- Home
- A-Z Publications
- Publications
Publications
Evaluation of Steels Susceptibility to Hydrogen Embrittlement: A Thermal Desorption Spectroscopy-Based Approach Coupled with Artificial Neural Network
Dec 2020
Publication
A novel approach has been developed for quantitative evaluation of the susceptibility of steels and alloys to hydrogen embrittlement. The approach uses a combination of hydrogen thermal desorption spectroscopy (TDS) analysis with recent advances in machine learning technology to develop a regression artificial neural network (ANN) model predicting hydrogen-induced degradation of mechanical properties of steels. We describe the thermal desorption data processing artificial neural network architecture development and the learning process beneficial for the accuracy of the developed artificial neural network model. A data augmentation procedure was proposed to increase the diversity of the input data and improve the generalization of the model. The study of the relationship between thermal desorption spectroscopy data and the mechanical properties of steel evidences a strong correlation of their corresponding parameters. A prototype software application based on the developed model is introduced and is openly available. The developed prototype based on TDS analysis coupled with ANN is shown to be a valuable engineering tool for steel characterization and quantitative prediction of the degradation of steel properties caused by hydrogen.
Use of Hydrogen Safety Sensors Under Anaerobic Conditions – Impact of Oxygen Content on Sensor Performance
Sep 2011
Publication
In any application involving the production storage or use of hydrogen sensors are important devices for alerting to the presence of leaked hydrogen. Hydrogen sensors should be accurate sensitive and specific as well as resistant to long term drift and varying environmental conditions. Furthermore as an integral element in a safety system sensor performance should not be compromised by operational parameters. For example safety sensors may be required to operate at reduced oxygen levels relative to air. In this work we evaluate and compare a number of sensor technologies in terms of their ability to detect hydrogen under conditions of varying oxygen concentration.
Detonability of Binary H2/Ch4 - Air Mixture
Sep 2009
Publication
Abatement of greenhouse gas emissions and diversification of energy sources will probably lead to an economy based on hydrogen. In order to evaluate safety conditions during transport and distribution experimental data is needed on the detonation of Hydrogen/Natural gas blend mixtures. The aim of this study is to constitute detonation and deflagration to detonation transition (DDT) database of H2/CH4-air mixtures. More precisely the detonability of such mixtures is evaluated by the detonation cell size and the DDT run up distance measurements. Large experimental conditions are investigated (i) various equivalence ratios from 0.6 to 3 (ii) various H2 molar fraction x ( ( )2 2 4x H H CH= + ) from 0.5 to 1 (iii) different initial pressure P0 from 0.2 to 2 bar at fixed ambient temperature T0=293 K. Detonation pressures P velocities D and cell sizes ? were measured in two smooth tubes with different i.d. d (52 and 106 mm). For DDT data minimum DDT run up distances LDDT were determined in the d=52 mm tube containing a 2.8 m long Schelkin spiral with a blockage ratio BR = 0.5 and a pitch equal to the diameter. Measured detonation velocities D are very close to the Chapman Jouguet values (DCJ). Concerning the effect of detonation cell size ? follows a classical U shaped- curve with a minimum close to =1 and concerning the effect of x ? decreases when x increases. The ratio ik L?= obtained from different chemical kinetics (Li being the ZND induction length) is well approximated by the value 40 in the range 0.5 < x < 0.9 and 50 for x 0.9. Minimum DDT run up distance LDDT varies from 0.36 to 1.1m when x varies from 1 to 0.8. The results show that LDDT obeys the linear law LDDT ~ 30-40? previously validated in H2/Air mixtures. Adding Hydrogen in Natural Gas promotes the detonability of the mixtures and for x 0.65 these mixtures are considered more sensitive than common heavy Alkane-Air mixtures.
Full Suppression of Hydrogen Explosion Using Phlegmatization Additives- Experimental Results
Sep 2011
Publication
The paper presents results of experimental investigations of different phlegmatizator substances and its binary compounds used for full hydrogen combustion suppression. The work was performed in experimental facilities of three different scales (small medium and large) at normal initial pressure and temperature range 20 ⎯ 120 °С. Ten individual substances and six binary compounds were tested in a small scale experiments. Three individual halogen containing substances capable of full suppression of hydrogen combustion were found in a series of small scale experiments (tube length – 1 m ID – 66 mm). The minimum concentration of the most effective substance was 11% at 20°С and 14% at 120°С in a small scale experiments. Medium scale confined and large scale unconfined experiments confirmed the possibility of full combustion suppression. The minimum concentration of the most effective binary mixture was found to be 12 % at 20°С in a large scale experiments.
