- Home
- A-Z Publications
- Publications
Publications
Numerical Simulation of The Laminar Hydrogen Flame In The Presence of a Quenching Mesh
Sep 2009
Publication
Recent studies of J.H. Song et al. and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size.<br/>Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment in particular the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter).<br/>In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically.
Genome-wide Transcriptome Analysis of Hydrogen Production in the Cyanobacterium Synechocystis: Towards the Identification of New Players
Dec 2012
Publication
We report the development of new tools and methods for facile integration and meaningful representation of high throughput data generated by genome-wide analyses of the model cyanobacterium Synechocystis PCC6803 for future genetic engineering aiming at increasing its level of hydrogen photoproduction. These robust tools comprise new oligonucleotide DNA microarrays to monitor the transcriptomic responses of all 3725 genes of Synechocystis and the SVGMapping method and custom-made templates to represent the metabolic reprogramming for improved hydrogen production. We show for the first time that the AbrB2 repressor of the hydrogenase-encoding operon also regulates metal transport and protection against oxidative stress as well as numerous plasmid genes which have been overlooked so far. This report will stimulate the construction and global analysis of hydrogen production mutants with the prospect of developing powerful cell factories for the sustainable production of hydrogen as well as investigations of the probable role of plasmids in this process.
Environmental Reactivity of Solid State Hydride Materials
Sep 2009
Publication
In searching for high gravimetric and volumetric density hydrogen storage systems it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems it is important to understand quantitatively the hazards involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential hazards and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials as codified by the United Nations have been used to evaluate two potential hydrogen storage materials 2LiBH4·MgH2 and NH3BH3. The modified U.N. procedures include identification of self-reactive substances pyrophoric substances and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH4 and MgH2). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. Relative to 2LiBH4·MgH2 the chemical hydride NH3BH3 was observed to be less environmentally reactive.
Hydrogen Release from a High-Pressure Gh2 Reservoir in Case of a Small Leak
Sep 2009
Publication
High-pressure GH2 systems are of interest for storage and distribution of hydrogen. The dynamic blow-down process of a high-pressure GH2 reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states which needs to be understood for safety investigations.<br/>This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak position. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. The model chain was evaluated by jet experiments with sonic hydrogen releases from different reservoir pressures and temperatures.<br/>Predictions are made for the blow-down of hydrogen reservoirs with 10 30 and 100 MPa initial pressure. The evolution of the pressure in the reservoir and of the H2 mass flux at the orifice are presented in dimensionless form which allows scaling to other system dimensions and initial gas conditions. Computed hydrogen concentrations and masses in the jet are given for the 100 MPa case. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of burnable H2-air mixtures.
Where Does Hydrogen Fit in a Sustainable Energy Economy?
Jul 2012
Publication
Where does hydrogen fit into a global sustainable energy strategy for the 21st century as we face the enormous challenges of irreversible climate change and uncertain oil supply? This fundamental question is addressed by sketching a sustainable energy strategy that is based predominantly on renewable energy inputs and energy efficiency with hydrogen playing a crucial and substantial role. But this role is not an ex -distributed hydrogen production storage and distribution centres relying on local renewable energy sources and feedstocks would be created to avoid the need for an expensive long-distance hydrogen pipeline system. There would thus be complementary use of electricity and hydrogen as energy vectors. Importantly bulk hydrogen storage would provide the strategic energy reserve to guarantee national and global energy security in a world relying increasingly on renewable energy; and longer-term seasonal storage on electricity grids relying mainly on renewables. In the transport sector a 'horses for courses' approach is proposed in which hydrogen fuel cell vehicles would be used in road and rail vehicles requiring a range comparable to today's petrol and diesel vehicles and in coastal and international shipping while liquid hydrogen would probably have to be used in air transport. Plug-in battery electric vehicles would be reserved for shorter-trips. Energy-economic-environmental modelling is recommended as the next step to quantify the net benefits of the overall strategy outlined.
Simulation of Small-Scale Releases from Liquid Hydrogen Storage Systems
Sep 2009
Publication
Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20–30 K) over a short distance creating an ideal gas mixture at low temperature (∼65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Safe Processing Route for the Synthesis of MG Based Metallic Hydrides
Sep 2009
Publication
Metallic hydrides represent a safe way of storing hydrogen minimising explosion and flammability risks. Nowadays there are several methods for the storage of hydrogen and the more conventional techniques are high-pressure tanks for gaseous hydrogen and cryogenic vessels for liquid hydrogen. However there are two main drawbacks in the storage of gaseous and liquid hydrogen. First as a fuel hydrogen in the gaseous and liquid states is very combustible and the related law imposes strict regulations on its utilization storage and transportation. Secondly even under a high pressure hydrogen gas is not dense enough for compact storage. Moreover the gas storage at high pressure involves significant safety risks. Hydrogen storage in the metal hydrides does not have such deficiencies. Metal hydrides are safe and can be easily store and transported. For that reason it should be stressed that metallic hydrides represent a safe way of storing hydrogen minimising explosion and flammability risks. Among metallic hydrides one of the most promising hydrides in terms of absorbed hydrogen content is Mg2NiH4. However it is difficult to obtain Mg2Ni by the conventional melting method because of the large difference in vapour pressure and melting point between magnesium and nickel. This paper presents an alternative and safe method for obtaining such hydride: HCS (Hydriding Combustion Synthesis). This method presents some interesting advantages over its conventional counterpart: the process is carried out at lower reaction process which means safer process and the alloy stoichiometry is closer to the nominal (Mg2Ni) which allow better hydrogen absorption behaviour. The aim of this work is to investigate the formation mechanism of this compound and to study some parameters of the process.
Modeling of 2LiBH4+MgH2 Hydrogen Storage System Accident Scenarios Using Empirical and Theoretical Thermodynamics
Sep 2009
Publication
It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modelling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH4+MgH2 from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data.
The ability to predict hydride behaviour for hypothesized accident scenarios facilitates an assessment of the risk associated with the utilization of a particular hydride. To this end an idealized finite volume model was developed to represent the behaviour of dispersed hydride from a breached system. Semi-empirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination.
The hydrides LiBH4 and MgH2 were studied individually in the as-received form and in the 2:1 “destabilized” mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.
The ability to predict hydride behaviour for hypothesized accident scenarios facilitates an assessment of the risk associated with the utilization of a particular hydride. To this end an idealized finite volume model was developed to represent the behaviour of dispersed hydride from a breached system. Semi-empirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination.
The hydrides LiBH4 and MgH2 were studied individually in the as-received form and in the 2:1 “destabilized” mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.
Functional Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions
Dec 2022
Publication
Green hydrogen supply chain includes supply sources production and distribution of hydrogen produced from renewable energy sources (RES). It is a promising scientific and application area as it is related to the problem of instability of power grids supplied with RES. The article presents the conceptual assumptions of the research on the design of a functional multi-criteria model of the stabilization model architecture of energy distribution networks based on a hydrogen energy buffer taking into account the applicable use of hydrogen. The aim of the research was to identify the variables contributing to the stabilization of the operation of distribution networks. The method used to obtain this result was a systematic review of the literature using the technique of in-depth analysis of full-text articles and expert consultations. The concept of a functional model was described as a matrix in two dimensions in which the identified variables were embedded. The first dimension covers the phases of the supply chain: procurement and production along with storage and distribution. The second dimension divides the separate factors into technical economic and logistic. The research was conducted in the context of system optimization from the point of view of the operator of the energy distribution system. As a result of the research several benefits resulting from stabilization using a hydrogen buffer were identified. Furthermore the model may be used in designing solutions stabilizing the operation of power grids in which there are surpluses of electricity produced from RES. Due to the applied multidimensional approach the developed model is recommended for use as it enables the design of solutions in a systemic manner. Due to the growing level of energy obtained from renewable energy sources the issue of stabilizing the energy network is becoming increasingly important for energy network distributors.
Mach 4 Simulating Experiment of Pre-Cooled Turbojet Engine Using Liquid Hydrogen
Jan 2022
Publication
This study investigated a pre-cooled turbojet engine for a Mach 5 class hypersonic transport aircraft. The engine was demonstrated under takeoff and Mach 2 flight conditions and a Mach 5 propulsion wind tunnel test is planned. The engine is composed of a pre-cooler a core engine and an afterburner. The engine was tested under simulated Mach 4 conditions using an air supply facility. High-temperature air under high pressure was supplied to the engine components through an airflow control valve and an orifice flow meter and liquid hydrogen was supplied to the pre-cooler and the core engine. The results confirmed that the starting sequence of the engine components was effective under simulated Mach 4 conditions using liquid hydrogen fuel. The pre-cooling effect caused no damage to the rotating parts of the core engine in the experiment.
Discrete Event Simulation in Support to Hydrogen Supply Reliability
Sep 2009
Publication
Discrete Event Simulation (DES) environments are rapidly developing and they appear to be promising tools for developing reliability and risk analysis models of safety-critical systems. DES models are an alternative to the conventional methods such as fault and event trees Bayesian networks and cause-consequence diagrams that could be used to assess the reliability of fuel supply. DES models can rather easily account for the dynamic dimensions and other important features that can hardly be captured by the conventional models. The paper describes a novel approach to estimate gas supply security and the reliability/safety of gas installations and argues that this approach can be transferred to estimate future hydrogen supply reliability. The core of the approach is a DES model of gas or other fuel propulsion through a pipeline to the customers and failures of the components of the pipeline. We will argue in the paper that the experience gained in the modelling of gas supply reliability is very relevant to the security and safety of a future hydrogen supply and worth being employed in this area.
Numerical Investigation of Subsonic Hydrogen Jet Release
Sep 2011
Publication
A buoyant round vertical hydrogen jet is investigated using Large Eddy Simulations at low Mach number (M = 0.3). The influence of the transient concentration fields on the extent of the gas envelope with concentrations within the flammability limits is analyzed and their structure are characterized. The transient flammable region has a complex structure that extends up to 30% beyond the time-averaged flammable volume with high concentration pockets that persist sufficiently long for potential ignition. Safety envelopes devised on the basis of simplified time-averaged simulations would need to include a correction factor that accounts for transient incursions of high flammability concentrations.
A Socio-technical Perspective on the Scope for Ports to Enable Energy Transition
Jan 2021
Publication
The paper applies the multi-level perspective (MLP) in a descriptive study of three Norwegian ports to shed new light on the sociotechnical processes that structure their efforts to develop into zero emission energy hubs. While exogenous pressures cause tensions over port governance the studied ports utilize their full spectre of functions; as landlords operators authorities and community managers to enable transition. The respective approaches vary related to their local context market situation and social networks including port's relations with their owners. Individual orientations and organizational capacity further influence their engagement with radical innovation niches (e.g. OPS hydrogen LNG). The study highlights the active role of ports in sustainability transition. It shows how the interaction between geographical factors and institutional work influences the scope for new solutions around the individual port and how this makes for different feedback loops and contributions to sustainability transition in wider transport and energy systems.
