the proper correlation between the inputs and output of the membrane bioreactor process system encourages the constructed ANFIS model to predict the output performance exactly. Then the optimal operating parameters were identified using the honey badger algorithm. During the optimization process inlet gas flow rate pH and impeller speed are used as decision variables whereas the biohydrogen production is the objective function required to be maximum. The integration between ANFIS and HBA boosted the hydrogen production yield from 23.8 L to 25.52 L increasing by 7.22%.
Impacts of Wind Conditions on Hydrogen Leakage During Refilling Hydrogen-powered Vehicles
Mar 2023
Publication
Although hydrogen leakage at hydrogen refueling stations has been a concern less effort has been devoted to hydrogen leakage during the refueling of hydrogen-powered vehicles. In this study hydrogen leakage and dilution from the hydrogen dispenser during the refueling of hydrogen-powered vehicles were numerically investigated under different wind configurations. The shape size and distribution of flammable gas clouds (FGC) during the leakage and dilution processes were analyzed. The results showed that the presence of hydrogen-powered vehicles resulted in irregular FGC shapes. Greater wind speeds (vwv) were associated with longer FGC propagation distances. At vwv =2 m/s and 10 m/s the FGC lengths at the end of the leakage were 7.9 m and 20.4 m respectively. Under downwind conditions higher wind speeds corresponded to lower FGC heights. The FGC height was larger under upwind conditions and was slightly affected by the magnitude of the wind speed. In the dilution process the existence of a region with a high hydrogen concentration led to the FGC volume first increasing and then gradually decreasing. Wind promoted the mixing of hydrogen and air accelerated FGC dilution inhibited hydrogen uplifting and augmented the horizontal movement of the FGC. At higher wind speeds the low-altitude FGC movements could induce potential safety hazards.
Renewable Energy Transport via Hydrogen Pipelines and HVDC Transmission Lines
May 2021
Publication
The majority penetration of Variable Renewable Energy (VRE) will challenge the stability of electrical transmission grids due to unpredictable peaks and troughs of VRE generation. With renewable generation located further from high demand urban cores there will be a need to develop new transmission pathways to deliver the power. This paper compares the transport and storage of VRE through a hydrogen pipeline to the transport of VRE through a High Voltage Direct Current (HVDC) transmission line. The analysis found a hydrogen pipeline can offer a cost-competitive method for VRE transmission compared to a HVDC transmission line on a life-cycle cost basis normalized by energy flows for distances at 1000 miles with 2030 technology. This finding has implications for policy makers project developers and system operators for the future development of transmission infrastructure projects given the additionality which hydrogen pipelines can provide in terms of energy storage.
Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation
Jul 2023
Publication
This paper investigates the performance of hydrogen-fueled spark-ignited single-cylinder Cooperative Fuel Research using experimental and numerical approaches. This study examines the effect of the air–fuel ratio on engine performance emissions and knock behaviour across different compression ratios. The results indicate that λ significantly affects both engine performance and emissions with a λ value of 2 yielding the highest efficiency and lowest emissions for all the tested compression ratios. Combustion analysis reveals normal combustion at λ ≥ 2 while knocking combustion occurs at λ < 2 irrespective of the tested compression ratios. The Livenwood–Wu integral approach was evaluated to assess the likelihood of end-gas autoignition based on fuel reactivity demonstrating that both normal and knocking combustion possibilities are consistent with experimental investigations. Combustion analysis at the ignition timing for maximum brake torque conditions demonstrates knock-free stable combustion up to λ = 3 with increased end-gas autoignition at lower λ values. To achieve knock-free combustion at those low λs the spark timings are significantly retarded to after top dead center crank angle position. Engine-out NOx emissions consistently increase in trend with a decrease in the air–fuel ratio of up to λ = 3 after which a distinct variation in NOx is observed with an increase in the compression ratio.
Resilience-oriented Operation of Microgrids in the Presence of Power-to-hydrogen Systems
Jul 2023
Publication
This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e. islanded mode). For this purpose a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid (ii) reducing the ohmic power losses and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model combining a goal programming approach and Generalized Benders Decomposition due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach although increasing the operation cost does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits including emission reductions of up to 20 % and cost savings of up to 30 %. Additionally the integration of the decomposition method improves computational performance by 54 % compared to using commercial solvers within the GAMS software.
Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen
Jan 2023
Publication
As the demand for eco-friendly energy increases hydrogen energy and liquid hydrogen storage technologies are being developed as an alternative. Hydrogen has a lower liquefaction point and higher thermal conductivity than nitrogen or neon used in general cryogenic systems. Therefore the application of hydrogen to cryogenic systems can increase efficiency and stability. This paper describes the design and analysis of a cryogenic cooling system for an electric propulsion system using liquid hydrogen as a refrigerant and energy source. The proposed aviation propulsion system (APS) consists of a hydrogen fuel cell a battery a power distribution system and a motor. For a lab-scale 5 kW superconducting motor using a 2G high-temperature superconducting (HTS) wire the HTS motor and cooling system were analyzed for electromagnetic and thermal characteristics using a finite element method-based analysis program. The liquid hydrogen-based cooling system consists of a pre-cooling system a hydrogen liquefaction system and an HTS coil cooling system. Based on the thermal load analysis results of the HTS coil the target temperature for hydrogen gas pre-cooling the number of buffer layers and the cryo-cooler capacity were selected to minimize the thermal load of the hydrogen liquefaction system. As a result the hydrogen was stably liquefied and the temperature of the HTS coil corresponding to the thermal load of the designed lab-scale HTS motor was maintained at 30 K.
Carbon-Free Heat Production for High-Temperature Heating Systems
Oct 2023
Publication
The article presents a new carbon-free heat production technology for district heating which consists of a combined heat and power generation fuel cell (FC CHP) with CO2 capture and a two-stage cascade high-temperature heat pump (TCHHP). The FC generates heat and electricity the latter being used to drive the compressors of the TCHHP. During the winter period the water temperature achieved can occasionally be too low so it would be heated up with hydrogen gas boilers. The hydrogen would be produced by reforming natural gas synthetic methane or biogas. The results are presented with natural gas utilization—the ratio between the obtained heat flow transferred directly to the water for district heating and the input heat flow of natural gas. In the case of a return water temperature of 60 ◦C and district heating temperature of 85 ◦C the TCHHP whose heat source is groundwater achieves plant efficiency of 270.04% in relation to the higher heating value (HHV) and 241.74% in relation to the lower heating value (LHV) of natural gas. A case with a TCHHP whose heat source is low-temperature geothermal water achieves a plant efficiency of 361.36% in relation to the HHV and 323.49% in relation to the LHV
An Improved Passive Scalar Model for Hazardous H2-Air Ignition Prediction
Sep 2023
Publication
As hydrogen becomes an increasingly popular alternative fuel for transportation the need for tools to predict ignition events has grown. Recently a cost-effective passive scalar formulation has been developed to address this need [1]. This approach employs a self-reacting scalar to model the hydrogenair chain-branched explosion (due to reactions of the type Reactant + Radical → Radical + Radical). The scalar branching rate is derived analytically from the kinetic Jacobian matrix [2]. The method accurately reproduces ignition delays obtained by detailed chemistry for temperatures above crossover where branching is the dominant process. However for temperatures below the crossover temperature where other phenomena like thermal runaway are more significant the scalar approach fails to predict ignition events correctly. Therefore modifications to the scalar framework have been made to extend its validity across the entire temperature range. Additionally a simple technique for approximating the molecular diffusion of the scalar has been developed using the eigenvector of the Jacobian which accounts for differences in the radical pool’s composition and non-unity Lewis number effects. The complete modified framework is presented and its capability is evaluated in canonical scenarios and a more challenging double mixing layer.
Hydrogen Combustion, Production, and Applications: A Review
May 2024
Publication
The demand for fossil fuels is rising rapidly leading to increased greenhouse gas emissions. Hydrogen has emerged as a promising clean energy alternative that could help meet future demands way sustainably especially if produced using renewable methods. For hydrogen to meaningfully contribute to energy transitions it needs more integration into sectors like transportation buildings and power that currently have minimal hydrogen usage. This requires developing extensive cross-sector hydrogen infrastructure. This review examines hydrogen combustion as a fuel by exploring and comparing production techniques enriching ammonia with hydrogen as a CO2-free option and hydrogen applications in engines. Additionally a techno-economic environmental risk analysis is discussed. Results showed steam methane reforming is the most established and cost-effective production method at $1.3–1.5/kg H2 and 70–85% efficiency but generates CO2. Biomass gasification costs $1.25–2.20/kg H2 and pyrolysis $1.77–2.05/kg H2 offering renewable options. However bio-photolysis currently has high costs of $1.42–2.13/kg H2 due to low conversion rates requiring large reactors. Blending H2/NH3 could enable carbon-free combustion aiding carbon neutrality pursuits but minimizing resultant NOx is crucial. Hydrogen’s wide uses from transportation to power underline its potential as a transformational energy carrier.