Smart Systems and Heat: Decarbonising Heat for UK homes
Nov 2015
Publication
Around 20% of the nation’s carbon emissions are generated by domestic heating. Analysis of the many ways the energy system might be adapted to meet carbon targets shows that the elimination of emissions from buildings is more cost effective than deeper cuts in other energy sectors such as transport. This effectively means that alternatives need to be found for domestic natural gas heating systems. Enhanced construction standards are ensuring that new buildings are increasingly energy efficient but the legacy building stock of around 26 million homes has relatively poor thermal performance and over 90% are expected to still be in use in 2050. Even if building replacement was seen as desirable the cost is unaffordable and the carbon emissions associated with the construction would be considerable.
YouTube link to accompanying video
YouTube link to accompanying video
Fundamental Study on Accidental Explosion Behavior of Hydrogen/Air Mixtures in Open Space
Sep 2011
Publication
In this study the flame propagation behavior and the intensity of blast wave by an accidental explosion of a hydrogen/air mixture in an open space have been measured simultaneously by using soap bubble method. The results show that the flame in lean hydrogen/air mixtures propagated with a wrinkled flame by spontaneous instability. The flame in rich hydrogen/air mixtures propagated smoothly in the early stage and was intensively wrinkled and accelerated in the later stage by different type of instability. The intensity of the blast wave of hydrogen/air mixtures is strongly affected by the acceleration of the flame propagation by these spontaneous flame disturbances.
Experimental Study of Ignited Unsteady Hydrogen Jets into Air
Sep 2009
Publication
In order to simulate an accidental hydrogen release from the low pressure pipe system of a hydrogen vehicle a systematic study on the nature of transient hydrogen jets into air and their combustion behaviour was performed at the FZK hydrogen test site HYKA. Horizontal unsteady hydrogen jets with an amount of hydrogen up to 60 STP dm3 and initial pressures of 5 and 16 bar have been investigated. The hydrogen jets were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen-air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems
Aug 2015
Publication
This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV) system (nearly 100% self-consumption). Thereby the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.
FutureGrid: Project Progress Report
Dec 2021
Publication
The facility will be built from a range of decommissioned transmission assets to create a representative whole-network which will be used to trial hydrogen and will allow for accurate results to be analysed. Blends of hydrogen up to 100% will then be tested at transmission pressures to assess how the assets perform.<br/>The hydrogen research facility will remain separate from the main National Transmission System allowing for testing to be undertaken in a controlled environment with no risk to the safety and reliability of the existing gas transmission network.<br/>Ofgem’s Network Innovation Competition will provide £9.07m of funding with the remaining amount coming from the project partners.<br/>The aim is to start construction in 2021 with testing beginning in 2022.
Hydrogen Permeation in X65 Steel under Cyclic Loading
May 2020
Publication
This experimental work analyzes the hydrogen embrittlement mechanism in quenched and tempered low-alloyed steels. Experimental tests were performed to study hydrogen diffusion under applied cyclic loading. The permeation curves were fitted by considering literature models in order to evaluate the role of trapping—both reversible and irreversible—on the diffusion mechanism. Under loading conditions a marked shift to the right of the permeation curves was noticed mainly at values exceeding the tensile yield stress. In the presence of a relevant plastic strain the curve changes due to the presence of irreversible traps which efficiently subtract diffusible atomic hydrogen. A significant reduction in the apparent diffusion coefficient and a considerable increase in the number of traps were noticed as the maximum load exceeded the yield strength. Cyclic loading at a tensile stress slightly higher than the yield strength of the material increases the hydrogen entrapment phenomena. The tensile stress causes a marked and instant reduction in the concentration of mobile hydrogen within the metal lattice from 55% of the yield strength and it increases significantly in the plastic field.