Temperature Change of a Type IV Cylinder During Hydrogen Fuelling Process
Sep 2009
Publication
The temperature of the hydrogen cylinder needs to be carefully controlled during fuelling process. The maximum temperature should be less than 85℃ according to the ISO draft code. If the fuelling period is reduced the maximum temperature should increase. In this study temperature change of a Type IV cylinder was measured during the hydrogen fuelling process up to 35 MPa. Fuelling period was 3 to 5 minutes. Twelve thermocouples were installed to measure inside gas temperature and seven were attached on the outside of the cylinder. An infrared camera was also used for measuring temperature distribution of outside of cylinder. The maximum gas temperature was higher than 85℃ inside of the cylinder. Significant temperature difference between the upper and lower part of the vessel was observed. Temperature near the plug and the valve was quickly increased and maintained higher than that of the other region. Temperature increases for the partial refuelling process were also discussed.
Biomass Gasification as an Industrial Process with Effective Proof-of-concept: A Comprehensive Review on Technologies, Processes and Future Developments
Apr 2022
Publication
The search for alternatives to fossil energy traditional sources led to the development of a set of energy conversion processes which include biomass thermochemical conversion technologies such as torrefaction pyrolysis hydrothermal liquefaction or gasification. These conversion technologies have shown significant evolutions and there are already several examples available of application on an industrial scale. Biomass gasification processes have also presented significant developments mainly when associated with the production of syngas with potential for energy recovery or to produce synthetic fuels but mainly due to its potential to be used as a sustainable hydrogen production technology. In the present work a bibliographic review of the current state-of-the-art of the biomass gasification is carried out focusing in the gasification technologies syngas cleaning processes simulation methodologies on process parameters. Finally future developments and possibilities are also analyzed and discussed with the introduction of a new approach to hydrogen production based on the use of an adapted combustion process with air deficit.
Assessment of the Effects of Inert Gas and Hydrocarbon Fuel Dilution on Hydrogen Flames
Sep 2009
Publication
To advance hydrogen into the energy market it is necessary to consider risk assessment for scenarios that are complicated by accidental hydrogen release mixing with other combustible hydrocarbon fuels. The paper is aimed at examining the effect of mixing the hydrocarbon and inert gas into the hydrogen flame on the kinetic mechanisms the laminar burning velocity and the flame stability. The influences of hydrogen concentration on the flame burning velocity were determined for the hydrogen/propane (H2-C3H8) hydrogen/ethane (H2-C2H6) hydrogen/methane (H2-CH4) and hydrogen/carbon dioxide (H2-CO2) mixtures. Experimental tests were carried out to determine the lift-off blow-out and blowoff stability limits of H2 H2-C3H8 H2-C2H6 H2-CH4 and H2-CO2 jet flames in a 2 mm diameter burner. The kinetic mechanisms of hydrogen interacting with C3 C2 and C1 fuels is analysed using the kinetic mechanisms for hydrocarbon combustion.
Multi-objective Optimal Configurations of a Membrane Reactor for Steam Methane Reforming
Nov 2021
Publication
The combination of traditional reactor and permeable membrane is beneficial to increase the production rate of the target product. How to design a high efficiency and energy saving membrane reactor is one of the key problems to be solved urgently. This paper utilizes finite-time thermodynamics and nonlinear programming to solve the optimal configurations of the membrane reactor of steam methane reforming (MR-SMR) for two optimization objectives that is heat exchange rate minimization and power consumption minimization. The exterior wall temperature and fixed hydrogen production rate are regarded as the control variable and constraint respectively. The results indicate that the hydrogen production rate and heat exchange rate in MR-SMR are increased by 108.58% and 58.42% respectively while the power consumption is reduced by 33.44% compared with those in the traditional reactor under the same condition. Compared with the results in reference reactor (MR-SMR obtained with initial values) the heat exchange rate is reduced by 1.40% by optimizing the exterior wall temperature and the power consumption is reduced by 5.10% by optimizing the exterior wall temperature and molar flow rate of sweep gas. The optimal distributions of exterior wall temperatures in the optimal reactors of minimum heat exchange rate and power consumption have a theoretical guiding significance for the thermal design of the membrane reactors.
Experimental Study of Hydrogen Releases Combustion
Sep 2009
Publication
The objectives of the presented experimental work were investigation of hydrogen release distribution and combustion modelling possible emergency situation at industry scale. Results of large scale experiments on distribution and combustion in an open and congested area are presented. The mass of hydrogen in experiments varied from 50g to 1000g with release rate from 180 to 220 g/s. Qualitative characteristics of high momentum hydrogen jet releases distribution and subsequent combustion were obtained. It is shown that obstacles slow down jet speed promote combustible mixture formation in a large volume and accelerate combustion process. The maximum overpressure in experiments with additional congested area reached ΔР = 0.4 atm. Using partial confinement of congested area turbulent combustion regime with the maximum overpressure more than 10 atm. was obtained.
Experiments on the Distribution of Concentration Due to Buoyant Gas Low Flow Rate Release in an Enclosure.
Sep 2009
Publication
Hydrogen energy based vehicles or power generators are expected to come into widespread use in the near future. Safety information is of major importance to support the successful public acceptance of hydrogen as an energy carrier. One of the most important issues in terms of safety is the use of such system in closed area such as a private garage in which a fuel cell car may be parked. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of a stably stratified distribution of concentration. Most of them consider the cases of accidental situation in which the flow rate is relatively important (of the order of 10Nl/min to 100Nl/min). We present a set of experiments conducted on a full scale facility of the size of a typical private garage with helium as a model gas for hydrogen. In this study we focus on the low flow rates that can be characteristic of chronic leaks that may not be detected by security devices of the system (of the order of 0.1Nl/min to 10Nl/min). The facility allows changing natural ventilation conditions and experiments have been conducted from the tightest which is less than 0.01ACH to that typical of a real garage say of the order of 0.1ACH.
Numerical Study of the Near-field of Highly Under-expanded Turbulent Gas Jets
Sep 2011
Publication
For safety issues related to the storage of hydrogen under high pressure it is necessary to determine how the gas is released in the case of failure. In particular there exist limited quantitative information on the near-field properties of the gas jets which are important for establishing proper decay laws in the far-field. This paper reports recent CFD results for air and helium obtained in the near-field of the highly under-expanded jets. The gas jets are released from a 30-bar tank with the same opening (orifice). The Reynolds number based on the diameter of the orifice and corresponding gas conditions at the exit was well beyond 106 . The 3D Compressible Multi-Component Navier-Stokes equations were solved directly without relying on the compressibility-corrected turbulence models. The numerical model was initially tested on a one-component (air-air) case where a few aerospace-driven data sets are available for validation. The shock geometry is characterized through the Mach disk position and diameter. These are compared to the results known from the literature and to the scaling laws developed based on the dimensional analysis. In the second two-component (helium-air) jet scenario the density field was validated and examined together with other fields in the attempt to suggest potential initial conditions for the forthcoming far-field simulations.
Generation of Hydrogen and Oxygen from Water by Solar Energy Conversion
Dec 2021
Publication
Photosynthesis is considered to be one of the promising areas of cheap and environmentally friendly energy. Photosynthesis involves the process of water oxidation with the formation of molecular oxygen and hydrogen as byproducts. The aim of the present article is to review the energy (light) phase of photosynthesis based on the published X-ray studies of photosystems I and II (PS-I and PS-II). Using modern ideas about semiconductors and biological semiconductor structures the mechanisms of H+ O2↑ e− generation from water are described. At the initial stage PS II produces hydrogen peroxide from water as a result of the photoenzymatic reaction which is oxidized in the active center of PS-II on the Mn4CaO5 cluster to form O2↑ H+ e−. Mn4+ is reduced to Mn2+ and then oxidized to Mn4+ with the transfer of reducing the equivalents of PS-I. The electrons formed are transported to PS-I (P 700) where the electrochemical reaction of water decomposition takes place in a two-electrode electrolysis system with the formation of gaseous oxygen and hydrogen. The proposed functioning mechanisms of PS-I and PS-II can be used in the development of environmentally friendly technologies for the production of molecular hydrogen.
Experimental Results on The Dispersion of Buoyant Gas in a Full Scale Garage from a Complex Source
Sep 2009
Publication
The lack of experimental data on hydrogen dispersion led to the experimental project DRIVE (Experimental Data for Hydrogen Automotive Risks Assessment for the validation of numerical tools and for the Edition of guidelines) that involves the CEA (French Atomic Energy Commission) the National Institute of Industrial Environment and Risks (INERIS) the French car manufacturer PSA PEUGEOT CITROËN and the Research Institute on Out of Equilibrium Phenomena (IRPHE). The CEA has developed an experimental setup named GARAGE in order to analyze the condition of formation of an explosive atmosphere in an enclosure. This is a full scale facility in which a real car can be parked. Hydrogen releases were simulated with helium which volume fraction was measured with mini-katharometers. These thermal conductivity probes allow spatial and time volume fraction variations measurements. We present experimental results on the dispersion of helium in the enclosure due to releases in a typical car. The tested parameters are the location of the source (engine bottom of the car storage) and the flow rate. Emphasis is put on the influence of these parameters on the time evolution of the volume fraction in the enclosure as well as on the vertical distribution of helium.
Accelerated Degradation for Solid Oxide Electrolysers: Analysis and Prediction of Performance for Varying Operating Environments
Jan 2022
Publication
Solid oxide electrolysis cells (SOECs) are an efficient technology for the production of green hydrogen that has great potential to contribute to the energy transition and decarbonization of industry. To date however time- and resource-intensive experimental campaigns slow down the development and market penetration of the technology. In order to speed-up the evaluation of SOEC performance and durability accelerated testing protocols are required. This work provides the results of experimental studies on the performance of a SOEC stack operated under accelerated degradation conditions. In order to initiate and accelerate degradation experiments were performed with high steam partial pressures at the gas inlet higher voltages and lower temperatures and high steam conversion rates. Thereby different types and degrees of impact on performance were observed which were analyzed in detail and linked to the underlying processes and degradation mechanisms. In this context significantly higher degradation rates were found compared to operation under moderate operating conditions with the different operating strategies varying in their degradation acceleration potential. The results also suggest that a few hundred hours of operation may be sufficient to predict long-term performance with the proposed operating strategies providing a solid basis for accelerated assessment of SOEC performance evolution and lifetime.
