- Home
- A-Z Publications
- Publications
Publications
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Hydrogen Europe Podcast: Hydrogen, The First Element: Why Renewable Hydrogen? Why Now?
Mar 2022
Publication
In the first episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with NEL's CEO and President of Hydrogen Europe Jon Andre Løkke. Starting off on how Jon joined the hydrogen sector the two CEOs investigate the historical moment renewable hydrogen is currently living.
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
Review of Power-to-Gas Projects in Europe
Nov 2018
Publication
Core of the Power-to-Gas (PtG) concept is the utilization of renewable electricity to produce hydrogen via water electrolysis. This hydrogen can be used directly as final energy carrier or can be converted to e.g. methane synthesis gas liquid fuels electricity or chemicals. To integrate PtG into energy systems technical demonstration and systems integration is of mayor importance. In total 128 PtG research and demonstration projects are realized or already finished in Europe to analyze these issues by May 2018. Key of the review is the identification and assessment of relevant projects regarding their field of application applied processes and technologies for electrolysis type of methanation capacity location and year of commissioning. So far main application for PtX is the injection of hydrogen or methane into the natural gas grid for storing electricity from variable renewable energy sources. Producing fuels for transport is another important application of PtX. In future PtX gets more important for refineries to lower the carbon food print of the products.
Transferring the Retail of Hydrogen Economy and Missing Safety Assurance
Sep 2019
Publication
Australian regional communities are moving ahead of governments. Enterprising individuals are pushing ahead to find global solutions to local issues that governments (local or state or federal) have abandoned stalled mothballed or failed to resolve. We are faced with a flaw in retail of hydrogen economy as fatal as Walgett running dry or a million fish killed in Murray-Darling. The challenge in Australian regional communities will be to interpret safety assurance requirements in an appropriate manner even in severe economic swings such as drought bushfire or floods. In this context the efficacious cultural embrace by regional communities of three key program elements is essential - Australian Hydrogen Safety Panel Hydrogen Safety Knowledge Tools and Dissemination Hydrogen Safety First Responder Training. What are the odds of no accident in retailing hydrogen for examples to vehicles? Place is everything in regional communities of Australia because in nature (as in the ocean) there is no spin. This paper examines the safety assurance issues associated with the cultural integration of Hydrogen’s three key program elements in a country Australia that is fed-up with government.
Specific Effects of Hydrogen Concentration on Resistance to Fracture of Ferrite-pearlitic Pipeline Steels
Aug 2019
Publication
The presented work is dedicated to evaluation of strain and fatigue behaviour of the ferrite-pearlite low-alloyed pipeline steels under known hydrogen concentration in a bulk of metal. Tensile test results have shown on the existence of some characteristic value of the hydrogen concentration CH at which the mechanism of hydrogen influence changes namely: below this value the enhanced plasticity (decreasing of the yield stress value) takes place and above – the hydrogen embrittlement occurs. The ambiguous relationship between fatigue crack growth rate and hydrogen concentration CH in the bulk of steels under their cyclic loading in hydrogen-contained environments has been found. There is a certain CH value at which the crack growth resistance of steel increases and the diagram of fatigue crack growth rate shifts to higher values of stress intensity factor. The generalised diagram of hydrogen concentration effect on strength behaviour of low-alloyed ferrite-pearlite pipeline steels is presented and discussed with the aim of evaluation of different mechanisms of hydrogen effect conditions of their realization and possible co-existence.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes: A Density Functional Theory Study
Jan 2022
Publication
Carbon materials such as graphene nanoflakes carbon nanotubes and fullerene can be widely used to store hydrogen and doping these materials with lithium (Li) generally increases their H2 -storage densities. Unfortunately Li is expensive; therefore alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium. In this study we used density functional theory to systematically investigate how hydrogen molecules interact with Na-doped graphene nanoflakes. A graphene nanoflake (GR) was modeled by a large polycyclic aromatic hydrocarbon composed of 37 benzene rings with GR-Na-(H2 )n and GR-Na+ -(H2 )n (n = 0–12) clusters used as hydrogen storage systems. Data obtained for the Na system were compared with those of the Li system. The single-H2 GR-Li and GR-Na systems (n = 1) exhibited binding energies (per H2 molecule) of 3.83 and 2.72 kcal/mol respectively revealing that the Li system has a high hydrogen-storage ability. This relationship is reversed from n = 4 onwards; the Na systems exhibited larger or similar binding energies for n = 4–12 than the Li-systems. The present study strongly suggests that Na can be used as an alternative metal to Li in H2 -storage applications. The H2 -storage mechanism in the Na system is also discussed based on the calculated results.