Green Hydrogen Futures: Tensions of Energy and Justice Within Sociotechnical Imaginaries
May 2024
Publication
As a reformist approach to low-carbon transitions green hydrogen is often promoted as an easy replacement for fossil fuels. This substitution narrative makes this technology compelling as it offers to reduce emissions while continuing the contemporary energy system. Using ‘sociotechnical imaginaries’ this paper explores the underlying political processes on what appears to be a mostly technical vision of green hydrogen. Analysis through expert interviews in Aotearoa New Zealand revealed two contrasting energy visions one emphasizing the technical role of green hydrogen in New Zealand's transition—the green hydrogen imaginary and the other which advocated for a future motivated by social change—the alternative energy imaginary. Comparing the tensions through a lens of hydrogen justice exposed the assumptions and exclusions present in the emerging green hydrogen imaginary. This paper argues that the technocratic business as usual approach of green hydrogen depoliticizes the social nature of energy and thus risks perpetuating inequalities and harms present in the current energy system. However these critiques also suggest that there is hope for green hydrogen to be reimagined in more ethical and just ways.
Interdisciplinary Perspectives on Offshore Energy System Integration in the North Sea: A Systematic Literature Review
Oct 2023
Publication
To facilitate the rapid and large-scale developments of offshore wind energy scholars policymakers and infrastructure developers must start considering its integration into the larger onshore energy system. Such offshore system integration is defined as the coordinated approach to planning and operation of energy generation transport and storage in the offshore energy system across multiple energy carriers and sectors. This article conducts a systematic literature review to identify infrastructure components of offshore energy system integration (including alternative cable connections offshore energy storage and power-to-hydrogen applications) and barriers to their development. An interdisciplinary perspective is provided where current offshore developments require not only mature and economically feasible technologies but equally strong legal and governance frameworks. The findings demonstrate that current literature lacks a holistic perspective on the offshore energy system. To date techno-economic assessments solving challenges of specific infrastructure components prevail over an integrated approach. Nevertheless permitting issues gaps in legal frameworks strict safety and environmental regulations and spatial competition also emerge as important barriers. Overall this literature review emphasizes the necessity of aligning various disciplines to provide a fundamental approach for the development of an integrated offshore energy system. More specifically timely policy and legal developments are key to incentivize technical development and enable economic feasibility of novel components of offshore system integration. Accordingly to maximize real-world application and policy learning future research will benefit from an interdisciplinary perspective.
Heat and Mass Transfer Modeling of Vacuum Insulated Vessel Storing Cryogenic Liquid in Loss of Vacuum Accident
Sep 2023
Publication
Cryogenic liquid is often stored in a vacuum insulated Dewar vessel for a high efficiency of thermal insulation. Multi-layer insulation (MLI) can be further applied in the double-walled vacuum space to reduce the heat transfer from the environment to the stored cryogenic fluid. However in loss-of-vacuum accident (LOVA) scenarios heat flux across the MLI will raise to orders of magnitudes larger than with an intact vacuum shield. The cryogenic liquid will boil intensively and pressurize the vessel due to the heat ingress. The pressurization endangers the integrity of the vessel and poses an extra catastrophic risk if the vapor is flammable e.g. hydrogen. Therefore safety valves have to be designed and installed appropriately to make sure the pressure is limited to acceptable levels. In this work the dynamic process of the heat and mass transfers in the LOVA scenarios is studied theoretically. The mass deposition - desublimation of gaseous nitrogen on cryogenic surfaces is modeled as it provides the dominant contribution of the thermal load to the cryogenic fluid. The conventional heat convection and radiation are modeled too although they play only secondary roles as realized in the course of the study. The temperature dependent thermal properties of e.g. gaseous and solid nitrogen and stainless steel are used to improve the accuracy of calculation in the cryogenic temperature range. Presented methodology enabling the computation of thermodynamic parameters in the cryogenic storage system during LOVA scenarios provides further support for the future risk assessment and safety system design.