Validation of CFD Modelling of LH2 Spread and Evaporation Against Large-Scale Spill Experiments
Sep 2009
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid. Therefore loss of hydrogen containments may lead to the formation of a pool on the ground. In general very large spills will give a pool whereas moderate sized spills may evaporate immediately. Accurate hazard assessments of storage systems require a proper prediction of the liquid hydrogen pool evaporation and spreading. A new pool model handling the spread and the evaporation of liquid spills on different surfaces has recently been developed in the 3D Computational Fluid Dynamics (CFD) tool FLACS [1-4]. As the influence of geometry on the liquid spread is taken into account in the new pool model realistic industrial scenarios can be investigated. The model has been validated for LNG spills on water with the Burro and Coyote experiments [56]. The model has previously been tested for LH2 release in the framework of the EU-sponsored Network of Excellence HySafe where experiments carried out by BAM were modelled. In the large scale BAM experiments [7] 280 kg of liquid hydrogen was spilled in 6 tests adjacent to buildings. In these tests the pool spreading the evaporation and the cloud formation were investigated. Simulations of these tests are found to compare reasonably well with the experimental results. In the present work the model is extended and the liquid hydrogen spill experiments carried out by NASA are simulated with the new pool model. The large scale NASA experiments [89] consisted of 7 releases of liquefied hydrogen at White Sand New Mexico. The release test 6 is used. During these experiments cloud concentrations were measured at several distances downwind of the spill point. With the new pool model feature the FLACS tool is shown to be an efficient and accurate tool for the investigation of complex and realistic accidental release scenarios of cryogenic liquids.
Vented Hydrogen-air Deflagration in a Small Enclosed Volume
Sep 2013
Publication
Since the rapid development of hydrogen stationary and vehicle fuel cells the last decade it is of importance to improve the prediction of overpressure generated during an accidental explosion which could occur in a confined part of the system. To this end small-scale vented hydrogen–air explosions were performed in a transparent cubic enclosure with a volume of 3375 cm3. The flame propagation was followed with a high speed camera and the overpressure inside the enclosure was recorded using high frequency piezoelectric transmitters. The effects of vent area and ignition location on the amplitude of pressure peaks in the enclosed volume were investigated. Indeed vented deflagration generates several pressures peaks according to the configuration and each peak can be the dominating pressure. The parametric study concerned three ignition locations and five square vent sizes.
Formation and Dissociation Behaviour Studies of Hydrogen Hydrate in the Presence of Tetrahydrofuran by using High Pressure DSC
Mar 2019
Publication
Significant challenges still remain in the development of suitable materials for storing hydrogen for practical applications. Clathrate hydrates as a special inclusion compounds could be tailored by changing the storage pressure and temperature to adapt ambient conditions. In this work the hydrates were adopted to encage hydrogen in tetrahydrofuran (THF) aqueous solution with concentration of 3.0 mol%. The formation and dissociation behaviours were investigated by a high pressure micro-differential scanning calorimeter at the operating pressure of 18 MPa 25 MPa and 34 MPa. Experimental results show that the memory water only affects the hydrate formation behaviour instead of the hydrate dissociation behaviour. The dissociation temperature of the THF-H2 hydrate increases with the increase of the operating pressure and its dissociation equilibrium data can be obtained. The dissociation temperatures of the THF-H2 hydrate are 9.26 ℃ 10.94 ℃ and 12.67 ℃ at the operating pressure of 18 MPa 25 MPa and 34 MPa respectively. It is fundamental for performing the kinetics and microscopic experiments.
Numerical Investigation of Hydrogen Release from Varying Diameter Exit
Sep 2011
Publication
Computational fluid dynamics is used to simulate the release of high pressure Hydrogen from a reservoir with an exit of increasing diameter. Abel-Noble real gas equation of state is used to accurately simulate this high pressure release. Parallel processing based on Message Passing Interface for domain decomposition is employed to decrease the solution time. The release exit boundary is increased in time to simulate a scenario when the exit area increases during the release. All nodes and elements are moved accordingly at each time step to maintain the quality of the mesh. Different speeds of increasing diameter are investigated to see the impact on this unsteady flow.
The Importance of Economies of Scale, Transport Costs and Demand Patterns in Optimising Hydrogen Fuelling Infrastructure: An Exploration with SHIPMod (Spatial Hydrogen Infrastructure Planning Model)
Jul 2013
Publication
Hydrogen is widely recognised as an important option for future road transportation but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms.
