- Home
- A-Z Publications
- Publications
Publications
Green Ammonia as a Spatial Energy Vector: A Review
May 2021
Publication
Green hydrogen is considered a highly promising vector for deep decarbonisation of energy systems and is forecast to represent 20% of global energy use by 2050. In order to secure access to this resource Japan Germany and South Korea have announced plans to import hydrogen; other major energy consumers are sure to follow. Ammonia a promising hydrogen derivative may enable this energy transport by densifying hydrogen at relatively low cost using well-understood technologies. This review seeks to describe a global green ammonia import/export market: it identifies benefits and limitations of ammonia relative to other hydrogen carriers the costs of ammonia production and transport and the constraints on both supply and demand. We find that green ammonia as an energy vector is likely to be critical to future energy systems but that gaps remain in the literature. In particular rigorous analysis of production and transport costs are rarely paired preventing realistic assessments of the delivered cost of energy or the selection of optimum import/export partners to minimise the delivered cost of ammonia. Filling these gaps in the literature is a prerequisite to the development of robust hydrogen and ammonia strategies and to enable the formation of global import and export markets of green fuel
Thermodynamic Evaluation of Bi-directional Solid Oxide Cell Systems Including Year-round Cumulative Exergy Analysis
Jun 2018
Publication
Bi-directional solid oxide cell systems (Bi-SOC) are being increasingly considered as an electrical energy storage method and consequently as a means to boost the penetration of renewable energy (RE) and to improve the grid flexibility by power-to-gas electrochemical conversion. A major advantage of these systems is that the same SOC stack operates as both energy storage device (SOEC) and energy producing device (SOFC) based on the energy demand and production. SOEC and SOFC systems are now well-optimised as individual systems; this work studies the effect of using the bi-directionality of the SOC at a system level. Since the system performance is highly dependent on the cell-stack operating conditions this study improves the stack parameters for both operation modes. Moreover the year-round cumulative exergy method (CE) is introduced in the solid oxide cell (SOC) context for estimating the system exergy efficiencies. This method is an attempt to obtain more insightful exergy assessments since it takes into account the operational hours of the SOC system in both modes. The CE method therefore helps to predict more accurately the most efficient configuration and operating parameters based on the power production and consumption curves in a year. Variation of operating conditions configurations and SOC parameters show a variation of Bi-SOC system year-round cumulative exergy efficiency from 33% to 73%. The obtained thermodynamic performance shows that the Bi-SOC when feasible can prove to be a highly efficient flexible power plant as well as an energy storage system.
Accumulation of Inert Impurities in a Polymer Electrolyte Fuel Cell System with Anode Recirculation and Periodic Purge: A Simple Analytical Model
Mar 2022
Publication
Anode recirculation with periodic purge is commonly used in polymer electrolyte fuel cell systems to control the accumulation of nitrogen water and other impurities that are present in the fuel or diffuse through the membrane from the cathode compartment. In this work we develop a simple generalized analytical model that simulates the time dependence of the accumulation of inert impurities in the anode compartment of such a system. It is shown that when there is transport out of the anode chamber the inert species is expected to accumulate exponentially until equilibrium is reached when the rate of inert entering the anode in the fuel supply and/or via crossover from the cathode is balanced by the rate of leakage and/or crossover to the cathode. The model is validated using recently published experimental data for the accumulation of N2 CH4 and CO2 in a recirculated system. The results show that nitrogen accumulation needs to be taken into account to properly adjust system parameters such as purge rate purge volume and recirculation rate. The use of this generalized analytical model is intended to aid the selection of these system parameters to optimize performance in the presence of inerts.
Numerical Simulation of Hydrogen Leakage and Diffusion Process of Fuel Cell Vehicle
Oct 2021
Publication
Regarding the problem of hydrogen diffusion of the fuel cell vehicle (HFCV) when its hydrogen supply system leaks this research uses the FLUENT software to simulate numerical values in the process of hydrogen leakage diffusion in both open space and closed space. This paper analyzed the distribution range and concentration distribution characteristics of hydrogen in these two different spaces. Besides this paper also took a survey about the effects of leakage rate wind speed wind direction in open space and the role the air vents play on hydrogen safety in closed space which provides a reference for the hydrogen safety of HFCV. In conclusion the experiment result showed that: In open space hydrogen leakage rate has a great influence on its diffusion. When the leakage rate doubles the hydrogen leakage range will expand about 1.5 times simultaneously. The hydrogen diffusion range is the smallest when the wind blows at 90 degrees which is more conducive to hydrogen diffusion. However when the wind direction is against the direction of the leakage of hydrogen the range of hydrogen distribution is maximal. Under this condition the risk of hydrogen leakage is highest. In an enclosed space when the vent is set closest to the leakage position the volume fraction of hydrogen at each time is smaller than that at other positions so it is more beneficial to safety.
Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production
Mar 2022
Publication
Biogas is one of the most important sources of renewable energy and hydrogen production which needs upgrading to be functional. In this study two methods of biogas upgrading from organic parts of municipal waste were investigated. For biogas upgrading this article used a 3E analysis and simulated cryogenic separation and chemical scrubbing. The primary goal was to compare thermoeconomic indices and create hydrogen by reforming biomethane. The exergy analysis revealed that the compressor of the refrigerant and recovery column of MEA contributed the most exergy loss in the cryogenic separation and chemical scrubbing. The total exergy efficiency of cryogenic separation and chemical scrubbing was 85% and 84%. The energy analysis revealed a 2.07% lower energy efficiency for chemical scrubbing. The capital energy and total annual costs of chemical absorption were 56.51 26.33 and 54.44 percent lower than those of cryogenic separation respectively indicating that this technology is more economically feasible. Moreover because the thermodynamic efficiencies of the two methods were comparable the chemical absorption method was adopted for hydrogen production. The biomethane steam reforming was simulated and the results indicated that this method required an energy consumption of 90.48 MJ kgH2 . The hydrogen production intensity equaled 1.98 kmoleH2 kmolebiogas via a 79.92% methane conversion.
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Cost-Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field
Dec 2020
Publication
China has become a major market for hydrogen used in fuel cells in the transportation field. It is key to control the cost of hydrogen to open up the Chinese market. The development status and trends of China’s hydrogen fuel industry chain were researched. A hydrogen energy cost model was established in this paper from five aspects: raw material cost fixed cost of production hydrogen purification cost carbon trading cost and transportation cost. The economic analysis of hydrogen was applied to hydrogen transported in the form of high-pressure hydrogen gas or cryogenic liquid hydrogen and produced by natural gas coal and electrolysis of water. It was found that the cost of hydrogen from natural gas and coal is currently lower while it is greatly affected by the hydrogen purification cost and the carbon trading price. Considering the impact of future production technologies raw material costs and rising requirements for sustainable energy development on the hydrogen energy cost it is recommended to use renewable energy curtailment as a source of electricity and multi-stack system electrolyzers as large-scale electrolysis equipment in combination with cryogenic liquid hydrogen transportation or on-site hydrogen production. Furthermore participation in electricity market-oriented transactions cross-regional transactions and carbon trading can reduce the cost of hydrogen. These approaches represent the optimal method for obtaining inexpensive hydrogen.
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
Numerical Investigation of Thermal Hazards from Under-expanded Hydrogen Jet Fires using a New Scheme for the Angular Discretization of the Radiative Intensity
Sep 2021
Publication
In the context of a numerical investigation of thermal hazards from two under-expanded hydrogen jet fires results from a newly-developed thermal radiation module of the ADREA-HF computational fluid dynamics (CFD) code were validated against two physical experiments. The first experiment was a vertical under-expanded hydrogen jet fire at 170 bar with the objective of the numerical investigation being to capture the spatial distribution of the radial radiative heat flux at a given time instant. In the second case a horizontal under-expanded hydrogen jet fire at 340 bar was considered. Here the objective was to capture the temporal evolution of the radial radiative heat flux at selected fixed points in space. The numerical study employs the eddy dissipation model for combustion and the finite volume method (FVM) for the calculation of the radiative intensity. The FVM was implemented using a novel angular discretization scheme. By dividing the unit sphere into an arbitrary number of exactly equal angular control volumes this new scheme allows for more flexibility and efficiency. A demonstration of numerical convergence as a function the number of both spatial and angular control volumes was performed.