Hydrogen Storage Capacity of Salt Caverns and Deep Aquifers Versus Demand for Hydrogen Storage: A Case Study of Poland
Nov 2023
Publication
Geological structures in deep aquifers and salt caverns can play an important role in large-scale hydrogen storage. However more work needs to be done to address the hydrogen storage demand for zero-emission energy systems. Thus the aim of the article is to present the demand for hydrogen storage expressed in the number of salt caverns in bedded rock salt deposits and salt domes or the number of structures in deep aquifers. The analysis considers minimum and maximum hydrogen demand cases depending on future energy system configurations in 2050. The method used included the estimation of the storage capacity of salt caverns in bedded rock salt deposits and salt domes and selected structures in deep aquifers. An estimation showed a large hydrogen storage potential of geological structures. In the case of analyzed bedded rock salt deposits and salt domes the average storage capacity per cavern is 0.05–0.09 TWhH2 and 0.06–0.20 TWhH2 respectively. Hydrogen storage capacity in analyzed deep aquifers ranges from 0.016 to 4.46 TWhH2. These values indicate that in the case of the upper bound for storage demand there is a need for the 62 to 514 caverns depending on considered bedded rock salt deposits and salt domes or the 9 largest analyzed structures in deep aquifers. The results obtained are relevant to the discussion on the global hydrogen economy and the methodology can be used for similar considerations in other countries.
The Status of On-Board Hydrogen Storage in Fuel Cell Electric Vehicles
Aug 2023
Publication
Hydrogen as an energy carrier could help decarbonize industrial building and transportation sectors and be used in fuel cells to generate electricity power or heat. One of the numerous ways to solve the climate crisis is to make the vehicles on our roads as clean as possible. Fuel cell electric vehicles (FCEVs) have demonstrated a high potential in storing and converting chemical energy into electricity with zero carbon dioxide emissions. This review paper comprehensively assesses hydrogen’s potential as an innovative alternative for reducing greenhouse gas (GHG) emissions in transportation particularly for on-board applications. To evaluate the industry’s current status and future challenges the work analyses the technology behind FCEVs and hydrogen storage approaches for on-board applications followed by a market review. It has been found that to achieve long-range autonomy (over 500 km) FCEVs must be capable of storing 5–10 kg of hydrogen in compressed vessels at 700 bar with Type IV vessels being the primary option in use. Carbon fiber is the most expensive component in vessel manufacturing contributing to over 50% of the total cost. However the cost of FCEV storage systems has considerably decreased with current estimates around 15.7 $/kWh and is predicted to drop to 8 $/kWh by 2030. In 2021 Toyota Hyundai Mercedes-Benz and Honda were the major car brands offering FCEV technology globally. Although physical and chemical storage technologies are expected to be valuable to the hydrogen economy compressed hydrogen storage remains the most advanced technology for on-board applications.
Recent Challenges and Development of Technical and Technoeconomic Aspects for Hydrogen Storage, Insights at Different Scales; A State of Art Review
May 2024
Publication
The importance of the energy transition and the role of green hydrogen in facilitating this transition cannot be denied. Therefore it is crucial to pay close attention to and thoroughly understand hydrogen storage which is a critical aspect of the hydrogen supply chain. In this comprehensive review paper we have undertaken the task of categorising and evaluating various hydrogen storage technologies across three different scales. These scales include small-scale and laboratory-based methods such as metal-based hydrides physical adsorbents and liquid organic hydrogen carriers. Also we explore medium and large-scale approaches like compressed gaseous hydrogen liquid cryogenic hydrogen and cryocompressed hydrogen. Lastly we delve into very large-scale options such as salt caverns aquifers depleted gas/oil reservoirs abandoned mines and hard rock caverns. We have thoroughly examined each storage technology from technical and maturity perspectives as well as considering its techno-economic viability. It is worth noting that development has been ongoing for each storage mechanism; however numerous technical and economic challenges persist in most areas. Particularly the cost per kilogramme of hydrogen for most current technologies demands careful consideration. It is recommended that small-scale hydrogen storage technologies such as metal hydrides (e.g. MgH2 LiBH4) need ongoing research to enhance their performance. Physical adsorbents have limited capacity except for activated carbon. Some liquid organic hydrogen carriers (LCOHs) are suitable for medium-scale storage in the near term. Ammonia-borane (AB) with its high gravimetric and volumetric properties is a promising choice for medium-scale storage pending effective dehydrogenation. It shows potential as a hydrogen carrier due to its high storage capacity stability and solubility surpassing DOE targets for storage capabilities. Medium-scale storage utilising compressed gas cylinders and advancements in liquefied and cryocompressed hydrogen storage requires cost reduction measures and a strategic supply chain. Large-scale storage options include salt caverns aquifers and depleted gas/oil reservoirs with salt caverns offering pure hydrogen need further technoeconomic analysis and deployment projects to mature but storage costs are reasonable ranging mostly from €0.25/kg to €1.5/kg for location specific large-scale options.
Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen
Jun 2022
Publication
Hydrogen is considered the fuel of the future due to its cleaner nature compared to methane and gasoline. Therefore renewable hydrogen production technologies and long-term affordable and safe storage have recently attracted significant research interest. However natural underground hydrogen production and storage have received scant attention in the literature despite its great potential. As such the associated formation mechanisms geological locations and future applications remain relatively under-explored thereby requiring further investigation. In this review the global natural hydrogen formation along with reaction mechanisms (i.e. metamorphic processes pyritization and serpentinization reactions) as well as the suitable geological locations (i.e. ophiolites organic-rich sediments fault zones igneous rocks crystalline basements salt bearing strata and hydrocarbon-bearing basins) are discussed. Moreover the underground hydrogen storage mechanisms are detailed and compared with underground natural gas and CO2 storage. Techno-economic analyses of large-scale underground hydrogen storage are presented along with the current challenges and future directions.
Simulation and Analysis of Hybrid Hydrogen-battery Renewable Energy Storage for Off-electric-grid Dutch Household System
May 2024
Publication
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers storage tanks and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min. A simulation to hybridize the hydrogen system including its purification unit with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system. Although the energy use of the purification unit is small it influences the operation of the system affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
Green Hydrogen for Ammonia Production - A Case for the Netherlands
Jul 2023
Publication
An integrated system is studied to supply green hydrogen feedstock for ammonia production in the Netherlands. The system is modeled to compare wind and solar resources when coupled to Alkaline Electrolysis (AEL) and Proton Exchange Membrane Electrolysis (PEMEL) technologies with a compressed hydrogen storage system. The nominal installed capacity of the electrolysis plant is around 2.3 GW with the most suitable energy source offshore wind and the preferred storage technology pressurized tubes. For Alkaline Electrolysis and Proton Exchange Membrane Electrolysis technologies the levelized cost of hydrogen is 5.30 V/kg H2 and 6.03 V/kg H2 respectively.
Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future
Dec 2023
Publication
Energy and environmental issues are of great importance in the present era. The transition to renewable energy sources necessitates technological political and behavioral transformations. Hydrogen is a promising solution and many countries are investing in the hydrogen economy. Global demand for hydrogen is expected to reach 120 million tonnes by 2024. The incorporation of hydrogen for efficient energy transport and storage and its integration into the transport sector are crucial measures. However to fully develop a hydrogen-based economy the sustainability and safety of hydrogen in all its applications must be ensured. This work describes and compares different technologies for hydrogen production storage and utilization (especially in fuel cell applications) with focus on the research activities under study at SaRAH group of the University of Naples Federico II. More precisely the focus is on the production of hydrogen from bio-alcohols and its storage in formate solutions produced from renewable sources such as biomass or carbon dioxide. In addition the use of materials inspired by nature including biowaste as feedstock to produce porous electrodes for fuel cell applications is presented. We hope that this review can be useful to stimulate more focused and fruitful research in this area and that it can open new avenues for the development of sustainable hydrogen technologies.
Potential Economic Benefits of Carbon Dioxide (CO2) Reduction Due to Renewable Energy and Electrolytic Hydrogen Fuel Deployment Under Current and Long Term Forecasting of the Social Carbon Cost (SCC)
May 2019
Publication
The 2016 Paris Agreement (UNFCCC Authors 2015) is the latest of initiative to create an international consensus on action to reduce GHG emissions. However the challenge of meeting its targets lies mainly in the intimate relationship between GHG emissions and energy production which in turn links to industry and economic growth. The Middle East and North African region (MENA) particularly those nations rich oil and gas (O&G) resources depend on these as a main income source. Persuading the region to cut down on O&G production or reduce its GHG emissions is hugely challenging as it is so vital to its economic strength. In this paper an alternative option is established by creating an economic link between GHG emissions measured as their CO2 equivalent (CO2e) and the earning of profits through the concept of Social Carbon Cost (SCC). The case study is a small coastal city in Libya where 6% of electricity is assumed to be generated from renewable sources. At times when renewable energy (RE) output exceeds the demand for power the surplus is used for powering the production of hydrogen by electrolysis thus storing the energy and creating an emission-free fuel. Two scenarios are tested based on short and long term SCCs. In the short term scenario the amount of fossil fuel energy saved matches the renewable energy produced which equates to the same amount of curtailed O&G production. The O&G-producing region can earn profits in two ways: (1) by cutting down CO2 emissions as a result of a reduction in O&G production and (2) by replacing an amount of fossil fuel with electrolytically-produced hydrogen which creates no CO2 emissions. In the short term scenario the value of SCC saved is nearly 39% and in the long term scenario this rose to 83%.
No more items...