Hydrogen Storage in Glass Capillary Arrays for Portable and Mobile Systems
Sep 2009
Publication
A crucial problem of new hydrogen technologies is the lightweight and also safe storage of acceptable amounts of hydrogen for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure safe infusion storage and controlled release of hydrogen gas although storage pressures up to 1200 bar are applied. This technology enables the storage of a significantly greater amount of hydrogen than other approaches. In storage tests with first capillary arrays a gravimetric storage capacity of about 33% and a volumetric capacity of 28% was determined at a comparative low pressure of only 400 bar. This is much more than the actual published storage capacities which are to find for other storage systems. This result already surpassed the US Department of Energy's 2010 target and it is expected to meet the DOE's 2015 target in the near future.<br/>Different safety aspects have been evaluated. On the one hand experiments with single capillaries or arrays of them have been carried out. The capillaries are made of quartz and other glasses. Especially quartz has a three times higher strength than steel. At the same time the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in dependence of capillary materials and dimensions wall thickness etc. in order to find out optimal parameters for the “final” capillaries. In these tests also the sudden release of hydrogen was tested in order to observe possible spontaneous ignitions. On the other hand a theoretical evaluation of explosion hazards was done. Different situations were analyzed e.g. release of hydrogen by diffusion or sudden rupture.
Modeling of the Flame Acceleration in Flat Layer for Hydrogen-air Mixtures
Sep 2011
Publication
The flame propagation regimes for the stoichiometric hydrogen-air mixtures in an obstructed semiconfined flat layer have been numerically investigated in this paper. Conditions defining fast or sonic propagation regime were established as a function of the main dimensions characterizing the system and the layout of the obstacles. It was found that the major dependencies were the following: the thickness of the layer of H2-air mixture the blockage ratio and the distance between obstacles and the obstacle size. A parametric study was performed to determine the combination of the above variables prone to produce strong combustions. Finally a criterion that separates experiments resulting in slow subsonic from fast sonic propagations regimes was proposed.
Numerical Modelling of Hazards of Hydrogen Storage
Sep 2017
Publication
For the general public to use hydrogen as a vehicle fuel they must be able to handle hydrogen with the same degree of confidence as conventional liquid and gaseous fuels. The hazards associated with jet releases from accidental leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release can result in a fire or explosion. This paper describes the work done by us in modelling some of the consequences of accidental releases of hydrogen implemented in our Fire Explosion Release Dispersion (FRED) software. The new dispersion model is validated against experimental data available in the open literature. The model predictions of hydrogen gas concentration as a function of distance are in good agreement with experiments. In addition FRED has been used to model the consequence of the bursting of a vessel containing compressed hydrogen. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to experiments. Overall it is concluded that FRED can model the consequences of an accidental release of hydrogen and the blast waves generated from bursting of vessel containing compressed hydrogen
HyP SA – Our safety story
Sep 2019
Publication
Australian Gas Infrastructure Group’s (AGIG’s) vision is to be the leading gas infrastructure business in Australia this means delivering for our customers being a good employer and being sustainably cost efficient. Establishing and developing a hydrogen industry is a key pathway for us to achieve our vision.
In South Australia AGIG is pioneering the introduction of hydrogen into its existing gas distribution networks through the Hydrogen Park South Australia (HyP SA) project. With safety our top priority we would like to give an overview of the safety considerations of our site our network methodology and the development of new safety procedures and culture regarding the production handling and reticulation of a 5% hydrogen blend.
We will cover three themes each having a safety story that is specific to the Australian context and to the project’s success:
The Production Plant and Site
Project site safety known hazards and risk mitigation electrical protection safety procedures lighting and security. Hydrogen storage filling and transportation.
The Network
Securing the network for an isolated safe demonstration footprint. Gas network and hydrogen safety considerations why 5%? Emergency procedures and crew training. New safety regulations blended networks. How does hydrogen perform in a blended gas with respect to leaks? How safe is the existing network and what sensors and controls are we using.
The Home
Introducing blended gas to existing homes. Appliance safety and failure mode analysis. Community engagement and education on a 5% renewable hydrogen gas blend and use in the home
.
We aim to give a comprehensive overview of delivering a safe demonstration network for the HyP SA project in terms of the three main ecosystems that the hydrogen will be present our learnings so far and the development of the safety methodologies that will be applied in the industry in the future.
In South Australia AGIG is pioneering the introduction of hydrogen into its existing gas distribution networks through the Hydrogen Park South Australia (HyP SA) project. With safety our top priority we would like to give an overview of the safety considerations of our site our network methodology and the development of new safety procedures and culture regarding the production handling and reticulation of a 5% hydrogen blend.