Hydrogen Production from Biomass and Organic Waste Using Dark Fermentation: An Analysis of Literature Data on the Effect of Operating Parameters on Process Performance
Jan 2022
Publication
In the context of hydrogen production from biomass or organic waste with dark fermentation this study analysed 55 studies (339 experiments) in the literature looking for the effect of operating parameters on the process performance of dark fermentation. The effect of substrate concentration pH temperature and residence time on hydrogen yield productivity and content in the biogas was analysed. In addition a linear regression model was developed to also account for the effect of nature and pretreatment of the substrate inhibition of methanogenesis and continuous or batch operating mode. The analysis showed that the hydrogen yield was mainly affected by pH and residence time with the highest yields obtained for low pH and short residence time. High hydrogen productivity was favoured by high feed concentration short residence time and low pH. More modest was the effect on the hydrogen content. The mean values of hydrogen yield productivity and content were respectively 6.49% COD COD−1 135 mg L−1 d −1 51% v/v while 10% of the considered experiments obtained yield productivity and content of or higher than 15.55% COD COD−1 305.16 mg L−1 d −1 64% v/v. Overall this study provides insight into how to select the optimum operating conditions to obtain the desired hydrogen production.
Experimental Study of Explosion Wave Propagation in Hydrogen-Air Mixtures of Variable Compositions
Sep 2009
Publication
Results are given of experimental study of propagation of explosion waves in hydrogen-air mixtures of different compositions under conditions of cumulation. The investigations are performed in a setup consisting of two parts namely the upper part in the form of a metal cone and the lower part in the form of a rubber envelope hermetically attached to the cone. The upper and lower parts of the experimental setup are separated by a thin rubber film and may be filled with hydrogen-air mixtures of different compositions.
Effect of Hydrogen Concentration on Vented Explosion Overpressures from Lean Hydrogen–air Deflagrations
Sep 2011
Publication
Experimental data from vented explosion tests using lean hydrogen–air mixtures with concentrations from 12 to 19% vol. are presented. A 63.7-m3 chamber was used for the tests with a vent size of either 2.7 or 5.4 m2. The tests were focused on the effect of hydrogen concentration ignition location vent size and obstacles on the pressure development of a propagating flame in a vented enclosure. The dependence of the maximum pressure generated on the experimental parameters was analyzed. It was confirmed that the pressure maxima are caused by pressure transients controlled by the interplay of the maximum flame area the burning velocity and the overpressure generated outside of the chamber by an external explosion. A model proposed earlier to estimate the maximum pressure for each of the main pressure transients was evaluated for the various hydrogen concentrations. The effect of the Lewis number on the vented explosion overpressure is discussed.
Wide Area and Distributed Hydrogen Sensors
Sep 2009
Publication
Recent advances in optical sensors show promise for the development of new wide area monitoring and distributed optical network hydrogen detection systems. Optical hydrogen sensing technologies reviewed here are: 1) open path Raman scattering systems 2) back scattering from chemically treated solid polymer matrix optical fiber sensor cladding; and 3) schlieren and shearing interferometry imaging. Ultrasonic sensors for hydrogen release detection are also reviewed. The development status of these technologies and their demonstrated results in sensor path length low hydrogen concentration detection ability and response times are described and compared to the corresponding status of hydrogen spot sensor network technologies.
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Compatibility and Suitability of Existing Steel Pipelines for Transport of Hydrogen and Hydrogen-natural Gas Blends
Sep 2017
Publication
Hydrogen is being considered as a pathway to decarbonize large energy systems and for utility-scale energy storage. As these applications grow transportation infrastructure that can accommodate large quantities of hydrogen will be needed. Many millions of tons of hydrogen are already consumed annually some of which is transported in dedicated hydrogen pipelines. The materials and operation of these hydrogen pipeline systems however are managed with more constraints than a conventional natural gas pipeline. Transitional strategies for deep decarbonization of energy systems include blending hydrogen into existing natural gas systems where the materials and operations may not have the same controls. This study explores the hydrogen compatibility of existing pipeline steels and the suitability of these steels in hydrogen pipeline systems. Representative fracture and fatigue properties of pipeline grade steels in gaseous hydrogen are summarized from the literature. These properties are then considered in idealized design life calculations to inform materials performance for a typical gas pipeline.
Numerical Simulation of Hydrogen Release From High-Pressure Storage Vessel
Sep 2009
Publication
In this paper the deflagration region and characteristics of the hydrogen flow which was generated by high-pressure hydrogen discharge from storage vessels were studied. A 3-D analytic model is established based on the species transfer model and the SST k −ω turbulence model. The established model is applied to the research of the flow characteristics of the hydrogen under-expanded jet under different filling pressures of 30 MPa 35 MPa and 40 MPa respectively. The evolution process of hydrogen combustible cloud is analyzed under the filling pressure of 30 MPa. It is revealed that a supersonic jet is formed after the high-pressure hydrogen discharge outlet In the vicinity of the Mach disk the hydrogen jet velocity and temperature reach the maximum values and the variation of filling pressure has little effect on the peak values of the hydrogen jet flow velocity and temperature during the considered pressure range. In the rear of the Mach disk the variation rates of the hydrogen flow velocity and temperature are in inversely proportional to the hydrogen filling pressure. At the preliminary stage the discharged hydrogen is apple-shaped which expands along the radial and then the axial growth rate of the hydrogen cloud increases with the passage of time.
Numerical Study of Hydrogen Explosions in a Vehicle Refill Environment
Sep 2009
Publication
Numerical simulations have been carried out for pressurised hydrogen release through a nozzle in a simulated vehicle refilling environment of an experiment carried out in a joint industry project by Shell bp Exxon and the UK HSE Shirvill[1]. The computational domain mimics the experimental set up for a vertical downwards release in a vehicle refuelling environment. Due to lack of detailed data on pressure decay in the storage cylinder following the release a simple analytical model has also been developed to provide the transient pressure conditions at nozzle exit. The modelling is carried out using the traditional Computational fluid dynamics (CFD) approach based on Reynolds averaged Navier Stokes equations. The Pseudo diameter approach is used to bypass the shock-laden flow structure in the immediate vicinity of the nozzle. For combustion the Turbulent Flame Closure (TFC) model is used while the shear stress transport (SST) model is used for turbulence
Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments
Aug 2020
Publication
To avoid failures due to hydrogen embrittlement it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1 P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H2) at elevated pressure and in ambient pressure tests with hydrogen sulfide (H2S). H2 gas with a pressure of up to 100 bar resulted in an overall low but still detectable hydrogen absorption which did not cause any substantial hydrogen embrittlement in specimens under a constant load of 90% of the specified minimum yield strength (SMYS). The amount of hydrogen absorbed under conditions with H2S was approximately one order of magnitude larger than under conditions with H2 gas. The high hydrogen content led to failures of the 42CrMo4 and P110 specimens.
Safe Testing of Catalytic Devices in Hydrogen-Air Flow
Sep 2009
Publication
Any experimental study of catalysts and catalytic recombining devices for removal of hydrogen gas from industrial environments is known to carry a risk of ignition of hydrogen. Experiments conducted in an atmosphere with a high concentration of hydrogen present a particular danger. Here a technique is reported that allows conducting such experiments with relative safety. This technique has been developed and applied by the company ‘Russian Energy Technologies’ for the last five years without any significant incident.<br/>A “Gas stream method” for testing and analysis of the characteristics of a catalyst for hydrogen/oxygen recombination is proposed. Tests with a variety of catalysts in a passive recombining device were carried out in a climatic chamber (86 l in volume) with a hydrogen/air mixture containing up to 20% (v/v) hydrogen flowing through it. The balance equation for hydrogen and oxygen flows entering reacting and exiting the chamber led to a formula for calculating the efficiency of a catalyst or a catalytic device under stationary conditions.<br/>Fluctuations in local temperatures of the catalyst and other parts of the chamber along with variation in the concentration of hydrogen gave the authors an insight into the thermal regime of an active catalyst. This enabled them to develop new catalysts for removal of hydrogen from the environment using industrial recombining devices.
Enhanced Production of Hydrogen from Methanol Using Spark Discharge Generated in a Small Portable Reactor
Nov 2021
Publication
An efficient production of hydrogen from a mixture of methanol and water is possible in a spark discharge. In this discharge there is a synergistic effect of high-energy electrons and high temperature interactions which enables an efficient course of endothermic processes such as the production of hydrogen from methanol. The water to methanol molar ratio of 1:1 was kept constant during the study. While the discharge power and feed flow rate were varied from 15 to 55 W and from 0.25 to 2 mol/h respectively which corresponded to the residence time of the reactants in the plasma zone from 58 to 7 ms. The cooled gas mixture contained 56 to 60% of H2. Other gaseous products of the process were CO CO2 and a small amount of CH4. The maximum energy yield was 16.2 mol(H2)/kWh which represents 20% of the theoretical energy yield when the substrates are in a liquid phase.
Safe Operation of Natural Gas Appliances Fuelled with Hydrogen & Natural Gas Mixtures (Progress Obtained in the Naturalhy-Project)
Sep 2007
Publication
Considering the transition towards the hydrogen economy dependent on hydrogen penetration scenario the cost of a new hydrogen pipeline infrastructure in Europe may amount to several thousands of billions of EURO’s. Therefore the examination of the potential contribution of the existing natural gas assets is a practical and logical first step. As the physical and chemical properties of hydrogen differ significantly from those of natural gas it is not at all possible to simply exchange natural gas by hydrogen in the existing infrastructure. In this paper first a brief overview will be given of the NATURALHY-project. Further the focus will be on the impact of added hydrogen on the performance of existing natural gas domestic end user appliances which is related to the operation of the natural gas grid connecting the different types of appliance. The application of the fundamental insights and carefully designed experiments comparing the behaviour of gases using justified reference conditions have been shown to offer essential progress. The Wobbe index limits of the natural gas distributed pose a first limiting factor upon the maximum allowable hydrogen concentration. Constant-Wobbe index and decreasing-Wobbe index options of H2 admixture have been studied. Considering the appliance light back H2 limiting factor for domestic appliances fuel-rich appliances are the critical ones. Also taking into account stationary gas engines gas turbines industrial applications and natural gas grid management it is not yet justified to present statements on what level of hydrogen concentration could be safely allowed in which specific natural gas distribution region. But more clarity has been obtained on combustion safety aspects of existing domestic appliances on the connection with Wobbe distribution conditions and on the bottlenecks still to be handled.
Dynamics of Vented Hydrogen-air Deflagrations
Sep 2011
Publication
The use of hydrogen as an energy carrier is a real perspective for Europe since a number of breakthroughs now enable to envision a deployment at the industrial scale. However some safety issues need to be further addressed but experimental data are still lacking especially about the explosion dynamics in realistic dimensions. A set of hydrogen-air vented explosions were thus performed in two medium scale chambers (1 m3 and 10 m3). Homogeneous mixtures were used (10% to 30% vol.). The explosion overpressure was measured inside the chamber and outside on the axis of the discharge from the vent. The incidence of the external explosion is clearly seen. All the results in this paper and the predictions from the standards differ greatly meaning that a significant effort is still required. It is the purpose of the French project DIMITRHY to help progressing.