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
Determinants of Consumers’ Purchasing Intentions for the Hydrogen-Electric Motorcycle
Aug 2017
Publication
In recent years increasing concerns regarding the energy costs and environmental effects of urban motorcycle use have spurred the development of hydrogen-electric motorcycles in Taiwan. Although gasoline-powered motorcycles produce substantial amounts of exhaust and noise pollution hydrogen-electric motorcycles are highly energy-efficient relatively quiet and produce zero emissions features that suggest their great potential to reduce the problems currently associated with the use of motorcycles in city environments. This study identified the significant external variables that affect consumers’ purchase intentions toward using hydrogen-electric motorcycles. A questionnaire method was employed with a total of 300 questionnaires distributed and 233 usable questionnaires returned yielding a 78% overall response rate. Structural equation modeling (SEM) was applied to test the research hypothesis. The research concluded that (1) product knowledge positively influenced purchase intentions but negatively affected the perceived risk; (2) perceived quality via hydrogen-electric motorcycles positively influenced the perceived value but negatively affected the perceived risk; (3) perceived risk negatively affected the perceived value; and (4) the perceived value positively affected purchase intentions. This study can be used as a reference for motorcycle manufacturers when planning their marketing strategies.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review
May 2021
Publication
Dry reforming of hydrocarbons alcohols and biological compounds is one of the most promising and effective avenues to increase hydrogen (H2 ) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures these catalysts need to use metal supports which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H2 production in this study a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus Embase and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion hydrogen yield and stability test time) artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion 3.36% for stability and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.
Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production
Apr 2022
Publication
Hydrogen produced from biomass is an alternative energy source to fossil fuels. In this study hydrogen production by gasification of the banana plant is proposed. A fixed-bed catalytic reactor was designed considering fluidization conditions and a height/diameter ratio of 3/1. Experimentation was carried out under the following conditions: 368 ◦C atmospheric pressure 11.75 g of residual mass of the banana (pseudo-stem) an average particle diameter of 1.84 mm and superheated water vapor as a gasifying agent. Gasification reactions were performed using a catalyzed and uncatalyzed medium to compare the effectiveness of each case. The catalyst was Ni/Al2O3 synthesized by coprecipitation. The gas mixture produced from the reaction was continuously condensed to form a two-phase liquid–gas system. The synthesis gas was passed through a silica gel filter and analyzed online by gas chromatography. To conclude the results of this study show production of 178 mg of synthesis gas for every 1 g of biomass and the selectivity of hydrogen to be 51.8 mol% when a Ni 2.5% w/w catalyst was used. The amount of CO2 was halved and CO was reduced from 3.87% to 0% in molar percentage. Lastly a simulation of the distribution of temperatures inside the furnace was developed; the modeled behavior is in agreement with experimental observations.
Simulation of Turbulent Combustion in a Small-scale Obstructed Chamber Using Flamefoam
Sep 2021
Publication
Dynamic overpressures achieved during the combustion are related to the acceleration experienced by the propagating flame. In the case of premixed turbulent combustion in an obstructed geometry obstacles in the direction of flow result in a complex flame front interaction with the turbulence generated ahead of it. The interaction of flame front and vortex significantly affect the burning rate the rate of pressure rise and achieved overpressure the geometry of accelerating flame front and resulting structures in the flow field. Laboratory-scale premixed turbulent combustion experiments are convenient for the study of flame acceleration by obstacles in higher resolution. This paper presents numerical simulations of hydrogenair mixture combustion experiments performed in the University of Sydney small-scale combustion chamber. The simulations were performed using flameFoam – an open-source premixed turbulent combustion solver based on OpenFOAM. The experimental and numerical pressure evolutions are compared. Furthermore flow structures which develop due to the interaction between the obstacles and the flow are investigated with different obstacle configurations.
An Innovative Approach for Energy Transition in China? Chinese National Hydrogen Policies from 2001 to 2020
Jan 2023
Publication
To accelerate clean energy transition China has explored the potential of hydrogen as an energy carrier since 2001. Until 2020 49 national hydrogen policies were enacted. This paper explores the relevance of these policies to the development of the hydrogen industry and energy transition in China. We examine the reasons impacts and challenges of Chinese national hydrogen policies through the conceptual framework of Thomas Dye’s policy analysis method and the European Training Foundation’s policy analysis guide. This research provides an ex‐post analysis for previous policies and an ex‐ante analysis for future options. We argue that the energy supply revolution and energy technology revolution highlight the importance of hydrogen development in China. Particularly the pressure of the automobile industry transition leads to experimentation concerning the application of hydrogen in the transportation sector. This paper also reveals that hydro‐ gen policy development coincides with an increase in resource input and has positive spill over effects. Furthermore we note that two challenges have impeded progress: a lack of regulations for the industry threshold and holistic planning. To address these challenges the Chinese government can design a national hydrogen roadmap and work closely with other countries through the Belt and Road Initiative.
Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements
Oct 2022
Publication
To meet the target of reducing greenhouse gas emissions hydrogen as a carbon-free fuel is expected to play a major role in future energy supplies. A challenge with hydrogen is its low density and volumetric energy value meaning that large tanks are needed to store and transport it. By injecting hydrogen into the natural gas network the transportation issue could be solved if the hydrogen–natural gas mixture satisfies the grid gas quality requirements set by legislation and standards. The end consumers usually have stricter limitations on the gas quality than the grid where Euromot the European association of internal combustion engine manufacturers has specific requirements on the parameters: the methane number and Wobbe index. This paper analyses how much hydrogen can be added into the natural gas grid to fulfil Euromot’s requirements. An average gas composition was calculated based on the most common ones in Europe in 2021 and the results show that 13.4% hydrogen can be mixed with a gas consisting of 95.1% methane 3.2% ethane 0.7% propane 0.3% butane 0.3% carbon dioxide and 0.5% nitrogen. The suggested gas composition indicates for engine manufacturers how much hydrogen can be added into the gas to be suitable for their engines.
Effect of State of Charge on Type IV Hydrogen Storage Tank Rupture in a Fire
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure NWP is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC<100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below one-third of its NWP depending on a fire source were leaking without rupture. This paper aims at understanding this phenomenon and the development of a predictive model. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap is sufficient to melt the polymer liner. This initiates hydrogen microleaks through the composite wall before it loses the load-bearing ability when the resin degrades deep enough to cause the tank to rupture. The dependence of tank fire-resistance rating (FRR) on the SoC is presented for tanks of volume in the range 36-244 L. The tank wall thickness non-uniformity i.e. thinner composite at the dome area is identified as a serious issue for tank’s fire resistance that must be addressed by tank manufacturers and OEMs. The effect of the burst pressure ratio on FRR is investigated. It is concluded that thermal parameters of the composite wall i.e. decomposition heat and temperatures play a vital role in simulations of tank failure and thus FRR.
Green Hydrogen from Anion Exchange Membrane Water Electrolysis: A Review of Recent Developments in Critical Materials and Operating Conditions
Mar 2020
Publication
Hydrogen production using water electrolysers equipped with an anion exchange membrane (AEM) a pure water feed and cheap components such as platinum group metal-free catalysts and stainless steel bipolar plates (BPP) can challenge proton exchange membrane (PEM) electrolysis systems as the state of the art. For this to happen the performance of the AEM electrolyzer must match the compact design stability H2 purity and high current densities of PEM systems. Current research aims at bringing AEM water electrolysis technology to an advanced level in terms of electrolysis cell performance. Such technological advances must be accompanied by demonstration of the cost advantages of AEM systems. The current state of the art in AEM water electrolysis is defined by sporadic reports in the academic literature mostly dealing with catalyst or membrane development. The development of this technology requires a future roadmap for systematic development and commercialization of AEM systems and components. This will include basic and applied research technology development & integration and testing at a laboratory scale of small demonstration units (AEM electrolyzer shortstacks) that can be used to validate the technology (from TRL 2–3 currently to TRL 4–5). This review paper gathers together recent important research in critical materials development (catalysts membranes and MEAs) and operating conditions (electrolyte composition cell temperature performance achievements). The aim of this review is to identify the current level of materials development and where improvements are required in order to demonstrate the feasibility of the technology. Once the challenges of materials development are overcome AEM water electrolysis can drive the future use of hydrogen as an energy storage vector on a large scale (GW) especially in developing countries.
Machine Learning-based Energy Optimization for On-site SMR Hydrogen Production
Jun 2021
Publication
The production and application of hydrogen an environmentally friendly energy source have been attracting increasing interest of late. Although steam methane reforming (SMR) method is used to produce hydrogen it is difficult to build a high-fidelity model because the existing equation-oriented theoretical model cannot be used to clearly understand the heat-transfer phenomenon of a complicated reforming reactor. Herein we developed an artificial neural network (ANN)-based data-driven model using 485710 actual operation datasets for optimizing the SMR process. Data preprocessing including outlier removal and noise filtering was performed to improve the data quality. A model with high accuracy (average R2 = 0.9987) was developed which can predict six variables through hyperparameter tuning of a neural network model as follows: syngas flow rate; CO CO2 CH4 and H2 compositions; and steam temperature. During optimization the search spaces for nine operating variables namely the natural gas flow rate for the feed and fuel hydrogen flow rate for desulfurization water flow rate and temperature air flow rate SMR inlet temperature and pressure and low-temperature shift (LTS) inlet temperature were defined and applied to the developed model for predicting the thermal efficiencies for 387420489 cases. Subsequently five constraints were established to consider the feasibility of the process and the decision variables with the highest process thermal efficiency were determined. The process operating conditions showed a thermal efficiency of 85.6%.
No more items...