We will cover three themes each having a safety story that is specific to the Australian context and to the project’s success:
The Production Plant and Site
Project site safety known hazards and risk mitigation electrical protection safety procedures lighting and security. Hydrogen storage filling and transportation.
The Network
Securing the network for an isolated safe demonstration footprint. Gas network and hydrogen safety considerations why 5%? Emergency procedures and crew training. New safety regulations blended networks. How does hydrogen perform in a blended gas with respect to leaks? How safe is the existing network and what sensors and controls are we using.
The Home
Introducing blended gas to existing homes. Appliance safety and failure mode analysis. Community engagement and education on a 5% renewable hydrogen gas blend and use in the home
.
We aim to give a comprehensive overview of delivering a safe demonstration network for the HyP SA project in terms of the three main ecosystems that the hydrogen will be present our learnings so far and the development of the safety methodologies that will be applied in the industry in the future.
Advancing the Hydrogen Safety Knowledge Base
Sep 2013
Publication
The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks and case studies technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor Task 19 can positively impact the objectives of national programs even in cases for which a specific task report is not published. The interactions within Task 31 illustrate how technology information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA.
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
Development of a Hydrogen and Fuel Cell Vehicle Emergency Response National Template
Sep 2013
Publication
The California Fuel Cell Partnership (CaFCP) is currently working with key stakeholders like the US Department of Energy (DOE) and National Fire Protection Association (NFPA) to develop a national template for educating and training first responders about hydrogen fuel cell-powered vehicles (FCV) and hydrogen fuelling infrastructure. Currently there are several existing programs that either have some related FCV/hydrogen material or have plans to incorporate this in the future. To create a robust national emergency responder (ER) program the strongest elements from these existing programs are considered for incorporation into the template. Working with the key stakeholders the national template will be evaluated on a regular basis to ensure accurate and up to date information and resources and effective teaching techniques for the emergency response community. This paper describes the evaluation process discusses elements of the template and reports on the steps and progress to implementation; all in the effort to effectively support the emergency response community as hydrogen infrastructure develops and FCVs are leased or sold.
Safety Aspects in the Production and Separation of Hydrogen from Biomass
Sep 2011
Publication
Tecnalia is working in the development of gasification technology for the production of hydrogen from biomass. Biomass is an abundant and disperse renewable energy source that can be important for the production of hydrogen. The development of hydrogen system from biomass requires multifaceted studies on hydrogen production systems hydrogen separation methods and hydrogen safety aspects. Steam gasification of biomass produces a syngas with high hydrogen content but this syngas requires a post-treatment to clean and to separate the hydrogen. As a result of this analysis Tecnalia has defined a global process for the production cleaning enrichment and separation of hydrogen from the syngas produced from biomass gasification. But besides the technical aspects safety considerations affecting all the described processes have been identified. For that reason it is being developed a procedure to establish the technical requirements and the recommended practices to ensure the highest level of safety in the production and handing of hydrogen.
Hydrogen Self-Ignition In Pressure Relief Devices
Sep 2009
Publication
In future pressure relief devices (PRDs) should be installed on hydrogen vehicles to prevent a hydrogen container burst in the event of a nearby fire. Weakening of the container at elevated temperature could result in such burst. In this case the role of a PRD is to release some or all of the system fluid in the event of an abnormally high pressure. The paper analyzes the possibility of hydrogen self-ignition at PRD operation and ways of its prevention.
First Responder Training Supporting Commercialization of Hydrogen and Fuel Cell Technologies
Oct 2015
Publication
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. The California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released. This training resource serves the delivery of a variety of training regimens. Associated materials are adaptable for different training formats ranging from high-level overview presentations to more comprehensive classroom training. This paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online classroom hands-on) by the respective organizations. The collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input will be discussed.
Detonation Dynamics in a Curved Chamber for an Argon Diluted Hydrogen-oxygen Mixture
Sep 2019
Publication
The dynamics of detonation transmission from a straight channel into a curved chamber was investigated as a function of initial pressure using a combined experimental and numerical study. Hi-speed Schlieren and *OH chemiluminescense were used for flow visualization; numerical simulations considered the two-dimensional reactive Euler equations with detailed chemistry. Results show the highly transient sequence of events (i.e. detonation diffraction re-initiation attempts and wave reflections) that precede the formation of a steadily rotating Mach detonation along the outer wall of the chamber. An increase in pressure from 15 kPa to 26 kPa expectedly resulted in detonations that are less sensitive to diffraction. Local quenching of the initial detonation occurred for all pressures considered. The location where this decoupling occurred along the inner wall determined the location where transition from regular reflection to a rather complex wave structure occurred along the outer wall. This complex wave structure includes a steadily rotating Mach detonation (stem) an incident decoupled shock-reaction zone region and a transverse detonation that propagates in pre-shocked mixture.