Annual Science Review 2018
Mar 2018
Publication
THIS ANNUAL SCIENCE Review showcases the high quality of science evidence and analysis that underpins HSE’s risk-based regulatory regime. To be an effective regulator HSE has to balance its approaches to informing directing advising and enforcing through a variety of activities. For this we need capacity to advance knowledge; to develop and use robust evidence and analysis; to challenge thinking; and to review effectiveness.<br/>In simple terms policy provides the route map to tackling issues. HSE is particularly well placed in terms of the three components of effective policy - “politics” “evidence” and “delivery”. Unlike most regulators and arms-length bodies HSE leads on policy development which draws directly on front line delivery expertise and intelligence; and we are also unusual in having our own world class science and insight capabilities.<br/>The challenge is to ensure we bring these components together to best effect to respond to new risk management and regulatory issues with effective innovative and proportionate approaches.<br/>Many of the articles in this Review relate to new and emerging technologies and the changing world of work and it is important to understand the risks these may pose and how they can be effectively controlled or how they themselves can contribute to improved health and safety in the workplace. Good policy development can support approaches to change that are proportionate relevant persuasive and effective. For example work described in these pages is: to help understand changing workplace exposures; to provide robust evidence to those negotiating alternatives to unduly prescriptive standards; to understand how best to influence duty<br/>holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>The vital interface between HSE science and policy understand how best to influence duty holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>We work well together and it is important we maintain this engagement as a conscious collaboration.
Hydrogen Odorant and Leak Detection: Part 1, Hydrogen Odorant - Project Closure Report
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Numerical Modelling of Unconfined and Confined Hydrogen Explosion
Sep 2019
Publication
Numerical studies were conducted with the objective of gaining a better understanding of the consequences of potential explosion that could be associated with release of hydrogen in a confined and unconfined environment. This paper describes the work done by us in modelling explosion of accidental releases of hydrogen using our Fire Explosion Release Dispersion (FRED) software. CAM and SCOPE models in FRED is used for validation of congested/uncongested unconfined and congested/uncongested confined vapour cloud explosion respectively. In the first step CAM is validated against experiments of varying gas cloud size blockage ratio equivalence ratio of the mixture and blockage configuration. The model predictions of explosion overpressure are in good agreement with experiments. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to the experiments. In the second step SCOPE is validated against vented explosion experiments available in open literature. In general SCOPE reproduces the maximum overpressure within the factor of 2. Moreover it well predicts the trends of increase in overpressure with change in type of the fuel increase in number of obstacles blockage ratio and decrease in the vent size.
Improving Hydrogen Embrittlement Resistance of Hot-Stamped 1500 MPa Steel Parts That Have Undergone a Q&P Treatment by the Design of Retained Austenite and Martensite Matrix
Nov 2020
Publication
Hydrogen embrittlement is one of the largest obstacles against the commercialisation of ultra-high strength quenching and partitioning (Q&P) steels with ultimate tensile strength over 1500 MPa including the hot stamped steel parts that have undergone a Q&P treatment. In this work the influence of partitioning temperature on hydrogen embrittlement of ultra-high strength Q&P steels is studied by pre-charged tensile tests with both dog-bone and notched samples. It is found that hydrogen embrittlement resistance is enhanced by the higher partitioning temperature. Then the hydrogen embrittlement mechanism is analysed in terms of hydrogen retained austenite and martensite matrix. Thermal desorption analysis (TDA) shows that the hydrogen trapping properties are similar in the Q&P steels which cannot explain the enhancement of hydrogen embrittlement resistance. On the contrary it is found that the relatively low retained austenite stability after the higher temperature partitioning ensures more sufficient TRIP effect before hydrogen-induced fracture. Additionally dislocation recovery and solute carbon depletion at the higher partitioning temperature can reduce the flow stress of the martensite matrix improving its intrinsic toughness and reducing its hydrogen sensitivity both of which result in the higher hydrogen embrittlement resistance.
New Paradigms in Hydrogen Explosion Modelling Using an Industrial CFD Code
Sep 2019
Publication
It is well-known that deflagration to detonation transition (DDT) may be a significant threat for hydrogen explosions. This paper presents a summary of the work carried out for the development of models in order to enable the industrial computational fluid dynamic (CFD) tool FLACS to provide indications about the possibility of a deflagration-to-detonation transition (DDT). The likelihood of DDT has been expressed in terms of spatial pressure gradients across the flame front. This parameter is able to visualize when the flame front captures the pressure front which is the case in situations when fast deflagrations transition to detonation. Reasonable agreement was obtained with experimental observations in terms of explosion pressures transition times and flame speeds for several practical geometries. The DDT model has also been extended to develop a more meaningful criterion for estimating the likelihood of DDT by comparison of the geometric dimensions with the detonation cell size. The conclusion from simulating these experiments is that the FLACS DPDX criterion seems robust and will generally predict the onset DDTs with reasonable precision including the exact location where DDT may happen. The standard version of FLACS can however not predict the consequences if there is DDT as only deflagration flames are modelled. Based on the methodology described above an approach for predicting detonation flames and explosion loads has been developed. The second part of the paper covers new paradigms associated with risk assessment of a hydrogen infrastructure such as a refueling station. In particular approaches involving one-to-one coupling between CFD and FEA modelling are summarized. The advantages of using such approaches are illustrated. This can have wide-ranging implications on the design of things like protection walls against hydrogen explosions.