Improvements in Two-Step Model of Hydrogen Detonative Combustion: Model Description and Sensitivity to its Parameters
Sep 2009
Publication
In the present paper the two-stage model of detonative combustion of hydrogen is presented. The following improvements are described: accurate description of the heat release stage of combustion; the clear physics-based procedure for calculation of the parameters of the proposed model; sample calculations of the detonation wave in hydrogen/air mixtures in wide range of conditions showing that the proposed model performs well in a wide range of conditions (pressures temperatures mixture compositions). The results of the 2D simulations of the detonation cell are presented for the hydrogen/oxygen/argon mixture as example to show the performance and accuracy of the model presented in this paper.
Numerical Simulations of a Large Hydrogen Release in a Process Plant
Sep 2009
Publication
This paper describes a series of numerical simulations with release and ignition of hydrogen. The objective of this work was to re-investigate the accidental explosion in an ammonia plant which happened in Norway in 1985 with modern CFD tools. The severe hydrogen-air explosion led to two fatalities and complete destruction of the factory building where the explosion occurred. A case history of the accident was presented at the 1.st ICHS in Pisa 2005.<br/>The numerical simulations have been performed with FLACS a commercial CFD simulation tool for gas dispersion and gas explosions. The code has in the recent years been validated in the area of hydrogen dispersion and explosions.<br/>The factory building was 100 m long 10 m wide and 7 m high. A blown-out gasket in a water pump led to release of hydrogen from a large reservoir storing gaseous hydrogen at 3.0 MPa. The accident report estimated a total mass of released hydrogen between 10 and 20 kg. The location of the faulty gasket is known but the direction of the accidental release is not well known and has been one of the topics of our investigations. Several simulations have been performed to investigate the mixing process of hydrogen-air clouds and the development of a flammable gas cloud inside the factory building resulting in a simulation matrix with dispersions in all axis directions. Simulations of ignition of the different gas clouds were carried out and resulting pressure examined. These results have been compared with the damages observed during the accident investigation.<br/>We have also performed FLACS simulations to study the effect of natural venting and level of congestion. The height of the longitudinal walls has been varied leading to different vent openings at floor level at the ceiling and a combination of the two. This was done to investigate the effects of congestion with regards to gas cloud formation.<br/>The base case simulation appears to be in good accordance to the observed damages from the accident. The simulations also show that the build up of the gas cloud strongly depends on the direction of the jet and degree of ventilation. The CFD study has given new insights to the accident and the results are a clear reminder of the importance of natural venting in hydrogen safety.
Hydrogen-Air Explosive Envelope Behaviour in Confined Space at Different Leak Velocities
Sep 2009
Publication
The report summarizes experimental results on the mechanisms and kinetics of hydrogen-air flammable gas cloud formation and evolution due to foreseeable (less than 10-3 kg/sec) hydrogen leaks into confined spaces with different shapes sizes and boundary conditions. The goals were - 1) to obtain qualitative information on the basic gas-dynamic patterns of flammable cloud formation at different leak velocities (between 935 and 905 m/sec) for a fixed leak flowrate and 2) to collect quantitative data on spatial and temporal characteristics of the revealed patterns. Data acquisition was performed using a spatially distributed reconfigurable net of 24 hydrogen gauges with short response time. This experimental innovation permits to study spatial features of flammable cloud evolution in detail which previously was attainable only from CFD computations. Two qualitatively different gas dynamic patterns were documented for the same leak flowrate. In one limiting case (sufficiently low speed of leak) the overall gas-dynamic pattern can be described by the well-known “filling box” model. In another limited case (high velocity of leak) it is proposed to describe the peculiarities of gas-dynamic behavior of flammable cloud by the term of a “fading up box” model. From the safety view point the “fading up box” case is more hazardous than the “filling box” case. Differences in macroscopic and kinetic behavior which are essential for safety provision are presented. Empirical non-dimensional criterion for discrimination of the two revealed basic patterns for hydrogen leaks into confined spaces with comparable length scale is proposed. The importance of the revealed “fading up box” gas-dynamic pattern is discussed for development of an advanced hydrogen gauges system design and safety criteria.
A National Set of Hydrogen Codes and Standards for the US
Sep 2009
Publication
In 2003 the US Department of Energy (DOE) initiated a project to coordinate the development of a national template of hydrogen codes and standards for both vehicular and stationary applications. The process consisted of an initial evaluation to determine where there were gaps in the existing hydrogen codes and standards and the codes and standards required to fill these gaps. These codes and standards were to be developed by several Standards Development Organizations (SDOs). This effort to develop codes and standards has progressed from a position in 2003 when there were relatively few codes and standards that directly addressed hydrogen technology applications to the position at the end of 2008 where requirements to permit hydrogen technologies have been implemented in primary adopted codes- building and fire codes in hydrogen specific codes such as National Fire Protection Association (NFPA) 52 NFPA 55 and NFPA 853 and in many of the hydrogen specific component standards that are referenced primarily in the NFPA codes and standards. This paper describes the three levels of codes and standards that address hydrogen technologies for the built environment:<br/>Level 1. Primary adopted building and fire codes<br/>Level 2. Hydrogen specific codes and standards references in primary adopted code<br/>Level 3. Hydrogen specific component standards referenced in hydrogen specific codes<br/>This paper also describes the progress to date in populating these three levels with the required hydrogen codes and standards. The first two levels are essentially complete and are undergoing refinement and routine revision. Level 3 the hydrogen specific component standards is the furthest from having first edition documents that address requirements for a hydrogen system component.<br/>The DOE is focusing much of their codes and standards development efforts on these hydrogen specific component standards with the expectation that a first edition of most of these standards will be issued by 2010.
Ignition and Heat Radiation of Cryogenic Hydrogen Jets
Sep 2011
Publication
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature velocity turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.
Quantitative Imaging of Multi-Component Turbulent Jets
Sep 2011
Publication
The integration of a hydrogen gas storage arrangement in vehicles has not been without its challenges. Gaseous state of hydrogen at ambient temperature combined with the fact that hydrogen is highly flammable results in the requirement of more robust high pressure storage systems that can meet modern safety standards. To develop these new safety standards and to properly predict the phenomena of hydrogen dispersion a better understanding of the resulting flow structures and flammable region from controlled and uncontrolled releases of hydrogen gas must be achieved. With the upper and lower explosive limits of hydrogen known the flammable envelope surrounding the site of a uncontrolled hydrogen release can be found from the concentration field. In this study the subsonic release of hydrogen was emulated using helium as a substitute working fluid. A sharp orifice round turbulent jet is used to emulate releases in which leak geometry is circular. Effects of buoyancy and crossflow were studied over a wide range of Froude numbers. The velocity fields of turbulent jets were characterized using particle image velocimetry (PIV). The mean and fluctuation velocity components were well quantified to show the effect of buoyancy due to the density difference between helium and the surrounding air. In the range of Froude numbers investigated (Fr = 1000 750 500 250 and 50) the increasing effects of buoyancy were seen to be proportional to the reduction of the Fr number. While buoyancy is experienced to have a negligible effect on centerline velocity fluctuations acceleration due to buoyancy in the other hand resulted in a slower decay of time-averaged axial velocity component along the centerline. The obtained results will serve as control reference values for further concentration measurement study and for computational fluid dynamics (CFD) validation.
High Pressure Hydrogen Fires
Sep 2009
Publication
Within the scope of the French national project DRIVE and European project HyPER high pressure jet flames of hydrogen were produced and instrumented.<br/>The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container the image processing to extract the flame geometry the heat flux measurement device the thermocouples arrangement…<br/>Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.<br/>A brief comparison of some available models is presented.
Numerical Modelling of Hydrogen Deflagration Dynamics in Enclosed Space
Sep 2009
Publication
A three-dimensional mathematical model of gaseous hydrogen deflagration in the enclosed space is developed. The process is described by the system of gas dynamics differential equations. Thermodynamic parameters of the mixture and its components are defined as functions of the local temperature and mixture composition. The concentration changes of the fuel and combustion products are determined using conservation laws taking into account rates of component disappearance and formation and turbulent diffusion. It is assumed that the chemical reaction takes place only in the volume where the fuel concentration is within the limits of inflammability. The mathematical model is validated during an intercomparison test to predict deflagration of a large-scale hydrogen-air mixture in open atmosphere. An algorithm of numerical solution based on the Godunov method is developed. A computer system of engineering analysis of gas-dynamic processes of hydrogen-air mixture formation and combustion in enclosed space with natural ventilation is created. It allows predicting the history of the changes of overpressure temperature concentrations of hydrogen and combustion products and other thermogasdynamic parameters of the mixture in space. This prognosis can be used to estimate dangerous zones of destruction and recommend some safety measures.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts
Jan 2022
Publication
The development of a hydrogen-based economy is the perfect nexus between the need of discontinuing the use of fossil fuels (trying to mitigate climate change) the development of a system based on renewable energy (with the use of hydrogen allowing us to buffer the discontinuities produced in this generation) and the achievement of a local-based robust energy supply system. However extending the use of hydrogen as an energy vector must still overcome challenging issues with the key issues being related to its storage. Cryogenic or pressurized storage is relatively expensive technically complex and presents important safety concerns. As a promising alternative the use of organic hydrogen carriers has been suggested in recent years. The ideal carrier will be an organic compound with a low melting point and low viscosity with a significant number of unsaturated carbon–carbon bonds in addition to being easy to hydrogenate and dehydrogenate. These properties allow us to store and transport hydrogen in infrastructures designed for liquid fuels thus facilitating the replacement of fossil fuels by hydrogen
Numerical Study of Spontaneous Ignition in Pressurized Hydrogen Release Through a Length of Tube with Local Contraction
Sep 2011
Publication
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5th-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. It is found that a local contraction can significantly facilitate the occurrence of spontaneous ignition by producing elevated flammable mixture and enhancing turbulent mixing from shock formation reflection and interaction. The first ignition kernel is observed upstream the contraction. It then quickly propagates along the contact interface and transits to a partially premixed flame due to the enhanced turbulent mixing. The partially premixed flames are highly distorted and overlapped with each other. Flame thickening is observed which is due to the merge of thin flames. The numerical predictions suggested that sustained flames could develop for release pressure as low as 25 bar. For the release pressure of 18 bar spontaneous ignition was predicted but the flame was soon quenched. To some extent this finding is consistent with Dryer et al.'s experimental observation in that the minimum release pressure required to induce a spontaneous ignition for the release through a tube with internal geometries is only 20.4 bar.
Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations
Jan 2022
Publication
In this study the authors present a techno-economic assessment of on-site hydrogen refuelling stations (450 kg/day of H2 ) based on different hydrogen sources and production technologies. Green ammonia biogas and water have been considered as hydrogen sources while cracking autothermal reforming and electrolysis have been selected as the hydrogen production technologies. The electric energy requirements of the hydrogen refuelling stations (HRSs) are internally satisfied using the fuel cell technology as power units for ammonia and biogas-based configurations and the PV grid-connected power plant for the water-based one. The hydrogen purification where necessary is performed by means of a Palladium-based membrane unit. Finally the same hydrogen compression storage and distribution section are considered for all configurations. The sizing and the energy analysis of the proposed configurations have been carried out by simulation models adequately developed. Moreover the economic feasibility has been performed by applying the life cycle cost analysis. The ammonia-based configurations are the best solutions in terms of hydrogen production energy efficiency (>71% LHV) as well as from the economic point of view showing a levelized cost of hydrogen (LCOH) in the range of 6.28 EUR/kg to 6.89 EUR/kg a profitability index greater than 3.5 and a Discounted Pay Back Time less than five years.
Numerical Study on Spontaneous Ignition of Pressurized Hydrogen Release Through a Length of Tube
Sep 2009
Publication
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.<br/>The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.<br/>Parametric studies were also conducted to investigate the effect of rupture time release pressure tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value even though ignition could take place inside the tube the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched.
Regulations and Research on RC&S for Hydrogen Storage Relevant To Transport and Vehicle Issues with Special Focus on Composite Containments
Sep 2011
Publication
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations codes and standards.<br/>Based on this review origins of different regulations for the storage of hydrogen as dangerous good and as propellant for vehicles will be examined. Both categories started out using steel and sometimes aluminium as cylinder material. With composite materials becoming more common a new problem emerged: vital input for regulations on composite pressure systems was initially derived from decades of experience with steel cylinders. As a result both regulatory fields suffer somewhat from this common basis. Only recent developments regarding requirements for composite cylinders have begun to go more and more separate ways. Thus these differences lead to some shortcomings in regulation with respect to composite storage systems.<br/>In principle in spite of separate development these deficits are in both applications very much the same: there are uncertainties in the prediction of safe service life in retesting procedures of composite cylinders and in their intervals. Hence different aspects of uncertainties and relevant approaches to solutions will be explained.
Spontaneous Ignition Processes Due To High-Pressure Hydrogen Release in Air
Sep 2011
Publication
Spontaneous ignition processes due to the high-pressure hydrogen releases into air were investigated both experimentally and theoretically. Such processes reproduce accident scenarios of sudden expansion of pressurized hydrogen into the ambient atmosphere in cases of tube or valve rupture. High-pressure hydrogen releases in the range of initial pressures from 20 to 275 bar and with nozzle diameters of 0.5 – 4 mm have been investigated. Glass tubes and high-speed CCD camera were used for experimental study of self-ignition process. The problem was theoretically considered in terms of contact discontinuity for the case when spontaneous ignition of pressurized hydrogen due to the contact with hot pressurized air occurs. The effects of boundary layer and material properties are discussed in order to explain the minimum initial pressure of 25 bar leading to the self-ignition of hydrogen with air.
Pressure Cycling Of Type 1 Pressure Vessels with Gaseous Hydrogen
Sep 2011
Publication
Type 1 steel pressure vessels are commonly used for the transport of pressurized gases including gaseous hydrogen. In the majority of cases these cylinders experience relatively few pressure cycles over their lifetime perhaps in the hundreds. In emerging markets such as hydrogen-powered industrial trucks hydrogen fuel systems are expected to experience thousands of cycles over just a few year period. This study investigates the fatigue life of Type 1 steel pressure vessels by subjecting full- scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3.5 and 43.8 MPa. In addition engineered defects were machined on the inside of several pressure vessels for comparison to fatigue crack growth measurements on materials sectioned from these pressure vessels. As-manufactured pressure vessels have sustained >35000 cycles with failure while vessels with machined defects leaked before bursting after 8000 to 15000 pressure cycles. The measured number of cycles to failure in these pressure vessels is two to three times greater than predicted using conservative methods based on fatigue crack growth rates measured in gaseous hydrogen.
Flammability Limits and Laminar Flame Speed of Hydrogen–air Mixtures at Sub-atmospheric Pressures
Sep 2011
Publication
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length overall reaction order and activation energy was done from experimental data on laminar burning velocity.
Numerical Study on Fast Filling of 70 MPA Hydrogen Vehicle Cylinder
Sep 2011
Publication
There will be significant temperature rise within hydrogen vehicle cylinder during the fast filling process. The temperature rise should be controlled under the temperature limit (85 °C) of the structure material (set by ISO/TS 15869) because it may lead to the failure of the structure. In this paper a 2-dimensional axisymmetric computational fluid dynamics (CFD) model for fast filling of 70 MPa hydrogen vehicle cylinder is presented. The numerical simulations are based on the modified standard k − ɛ turbulence model. In addition both the equation of state for hydrogen gas and the thermodynamic properties are calculated by National Institute of Standards and Technology (NIST) database: REFPROP 7.0. The thermodynamic responses of fast filling with different pressure-rise patterns and filling times within type III cylinder have been analyzed in detail.
The Fifth Carbon Budget: The Next Step Towards a Low-carbon Economy
Nov 2015
Publication
This report sets out our advice on the fifth carbon budget covering the period 2028-2032 as required under Section 4 of the Climate Change Act; the Government will propose draft legislation for the fifth budget in summer 2016.
An Independent Assessment of the UK’s Clean Growth Strategy: From Ambition to Action
Nov 2018
Publication
This report provides the Committee on Climate Change’s response to the UK Government’s Clean Growth Strategy.
The report finds that:
The report finds that:
- The Government has made a strong commitment to achieving the UK’s climate change targets.
- Policies and proposals set out in the Clean Growth Strategy will need to be firmed up.
- Gaps to meeting the fourth and fifth carbon budgets remain. These gaps must be closed.
- Risks of under-delivery must be addressed and carbon budgets met on time.
Hydrogen in a Low-carbon Economy
Nov 2018
Publication
This report by the Committee on Climate Change (CCC) assesses the potential role of hydrogen in the UK’s low-carbon economy.
It finds that hydrogen:
It finds that hydrogen:
- is a credible option to help decarbonise the UK energy system but its role depends on early Government commitment and improved support to develop the UK’s industrial capability
- can make an important contribution to long-term decarbonisation if combined with greater energy efficiency cheap low-carbon power generation electrified transport and new ‘hybrid’ heat pump systems which have been successfully trialled in the UK
- could replace natural gas in parts of the energy system where electrification is not feasible or is prohibitively expensive for example in providing heat on colder winter days industrial heat processes and back-up power generation
- is not a ‘silver bullet’ solution; the report explores some commonly-held misconceptions highlighting the need for careful planning
- Government must commit to developing a low-carbon heat strategy within the next three years
- Significant volumes of low-carbon hydrogen should be produced in a carbon capture and storage (CCS) ‘cluster’ by 2030 to help the industry grow
- Government must support the early demonstration of the everyday uses of hydrogen in order to establish the practicality of switching from natural gas to hydrogen
- There is low awareness amongst the general public of reasons to move away from natural gas heating to low-carbon alternatives
- A strategy should be developed for low-carbon heavy goods vehicles (HGVs) which encourages a move away from fossil fuels and biofuels to zero-emission solutions by 2050
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Public Acceptability of the Use of Hydrogen for Heating and Cooking in the Home: Results from Qualitative and Quantitative Research in UK<br/>Executive Summary
Nov 2018
Publication
This report for the CCC by Madano and Element Energy assesses the public acceptability of two alternative low-carbon technologies for heating the home: hydrogen heating and heat pumps.
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
- carbon emissions reduction is viewed as an important issue but there is limited awareness of the need to decarbonise household heating or the implications of switching over to low-carbon heating technologies
- acceptability of both heating technologies is limited by a lack of perceived tangible consumer benefit which has the potential to drive scepticism towards the switch over more generally
- heating technology preferences are not fixed at this stage although heat pumps appear to be the favoured option in this research studythree overarching factors were identified as influencing preferences for heating technologies.
- perceptions of the negative installation burden
- familiarity with the lived experience of using the technologies for heating
- perceptions of how well the technologies would meet modern heating needs both hydrogen heating and heat pumps face significant challenges to secure public acceptability
Hydrogen Onboard Storage: An Insertion of the Probabilistic Approach Into Standards & Regulations?
Sep 2005
Publication
The growing attention being paid by car manufacturers and the general public to hydrogen as a middle and long term energy carrier for automotive purpose is giving rise to lively discussions on the advantages and disadvantages of this technology – also with respect to safety. In this connection the focus is increasingly and justifiably so on the possibilities offered by a probabilistic approach to loads and component characteristics: a lower weight obliged with a higher safety level basics for an open minded risk communication the possibility of a provident risk management the conservation of resources and a better and not misleading understanding of deterministic results. But in the case of adequate measures of standards or regulations completion there is a high potential of additional degrees of freedom for the designers obliged with a further increasing safety level. For this purpose what follows deals briefly with the terminological basis and the aspects of acceptance control conservation of resources misinterpretation of deterministic results and the application of regulations/standards.<br/>This leads into the initial steps of standards improvement which can be taken with relatively simple means in the direction of comprehensively risk-oriented protection goal specifications. By this it’s not focused on to provide to much technical details. It’s focused on the context of different views on probabilistic risk assessment. As main result some aspects of the motivation and necessity for the currently running pre-normative research studies within the 6th frame-work program of the EU will be shown.
Requirements for the Safety Assessment for the Approval of a Hydrogen Refueling Station
Sep 2007
Publication
The EC 6th framework research project HyApproval will draft a Handbook which will describe all relevant issues to get approval to construct and operate a Hydrogen Refuelling Station (HRS) for hydrogen vehicles. In WP3 of the HyApproval project it is under investigation which safety information competent authorities require to give a licence to construct an operate an HRS. The paper describes the applied methodology to collect the information from the authorities in 5 EC countries and the USA. The results of the interviews and recommendations for the information to include in the Handbook are presented.