Development of Uniform Harm Criteria for Use in Quantitative Risk Analysis of the Hydrogen Infrastructure
Sep 2009
Publication
This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities or facility and equipment damage due to high air temperatures radiant heat fluxes or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects impact from fragments generated by the explosion the collapse of buildings and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident evaluated from deterministic models to a probability of harm to people structures or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Hydrogen as an Energy Carrier: An Evaluation of Emerging Hydrogen Value Chains
Nov 2018
Publication
Some 3% of global energy consumption today is used to produce hydrogen. Only 0.002% of this hydrogen about 1000 tonnes per annum(i) is used as an energy carrier. Yet as this timely position paper from DNV GL indicates hydrogen can become a major clean energy carrier in a world struggling to limit global warming.<br/>The company’s recently published 2018 Energy Transition Outlook(1) projects moderate uptake of hydrogen in this role towards 2050 then significant growth towards 2100. Building on that this position paper provides a more granular analysis of hydrogen as an energy carrier.
Numerical Investigation on the Dispersion of Hydrogen Leaking from a Hydrogen Fuel Cell Vehicle in Seaborne Transportation
Oct 2015
Publication
The International Maritime Organization under the United Nations has developed safety requirements for seaborne transportation of hydrogen fuel cell vehicles in consideration of a recent increase in such transportation. Japan has led the development of new regulations in the light of some research outcomes including numerical simulations on hydrogen dispersion in a cargo space of a vehicle carrier in case of accidental leakage of hydrogen from the vehicle. Numerical results indicate that the region of space occupied by flammable hydrogen/air mixture strongly depends on the direction of ventilation openings. These findings have contributed to the development of new international regulations.
Application of Risk Assessment Approach on a Hydrogen Station
Sep 2013
Publication
An accident modelling approach is used to assess the safety of a hydrogen station as part of a ground transportation network. The method incorporates prevention barriers associated to human factors management and organizational failures in a risk assessment framework. Failure probabilities of these barriers and end-states events are predicted using Fault Tree Analysis and Event Tree Analysis respectively. Results from the case study considered revealed the capability of the proposed method in estimating the likelihood of various outcomes as well as predicting the future probability. In addition the scheme offers opportunity to provide dynamic adjustment by updating the failure probability with actual plant data. Results from the analysis can be used to plan maintenance and management of change as required by the plant condition.
The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach
Oct 2017
Publication
The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper is to analyze which factors are most likely to influence the outcome of this battle thereby reducing the uncertainty in the industry regarding investment decisions in either of these technologies. We examine the relevant factors for standard dominance and apply a multi-criteria decision-making method best worst method to determine the relative importance of these factors. The results indicate that the key factors include technological superiority compatibility and brand reputation and credibility. Our findings show that battery powered electric vehicles have a greater chance of winning the standards battle. This study contributes to theory by providing further empirical evidence that the outcome of standards battles can be explained and predicted by applying factors for standard success. We conclude that technology dominance in the automotive industry is mostly driven by technological characteristics and characteristics of the format supporter.