A Critical Time for UK Energy Policy What Must be Done Now to Deliver the UK’s Future Energy System: A Report for the Council for Science and Technology
Oct 2015
Publication
Time is rapidly running out to make the crucial planning decisions and secure investment to keep the UK on track to deliver a reliable affordable and decarbonised energy system to meet future emissions regulation enshrined in the 2008 Climate Change Act according to a report published today by the Royal Academy of Engineering.
Prepared for the Prime Minister's Council for Science and Technology A critical time for UK energy policy details the actions needed now to create a secure and affordable low carbon energy system for 2030 and beyond.
The study looks at the future evolution of the UK’s energy system in the short to medium term. It considers how the system is expected to develop across a range of possible trajectories identified through modelling and scenarios.
The following actions for government are identified as a matter of urgency:
The report notes that the addition of shale gas or tight oil is unlikely to have a major impact on the evolution of the UK's energy system as we already have secure and diverse supplies of hydrocarbons from multiple sources.
Dr David Clarke FREng who led the group that produced the report says: “Updating the UK energy system to meet the ‘trilemma’ of decarbonisation security and affordability is a massive undertaking. Meeting national targets affordably requires substantial decarbonisation of the electricity system by 2030 through a mix of nuclear power CCS and renewables with gas generation for balancing. Beyond 2030 we must then largely decarbonise heat and transport potentially through electrification but also using other options such as hydrogen and biofuels. We also need to adapt our transmission and distribution networks to become ‘smarter’”.
"Failure to plan the development of the whole energy system carefully will result at best in huge increases in the cost of delivery or at worst a failure to deliver. Substantial investment is needed and current investment capacity is fragile. For example in the last month projects like Carlton’s new Trafford CCGT plant have announced further financing delays and the hoped-for investment by Drax in the White Rose CCS demonstrator has been withdrawn. The UK has also dropped four places to 11th in EY’s renewable energy country attractiveness index.”
Link to document download on Royal Society Website
Prepared for the Prime Minister's Council for Science and Technology A critical time for UK energy policy details the actions needed now to create a secure and affordable low carbon energy system for 2030 and beyond.
The study looks at the future evolution of the UK’s energy system in the short to medium term. It considers how the system is expected to develop across a range of possible trajectories identified through modelling and scenarios.
The following actions for government are identified as a matter of urgency:
- enable local or regional whole-system large scale pilot projects to establish real-world examples of how the future system will work. These must move beyond current single technology demonstrators and include all aspects of the energy systems along with consumer behaviour and financial mechanisms
- drive forward new capacity in the three main low carbon electricity generating technologies: nuclear carbon capture and storage (CCS) and offshore wind
- develop policies to accelerate demand reduction especially in domestic heating and introduce smarter demand management
- clarify and stabilise market mechanisms and incentives in order to give industry the confidence to invest.
The report notes that the addition of shale gas or tight oil is unlikely to have a major impact on the evolution of the UK's energy system as we already have secure and diverse supplies of hydrocarbons from multiple sources.
Dr David Clarke FREng who led the group that produced the report says: “Updating the UK energy system to meet the ‘trilemma’ of decarbonisation security and affordability is a massive undertaking. Meeting national targets affordably requires substantial decarbonisation of the electricity system by 2030 through a mix of nuclear power CCS and renewables with gas generation for balancing. Beyond 2030 we must then largely decarbonise heat and transport potentially through electrification but also using other options such as hydrogen and biofuels. We also need to adapt our transmission and distribution networks to become ‘smarter’”.
"Failure to plan the development of the whole energy system carefully will result at best in huge increases in the cost of delivery or at worst a failure to deliver. Substantial investment is needed and current investment capacity is fragile. For example in the last month projects like Carlton’s new Trafford CCGT plant have announced further financing delays and the hoped-for investment by Drax in the White Rose CCS demonstrator has been withdrawn. The UK has also dropped four places to 11th in EY’s renewable energy country attractiveness index.”
Link to document download on Royal Society Website
Mechanisms of Hydrogen Embrittlement in Steels: Discussion
Jun 2017
Publication
This discussion session interrogated the current understanding of hydrogen embrittlement mechanisms in steels. This article is a transcription of the recorded discussion of ‘Hydrogen in steels’ at the Royal Society Scientific Discussion Meeting ‘The challenges of hydrogen and metals’ 16–18 January 2017.
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
Hot Surface Ignition in Flowing Streams of Hydrogen-Air Mixtures
Sep 2019
Publication
A set of original experiments is presented covering the topic of hydrogen-air mixture ignition by a hot surface. The hot surface is a 30 mm long/10 mm diameter heated coil which temperature is controlled by IR techniques. The coil is placed into the flowing stream of hydrogen air mixtures. The variable parameters are the composition of the flammable atmosphere (4 to 75% H2 v/v) the flow speed (from 0.5 m/s to 30 m/s) and its temperature (from -110°C to ambient). The experimental techniques and results are presented and a tentative interpretation is proposed based on ignition theories and highspeed video recordings. It is shown that the ignition temperature (600°C) is insensitive to flowing conditions which is a very unexpected result.
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
No more items...