Safety Demands for Automotive Hydrogen Storage Systems
Sep 2005
Publication
Fuel storage systems for vehicles require a fail-safe design strategy. In case of system failures or accidents the control electronics have to switch the system into a safe operation mode. Failure Mode and Effect Analysis (FMEA) or Failure Tree Analysis (FTA) are performed already in the early design phase in order to minimize the risk of design failures in the fuel storage system. Currently the specifications of requirements for pressurized and liquid hydrogen fuel tanks are based on draft UN-ECE Regulations developed by the European Integrated Hydrogen Project (EIHP). Used materials and accessories shall be compatible with hydrogen. A selection of metallic and non-metallic materials will be presented. Complex components have to be optimised by FEM simulations in order to determine weak spots in the design which will be overstressed in case of pressure thermal expansion or dynamic vibrations. According to automotive standards the performance of liquid hydrogen fuel tank systems has to be verified in various destructive and non-destructive tests.
Development of High-pressure Hydrogen Gas Barrier Materials
Oct 2015
Publication
We prepared several gas barrier resins based on amorphous PVA derivative that has the T1C (13C spin-lattice relaxation time) of a long time component in amorphous phase. We confirmed it was important to control state in amorphous phase of gas barrier resin in order to achieve both moldability and good gas barrier property. Polymer alloy was designed to improve flexibility. Polymer alloy made of amorphous PVA and elastomer resin showed good hydrogen resistance. Even after its polymer alloy were repeatedly exposed to 70MPa hydrogen gas the influence on higher-order structure in amorphous phase was in negligible level.
Meeting Carbon Budgets – Ensuring a Low-carbon Recovery
Jun 2010
Publication
As part of its statutory role the Committee provides annual reports to Parliament on the progress that Government is making in meeting carbon budgets and in reducing emissions of greenhouse gases.<br/>Meeting Carbon Budgets – ensuring a low-carbon recovery is the Committee’s 2nd progress report. Within this report we assess the latest emissions data and determine whether emissions reductions have occurred as a result of the recession or as a result of other external factors. We assess Government’s progress towards achieving emissions reductions in 4 key areas of: Power Buildings and Industry Transport and Agriculture.
Determination of Clearance Distances for Venting of Hydrogen Storage
Sep 2005
Publication
This paper discusses the results of computational fluid dynamics (CFD) modelling of hydrogen releases and dispersion outdoors during venting of hydrogen storage in real environment and geometry of a hydrogen refuelling or energy station for a given flow rate and dimensions of vent stack. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Also thermal effects resulting from potential ignition of flammable hydrogen clouds were assessed using TNO “Yellow Book” recommended approaches. The obtained results were then applied to determine appropriate clearance distances for venting of hydrogen storage for contribution to code development and station design considerations. CFD modelling of hydrogen concentrations and TNO-based modelling of thermal effects have proven to be reliable effective and relatively inexpensive tools to evaluate the effects of hydrogen releases.
Reducing Emissions in Scotland – 2018 Progress Report
Sep 2019
Publication
This is the Committee’s seventh report on Scotland’s progress towards meetings emissions targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
- Overall Scotland met its annual emissions targets in 2016.
- Scotland’s progress in reducing emissions from the power sector masks a lack of action in other areas particularly transport agriculture forestry and land use.
- Low-carbon heat transport agriculture and forestry sector policies need to improve in order to hit 2032 emissions targets.
- The Scottish Government’s Climate Change Plan – published in February 2018 – now has sensible expectations across each sector to reduce emissions.
Progress Report 2016: Meeting Carbon Budgets
Jun 2016
Publication
This is the CCC’s eighth annual report on the UK’s progress in meeting carbon budgets.
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
- heating in buildings
- transport
- industry
- agriculture
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
Massive H2 Production With Nuclear Heating, Safety Approach For Coupling A VHTR With An Iodine Sulfur Process Cycle
Sep 2005
Publication
In the frame of a sustainable development investigations dealing with massive Hydrogen production by means of nuclear heating are carried out at CEA. For nuclear safety thermodynamic efficiency and waste minimization purposes the technological solution privileged is the coupling of a gas cooled Very High Temperature Reactor (VHTR) with a plant producing Hydrogen from an Iodine/Sulfur (I/S) thermochemical cycle. Each of the aforementioned facilities presents different risks resulting from the operation of a nuclear reactor (VHTR) and from a chemical plant including Hydrogen other flammable and/or explosible substances as well as toxic ones. Due to these various risks the safety approach is an important concern. Therefore this paper deals with the preliminary CEA investigations on the safety issues devoted to the whole plant focusing on the safety questions related to the coupling between the nuclear reactor and the Hydrogen production facility. Actually the H2 production process and the energy distribution network between the plants are currently at a preliminary design stage. A general safety approach is proposed based on a Defence In Depth (DID) principle permitting to analyze all the system configurations successively in normal incidental and accidental expected operating conditions. More precisely the dynamic answer of an installation to a perturbation affecting the other one during the previous conditions as well as the potential aggressions of the chemical plant towards the nuclear reactor have to be considered. The methodology presented in this paper is intended to help the designer to take into account the coupling safety constraints and to provide some recommendations on the global architecture of both plants especially on their coupling system. As a result the design of a VHTR combined to a H2 production process will require an iterative process between design and safety requirements.
Dispersion Tests on Concentration and its Fluctuations for 40MPa Pressurized Hydrogen
Sep 2007
Publication
Hydrogen is one of the important alternative fuels for future transportation. At the present stage research into hydrogen safety and designing risk mitigation measures are significant task. For compact storage of hydrogen in fuel cell vehicles storage of hydrogen under high pressure up to 40 MPa at refuelling stations is planned and safety in handling such high-pressure hydrogen is essential. This paper describes our experimental investigation into dispersion of high-pressure hydrogen gas which leaks through pinholes in the piping to the atmosphere. First in order to comprehend the basic behaviour of the steady dispersion of high-pressure hydrogen gas from the pinholes the time-averaged concentrations were measured. In our experiments initial release pressures of hydrogen gas were set at 20 MPa or 40 MPa and release diameters were in the range from 0.25 mm to 2 mm. The experimental results show that the hydrogen concentration along the axis of the dispersion plume can be expressed as a simple formula which is a function of the downwind distance X and the equivalent release diameter. This formula enables us to easily estimate the axial concentration (maximum concentration) at each downstream distance. However in order for the safety of flammable gas dispersion to be analyzed comparisons between time-averaged concentrations evaluated as above and lower flammable limit are insufficient. This is because even if time-averaged concentration is lower than the flammability limit instantaneous concentrations fluctuate and a higher instantaneous concentration occasionally appears due to turbulence. Therefore the time-averaged concentration value which can be used as a threshold for assessing safety must be determined considering concentration fluctuations. Once the threshold value is determined the safe distance from the leakage point can be evaluated by the above-mentioned simple formula. To clarify the phenomenon of concentration fluctuations instantaneous concentrations were measured with the fast-response flame ionization detector. A small amount of methane gas was mixed into the hydrogen as a tracer gas for this measurement. The relationship between the time-mean concentration and the occurrence probability of flammable concentration was analyzed. Under the same conditions spark-ignition experiments were also conducted and the relationship between the occurrence probability of flammable concentration and actual ignition probabilities were also investigated. The experimental results show that there is a clear correlation between the time-mean concentration the occurrence probability of flammable concentration flame length and occurrence probability of hydrogen flame.
Experimental Releases of Liquid Hydrogen
Sep 2011
Publication
If the hydrogen economy is to progress more hydrogen refuelling stations are required. In the short term in the absence of a hydrogen distribution network the most likely means of supplying the refuelling stations will be by liquid hydrogen road tanker. This development will clearly increase the number of tanker offloading operations significantly and these may need to be performed in more challenging environments with close proximity to the general public. The work described in this paper was commissioned in order to determine the hazards associated with liquid hydrogen spills onto the ground at rates typical for a tanker hose failure during offloading.
Experiments have been performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on both unignited and ignited releases.
These include:
Experiments have been performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on both unignited and ignited releases.
These include:
- Concentration of hydrogen in air thermal gradient in the concrete substrate liquid pool formation and temperatures within the pool
- Flame velocity within the cloud thermal radiation IR and visible spectrum video records.
- Sound pressure measurements
- An estimation of the extent of the flammable cloud was made from visual observation video IR camera footage and use of a variable position ignition source.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident Initiated by SBLOCA in the APR1400 Containment
Jan 2022
Publication
We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP GASFLOW and COM3D to simulate hydrogen release distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D using the GASFLOW results as an initial condition of the hydrogen distribution was approximately 555 kPa which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.
Compatibility of Metallic Materials with Hydrogen Review of the Present Knowledge
Sep 2007
Publication
In this document after a review of the accidents/incidents are described the different interactions between hydrogen gas and the most commonly used materials including the influence of "internal" and "external" hydrogen the phenomena occurring in all ranges of temperatures and pressures and Hydrogen Embrittlement (HE) created by gaseous hydrogen. The principle of all the test methods used to investigate this phenomenon are presented and discussed. The advantages and disadvantages of each method will be explained. The document also covers the influence of all the parameters related to HE including the ones related to the material itself the ones related to the design and manufacture of the equipment and the ones related to the hydrogen itself (pressure temperature purity etc). Finally recommendations to avoid repetition of accidents/incidents mentioned before are proposed.
CFD Modelling of Accidental Hydrogen Release from Pipelines
Sep 2005
Publication
Although today hydrogen is distributed mainly by trailers in the long terms pipeline distribution will be more suitable if large amounts of hydrogen are produced on industrial scale. Therefore from the safety point of view it is essential to compare hydrogen pipelines to natural gas pipelines which are well established today. Within the paper we compare safety implications in accidental situations. We do not look into technological aspects such as compressors or seals.<br/>Using a CFD (Computational Fluid Dynamics) tool it is possible to investigate the effects of different properties (density diffusivity viscosity and flammability limits) of hydrogen and methane on the dispersion process. In addition CFD tools allow studying the influence of different release scenarios geometrical configurations and atmospheric conditions. An accidental release from a pipeline is modelled. The release is simulated as a flow though a small hole between the high-pressure pipeline and the environment. A part of the pipeline is included in the simulations as high-pressure reservoir. Due to the large pressure difference between the pipeline and the environment the flow conditions at the release become critical.<br/>For the assumed scenarios larger amount of flammable mixture could be observed in case of hydrogen release. On the other hand because of buoyancy and a higher sonic speed at the release the hydrogen clouds are farther from the ground level or buildings than in case of the methane clouds decreasing the probability of ignition and reducing the flame acceleration due to obstacles in case of ignition. Results on the effect of wind in the release scenarios are also described.
A Comparative Feasibility Study of the Use of Hydrogen Produced from Surplus Wind Power for a Gas Turbine Combined Cycle Power Plant
Dec 2021
Publication
Because of the increasing challenges raised by climate change power generation from renewable energy sources is steadily increasing to reduce greenhouse gas emissions especially CO2 . However this has escalated concerns about the instability of the power grid and surplus power generated because of the intermittent power output of renewable energy. To resolve these issues this study investigates two technical options that integrate a power-to-gas (PtG) process using surplus wind power and the gas turbine combined cycle (GTCC). In the first option hydrogen produced using a power-to-hydrogen (PtH) process is directly used as fuel for the GTCC. In the second hydrogen from the PtH process is converted into synthetic natural gas by capturing carbon dioxide from the GTCC exhaust which is used as fuel for the GTCC. An annual operational analysis of a 420-MWclass GTCC was conducted which shows that the CO2 emissions of the GTCC-PtH and GTCC-PtM plants could be reduced by 95.5% and 89.7% respectively in comparison to a conventional GTCC plant. An economic analysis was performed to evaluate the economic feasibility of the two plants using the projected cost data for the year 2030 which showed that the GTCC-PtH would be a more viable option.
Life Cycle Environmental Analysis of a Hydrogen-based Energy Storage System for Remote Applications
Mar 2022
Publication
Energy storage systems are required to address the fluctuating behaviour of variable renewable energy sources. The environmental sustainability of energy storage technologies should be carefully assessed together with their techno-economic feasibility. In this work an environmental analysis of a renewable hydrogen-based energy storage system has been performed making use of input parameters made available in the framework of the European REMOTE project. The analysis is applied to the case study of the Froan islands (Norway) which are representative of many other insular microgrid sites in northern Europe. The REMOTE solution is compared with other scenarios based on fossil fuels and submarine connections to the mainland grid. The highest climate impacts are found in the dieselbased configuration (1090.9 kgCO2eq/MWh) followed by the REMOTE system (148.2 kgCO2eq/MWh) and by the sea cable scenario (113.7 kgCO2eq/MWh). However the latter is biased by the very low carbon intensity of the Norwegian electricity. A sensitivity analysis is then performed on the length of the sea cable and on the CO2 emission intensity of electricity showing that local conditions have a strong impact on the results. The REMOTE system is also found to be the most cost-effective solution to provide electricity to the insular community. The in-depth and comparative (with reference to possible alternatives) assessment of the renewable hydrogen-based system aims to provide a comprehensive overview about the effectiveness and sustainability of these innovative solutions as a support for off-grid remote areas.
The Safe Use of the Existing Natural Gas System for Hydrogen (Overview of the NATURALHY-Project)
Sep 2005
Publication
The transition period towards the situation in which hydrogen will become an important energy carrier will be lengthy (decades) costly and needs a significant R&D effort. It’s clear therefore that the development of a hydrogen system requires a practical strategy within the context of the existing assets. Examining the potential of the existing extensive natural gas chain (transmission - distribution - end user infrastructures and appliances) is a logical first step towards the widespread delivery of hydrogen.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
Assessment and Evaluation of 3rd Party Risk for Planned Hydrogen Demonstration Facility
Sep 2007
Publication
Potential risk exposure of 3rd parties i.e. people not involved in the actual operation of a plant is often a critical factor to gain authority approval and public acceptance for a development project. This is also highly relevant for development of demonstration facilities for hydrogen production and refuelling infrastructure. This paper presents and discusses results for risk exposure of 3rd parties based on risk assessment studies performed for the planned Hydrogen Technology Research Centre Hytrec in Trondheim. The methodology applied is outlined. Key assumptions and study uncertainties are identified and how these might affect the results are discussed.<br/>The purpose of Hytrec is to build a centre for research development and demonstration of hydrogen as an energy carrier. Hydrogen will be produced both by reforming of natural gas with CO2 capture and by electrolysis of water. The plant also includes a SOFC that will run on natural gas or hydrogen and produce heat and electricity for the Hytrec visitor centre. Hytrec will be located in a populated area without access control. Most of the units will be located within cabinets and modules.<br/>The authors acknowledge the Hytrec project and the Hytrec project partners Statoil Statkraft and DNV for their support and for allowing utilisation of results from the Hytrec QRA in this paper.
Compatibility of Materials with Hydrogen Particular Case- Hydrogen Assisted Stress Cracking of Titanium Alloys
Sep 2007
Publication
A review of the effect of hydrogen on materials is addressed in this paper. General aspects of the interaction of hydrogen and materials hydrogen embrittlement low temperature effects material suitability for hydrogen service and materials testing are the main subjects considered in the first part of the paper. As a particular case of the effect of hydrogen in materials the hydride formation of titanium alloys is considered. Alpha titanium alloys are considered corrosion resistant materials in a wide range of environments. However hydrogen absorption and the possible associated problems must be taken into account when considering titanium as a candidate material for high responsibility applications. The sensitivity of three different titanium alloys Ti Gr-2 Ti Gr-5 and Ti Gr-12 to the Hydrogen Assisted Stress Cracking phenomena has been studied by means of the Slow Strain Rate Technique (SSRT). The testing media has been sea water and hydrogen has been produced on the specimen surface during the test by cathodic polarization. Tested specimens have been characterized by metallography and scanning electron microscopy. Results obtained show that the microstructure of the materials particularly the β phase content plays an important role on the sensitivity of the studied alloys to the Hydrogen Assisted Stress Cracking Phenomena.
A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure wall deflection radiative heat flux and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers computations of the thermal radiation field around barriers predicted overpressure from ignition and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.
Complex Hydrides as Solid Storage Materials- First Safety Tests
Sep 2007
Publication
Hydrogen technology requires efficient and safe hydrogen storage systems. For this purpose storage in solid materials such as high capacity complex hydrides is studied intensely. Independent from the actual material to be used eventually any tank design will combine nanoscale powders of highly reactive material with pressurized hydrogen gas and so far little is known about the behaviour of these mixtures in case of incidents. For a first evaluation of a complex hydride in case of a tank failure NaAlH4 (doped with Ti) was investigated in a small scale tank failure tests. 80-100 ml of the material were filled into a heat exchanger tube and sealed under argon atmosphere with a burst disk. Subsequently the NaAlH4 was partially desorbed by heating. When the powder temperature reached 130 °C and the burst disk ruptured at 9 bar hydrogen overpressure the behaviour of the expelled powder was monitored using a high speed camera an IR camera as well as sound level meters. Expulsion of the hydrogen storage material into (dry) ambient atmosphere yields a dust cloud of finely dispersed powder which does not ignite spontaneously. Similar experiments including an external source of ignition (spark / water reacting with NaAlH4) yield a flame of reacting powder. The intensity will be compared to the reaction of an equivalent amount of pure hydrogen.
Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC)
Dec 2021
Publication
The liquid organic hydrogen carriers (LOHC) are aromatic molecules which can be considered as an attractive option for the storage and transport of hydrogen. A considerable amount of hydrogen up to 7–8% wt. can be loaded and unloaded with a reversible chemical reaction. Substituted quinolines and pyridines are available from petroleum coal processing and wood preservation or they can be synthesized from aniline. Quinolines and pyridines can be considered as potential LOHC systems provided they have favorable thermodynamic properties which were the focus of this current study. The absolute vapor pressures of methyl-quinolines were measured using the transpiration method. The standard molar enthalpies of vaporization of alkyl-substituted quinolines and pyridines were derived from the vapor pressure temperature dependencies. Thermodynamic data on vaporization and formation enthalpies available in the literature were collected evaluated and combined with our own experimental results. The theoretical standard molar gas-phase enthalpies of formation of quinolines and pyridines calculated using the quantum-chemical G4 methods agreed well with the evaluated experimental data. Reliable standard molar enthalpies of formation in the liquid phase were derived by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporization. The liquid-phase hydrogenation/dehydrogenation reaction enthalpies of alkyl-substituted pyridines and quinolines were calculated and compared with the data for other potential liquid organic hydrogen carriers. The comparatively low enthalpies of reaction make these heteroaromatics a seminal LOHC system.
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
Heat Radiation of Burning Hydrogen Air Mixtures Impurified by Organic Vapour and Particles
Sep 2007
Publication
Experiments were performed to investigate the radiative heat emission of small scale hydrogen/air explosions also impurified by minor amounts of inert particles and organic fuels. A volume of 1.5 dm3 hydrogen was injected into ambient air as free-jet and ignited. In further experiments simultaneously inert Aerosil and combustible fuels were injected into the blasting hydrogen/air gas cloud. Fuels were a spray of a solvent (Dipropyleneglycol-methylether) and dispersed particles (milk powder). The combustion was observed with a DV camcorder an IR camera and two different fast scanning spectrometers in NIR and IR range using a sampling rate of 100 spectra/s. The intensity calibrated spectra were analyzed using ICT-BaM code to evaluate emission temperature and intensity of H2O CO2 CO NO and soot emission. Using the same code combined with the experimental results total heat emission of such explosions was estimated.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Heat Networks 2020
Dec 2020
Publication
This publication by the Department for Business Energy and Industrial Strategy (BEIS) brings together heat networks investment opportunities in England and Wales. The opportunities present a wide range of projects supported through the development stages by the Heat Networks Delivery Unit (HNDU) and projects seeking capital support from the Heat Networks Investment Project (HNIP).
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
Using Hydrogen Safety Best Practices and Learning From Safety Events
Sep 2009
Publication
A best practice is a technique or methodology that has reliably led to a desired result. A wealth of experience regarding the safe use and handling of hydrogen exists as a result of an extensive history in a wide variety of industrial and aerospace settings. Hydrogen Safety Best Practices (www.h2bestpractices.org) captures this vast knowledge base and makes it publicly available to those working with hydrogen and related systems including those just starting to work with hydrogen. This online manual is organized under a number of hierarchical technical content categories. References including publications and other online links that deal with the safety aspects of hydrogen are compiled for easy access. This paper discusses the development of Hydrogen Safety Best Practices as a safety knowledge tool the nature of its technical content and the steps taken to enhance its value and usefulness. Specific safety event examples are provided to illustrate the link between technical content in the online best practices manual and a companion safety knowledge tool Hydrogen Incident Reporting and Lessons Learned (www.h2incidents.org) which encourages the sharing of lessons learned and other safety event information.
Large-scale Hydrogen Release in an Isothermal Confined Area
Sep 2007
Publication
INERIS has set up large-scale fully instrumented experiments to study the formation of flammable clouds resulting from a finite duration spillage of hydrogen in a quiescent room (80 m3 chamber). Concentration temperature and mass flow measurements were monitored during the release period and several hours after. Experiments were carried out for mass flow rates ranging from 02 g/s to 1 g/s. The instrumentation allowed the observation and quantification of rich hydrogen layers stratification effects. This paper presents both the experimental facility and the test results. These experimental results can be used to assess and benchmark CFD tools capabilities.
Materials Considerations in Hydrogen Production
Sep 2007
Publication
Correct selection and application of materials is essential to ensure safety and economy in production transportation and storage of hydrogen. There are several sources of materials challenges related to hydrogen. Established component producers may have limited experience in this specific field. Process developments may involve new process conditions with new demands on the materials. Further new materials will be added to the engineering toolbox to be used. The behaviour of these materials for hydrogen service may need additional documentation. Finally focus on hydrogen susceptibility and hydrogen damages alone may take away awareness of other subjects as trace elements by-products and change in raw materials which may be of as high importance for safety and quality. This overview of challenges and recommendations is made with emphasis on water electrolysis.
Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations
Dec 2021
Publication
The present review focuses on the production of renewable hydrogen through the catalytic steam reforming of bio-oil the liquid product of the fast pyrolysis of biomass. Although in theory the process is capable of producing high yields of hydrogen in practice certain technological issues require radical improvements before its commercialization. Herein we illustrate the fundamental knowledge behind the technology of the steam reforming of bio-oil and critically discuss the major factors influencing the reforming process such as the feedstock composition the reactor design the reaction temperature and pressure the steam to carbon ratio and the hour space velocity. We also emphasize the latest research for the best suited reforming catalysts among the specific groups of noble metal transition metal bimetallic and perovskite type catalysts. The effect of the catalyst preparation method and the technological obstacle of catalytic deactivation due to coke deposition metal sintering metal oxidation and sulfur poisoning are addressed. Finally various novel modified steam reforming techniques which are under development are discussed such as the in-line two-stage pyrolysis and steam reforming the sorption enhanced steam reforming (SESR) and the chemical looping steam reforming (CLSR). Moreover we argue that while the majority of research studies examine hydrogen generation using different model compounds much work must be done to optimally treat the raw or aqueous bio-oil mixtures for efficient practical use. Moreover further research is also required on the reaction mechanisms and kinetics of the process as these have not yet been fully understood.
Predicting the Probability of Failure of Gas Pipelines Including Inspection and Repair Procedures
Sep 2007
Publication
This paper is concerned with predicting the impact on the probability of failure of adding hydrogen to the natural gas distribution network. Hydrogen has been demonstrated to change the behaviour of crack like defects which may affect the safety of pipeline or make it more expensive to operate. A tool has been developed based on a stochastic approach to assess the failure probability of the gas pipeline due to the existence of crack-lie defects including the operational aspects of the pipeline such as inspection and repair procedures. With various parameters such as crack sizes material properties internal pressure modelled as uncertainties a reliability analysis based on failure assessment diagram is performed through direct Monte Carlo simulation. Inspection and repair procedures are included in the simulation to enable realistic pipeline maintenance scenarios to be simulated. In the data preparation process the accuracy of the probabilistic definition of the uncertainties is crucial as the results are very sensitive to certain variables such as the crack depth length and crack growth rate. The failure probabilities of each defect and the whole pipeline system can be obtained during simulation. Different inspection and repair criteria are available in the Monte Carlo simulation whereby an optimal maintenance strategy can be obtained by comparing different combinations of inspection and repair procedures. The simulation provides not only data on the probability of failure but also the predicted number of repairs required over the pipeline life thus providing data suitable for economic models of the pipeline management. This tool can be also used to satisfy certain target reliability requirement. An example is presented comparing a natural gas pipeline with a pipeline containing hydrogen.
Novel Wide-area Hydrogen Sensing Technology
Sep 2007
Publication
Element One Inc. is developing novel indicators for hydrogen gas for applications as a complement to conventional electronic hydrogen sensors or as a low-cost alternative in situations where an electronic signal is not needed. The indicator consists of a thin film coating or a pigment of a transition metal oxide such as tungsten oxide or molybdenum oxide with a catalyst such as platinum or palladium. The oxide is partially reduced in the presence of hydrogen in concentrations as low as 300 parts per million and changes from transparent to a dark colour. The colour change is fast and easily seen from a distance. In air the colour change reverses quickly when the source of hydrogen gas is removed in the case of tungsten oxide or is nearly irreversible in the case of molybdenum oxide. A number of possible implementations have been successfully demonstrated in the laboratory including hydrogen indicating paints tape cautionary decals and coatings for hydrogen storage tanks. These and other implementations may find use in vehicles stationary appliances piping refuelling stations and in closed spaces such as maintenance and residential garages for hydrogen-fuelled vehicles. The partially reduced transition metal oxide becomes semi conductive and increases its electrical conductivity by several orders of magnitude when exposed to hydrogen. The integration of this electrical resistance sensor with an RFID tag may extend the ability of these sensors to record and transmit a history of the presence or absence of leaked hydrogen over long distances. Over long periods of exposure to the atmosphere the indicator’s response may slow due to catalyst degradation. Our current emphasis is on controlling this degradation. The kinetics of the visual indicators is being investigated along with their durability in collaboration with the NASA Kennedy Space Center.
Hydrogen Safety- New Challenges Based on BMW Hydrogen 7
Sep 2007
Publication
The BMW Hydrogen 7 is the world’s first premium sedan with a bi-fuelled internal combustion engine concept that has undergone the series development process. This car also displays the BMW typical driving pleasure. During development the features of the hydrogen energy source were emphasized. Engine tank system and vehicle electronics were especially developed as integral parts of the vehicle for use with hydrogen. The safety-oriented development process established additional strict hydrogen-specific standards for the Hydrogen 7. The fulfilment of these standards were demonstrated in a comprehensive experimentation and testing program which included all required tests and a large number of additional hydrogen-specific crash tests such as side impacts to the tank coupling system or rear impacts. Furthermore the behaviour of the hydrogen tank was tested under extreme conditions for instance in flames and after strong degradation of the insulation. Testing included over 1.7 million km of driving; and all tests were passed successfully proving the intrinsic safety of the vehicle and also confirming the success of the safety-oriented development process which is to be continued during future vehicle development. A safety concept for future hydrogen vehicles poses new challenges for vehicles and infrastructure. One goal is to develop a car fuelled by hydrogen only while simultaneously optimizing the safety concept. Another important goal is removal of (self-imposed) restrictions for parking in enclosed spaces such as garages. We present a vision of safety standards requirements and a program for fulfilling them.
Measurement of Fatigue Crack Growth Rates for Steels in Hydrogen Containment Components
Sep 2009
Publication
The objective of this work was to enable the safe design of hydrogen pressure vessels by measuring the fatigue crack growth rates of ASME code-qualified steels in high-pressure hydrogen gas. While a design framework has recently been established for high-pressure hydrogen vessels a material property database does not exist to support the design calculations. This study addresses such voids in the database by measuring the fatigue crack growth rates of three different heats of ASME SA-372 Grade J steel in 100 MPa hydrogen gas. Results showed that the fatigue crack growth rates were similar for all three steel heats although the highest-strength steel appeared to exhibit the highest growth rates. Hydrogen accelerated the fatigue crack growth rates of the steels by as much as two orders of magnitude relative to anticipated crack growth rates in inert environments. Despite such dramatic effects of hydrogen on the fatigue crack growth rates measurement of these properties enables reliable definition of the design life of steel hydrogen containment vessels.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
Simulation of the Fast Filling of Hydrogen Tanks
Sep 2009
Publication
High pressure storage of hydrogen in tanks is a promising option to provide the necessary fuel for transportation purposes. The fill process of a high-pressure tank should be reasonably short but must be designed to avoid too high temperatures in the tank. The shorter the fill should be the higher the maximum temperature in the tank climbs. For safety reasons an upper temperature limit is included in the requirements for refillable hydrogen tanks (ISO 15869) which sets the limit for any fill optimization. It is crucial to understand the phenomena during a tank fill to stay within the safety margins.<br/>The paper describes the fast filling process of hydrogen tanks by simulations based on the Computational Fluid Dynamics (CFD) code CFX. The major result of the simulations is the local temperature distribution in the tank depending on the materials of liner and outer thermal insulation. Different material combinations (type III and IV) are investigated.<br/>Some measurements from literature are available and are used to validate the approach followed in CFX to simulate the fast filling of tanks. Validation has to be continued in future to further improve the predictability of the calculations for arbitrary geometries and material combinations.
Hydrogen Impact on Gas Engine CHP - Cadent Ltd
Feb 2019
Publication
The key project objectives include:
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- Understand the range size type mode of operation and control system of installed gas engines in the UK. This will include equipment for CHP and for stand-by power operation.
- Produce data sets on the impact of hydrogen on gas engine operational performance.
- Develop knowledge on the impact of hydrogen content on the operation of the gas engine including overall efficiency changes to emissions profiles overall system operability.
- Providing outline guidance on a potential hydrogen limit that should be considered regarding use of natural gas/hydrogen mixed fuels in gas engines.
- Outlining a high-level view on the reliability and impact on maintenance and replacement regimes if gas engines operate on natural gas/hydrogen mixed fuels for extended time periods.
- Highlight any existing barriers to use of natural gas and hydrogen blends in gas engine and through contact with OEMs develop an understanding of future technology developments that may be needed to enable the use of “high” hydrogen blends.
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
World Energy Issues Monitor 2019 Managing the Grand Energy Transition
Oct 2019
Publication
This is the tenth consecutive year of the World Energy Council’s (the Council) annual survey of key challenges and opportunities facing energy leaders in managing and shaping Energy Transitions. This year’s Issues Monitor report provides seven global maps six regional maps and fifty national maps.
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
- To promote a shared understanding of successful Energy Transitions
- To appreciate and contrast regional variations to better understand differing priorities and areas of concern
- To follow the evolution of specific technology trends related to the energy sector
Legal Regulation of Hydrogen in Germany and Ukraine as a Precondition for Energy Partnership and Energy Transition
Dec 2021
Publication
In August 2020 Germany and Ukraine launched an energy partnership that includes the development of a hydrogen economy. Ukraine has vast renewable energy resources for “green” hydrogen production and a gas transmission system for transportation instead of Russian natural gas. Based on estimates by Hydrogen Europe Ukraine can install 8000 MW of total electrolyser capacity by 2030. For these reasons Ukraine is among the EU’s priority partners concerning clean hydrogen according to the EU Hydrogen strategy. Germany plans to reach climate neutrality by 2045 and “green” hydrogen plays an important role in achieving this target. However according to the National Hydrogen Strategy of Germany local production of “green” hydrogen will not cover all internal demand in Germany. For this reason Germany considers importing hydrogen from Ukraine. To govern the production and import of “green” hydrogen Germany and Ukraine shall introduce legal regulations the initial analysis of which is covered in this study. Based on observation and comparison this paper presents and compares approaches while exploring the current stage and further perspectives for legal regulation of hydrogen in Germany and Ukraine. This research identifies opportunities in hydrogen production to improve the flexibility of the Ukrainian power system. This is an important issue for Ukrainian energy security. In the meantime hydrogen can be a driver for decarbonisation according to the initial plans of Germany and it may also have positive impact on the operation of Germany’s energy system with a high share of renewables.
No more items...