Experimental Investigation of Hydrogen Release and Ignition from Fuel Cell Powered Forklifts in Enclosed Spaces
Sep 2011
Publication
Due to rapid growth in the use of hydrogen powered fuel cell forklifts within warehouse enclosures Sandia National Laboratories has worked to develop scientific methods that support the creation of new hydrogen safety codes and standards for indoor refuelling operations. Based on industry stakeholder input conducted experiments were devised to assess the utility of modelling approaches used to analyze potential consequences from ignited hydrogen leaks in facilities certified according to existing code language. Release dispersion and combustion characteristics were measured within a scaled test facility located at SRI International's Corral Hollow Test Site. Moreover the impact of mitigation measures such as active/passive ventilation and pressure relief panels was investigated. Since it is impractical to experimentally evaluate all possible facility configurations and accident scenarios careful characterization of the experimental boundary conditions has been performed so that collected datasets can be used to validate computational modelling approaches.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Open-source Simulation of the Long-term Diffusion of Alternative Passenger Cars on the Basis of Investment Decisions of Private Persons
Feb 2021
Publication
Numerous studies have shown that a full electrification of passenger cars is needed to stay within the 1.5° C temperature rise. This article deals with the question of how the required shares of alternative vehicles can be achieved by the year 2050. In literature the preferred technology are battery electric vehicles as these are more energy efficient than hydrogen vehicles. To be able to demonstrate how alternative vehicles diffuse into the German market the passenger car investment behavior of private persons was investigated. For this purpose a discrete choice experiment (DCE) with 1921 participants was carried out empirically. The results of the DCE show that the investment costs in particular are important when choosing a vehicle. This is followed by the driving range fuel costs and vehicle type. Less important are the charging infrastructure and CO2 emissions of the vehicle. A CO2 tax is of least importance. The utility values of the DCE were used to simulate future market shares. For this purpose the open-source software Invest was developed and different scenarios were defined and calculated. This paper shows that conservative assumptions on attribute development leave a large gap until full electrification as conventional vehicles still account for around 62% of market shares in 2050. In order to achieve full electrification extreme efforts must be made targeting the technical and economic characteristics of the vehicles but also addressing person-related characteristics such as level of information the subjective norm or the technological risk attitude. A ban on new registrations of combustion engines from 2030 could also lead to a full electrification by 2050. An average annual increase in the market share of alternative vehicles of 2.4 percentage points is needed to achieve full electrification. Other important factors are measures that address the modal shift to other modes of transport (rail public transport car-sharing).
Experimental Study of the Concentration Build-Up Regimes in an Enclosure Without Ventilation
Sep 2011
Publication
We present an experimental investigation of the different concentration build-up regimes encountered during a release of helium/air mixture in an empty enclosure without ventilation. The release is a vertical jet issuing from a nozzle located near the floor. The nozzle diameter the flow rate and the composition of the injected mixture have been varied such that the injection Richardson number ranges from 6 × 10−6 to 190. The volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 2 × 10−3 to 2 × 104. This wide range allowed reaching three distinct regimes: stratified stratified with a homogeneous upper layer and homogenous.
Simple Hydrogen Gas Production Method Using Waste Silicon
Jan 2022
Publication
We investigated a simple and safe method for producing hydrogen using Si powder which is discarded in the semiconductor industry. Using the reaction of generating hydrogen from Si powder and an aqueous NaOH solution a simple hydrogen generator that imitated Kipp’s apparatus was produced. Then by combining this apparatus with a polymer electrolyte fuel cell an automatic hydrogen generation system based on the amount of electric power required was proposed. Furthermore it was found that hydrogen can also be generated using non-poisonous and deleterious substances Ca(OH)2 and Na2CO3 instead of the deleterious substance NaOH and adding water to the mixture with Si powder. The by-products Na2SiO3 and CaCO3 can be used as raw materials for glass. The simple hydrogen generator produced in this study can be used as a fuel supply source for small-scale power generation systems as an auxiliary power source.
The Strategic Road Map for Hydrogen and Fuel Cells: Industry-academia-government Action Plan to Realize a “Hydrogen Society”
Mar 2019
Publication
The fourth Strategic Energy Plan adopted in April 2014 stated ""a road map toward realization of a “hydrogen society” will be formulated and a council which comprises representatives of industry academia and government and which is responsible for its implementation will steadily implement necessary measures while progress is checked". Then the Council for a Strategy for Hydrogen and Fuel Cells which was held in June in the same year as a conference of experts from industry academia and government compiled a Strategic Roadmap for Hydrogen and Fuel Cells (hereinafter referred to as ""the Roadmap"") presenting efforts to be undertaken by concerned parties from the public/private sector aimed at building a hydrogen-based society.<br/>The Roadmap was revised in March 2016 in response to the progress of the efforts to include the schedule and quantitative targets to make the fuel cells for household use (Ene-Farm) fuel cell vehicles (FCVs) and hydrogen stations self-reliant. In April 2017 the first Ministerial Council on Renewable Energy Hydrogen and Related Issues was held. The Council decided to establish--by the end of the year--a basic strategy that would allow the government to press on with the measures in an integrated manner to realize a hydrogen-based society for the first time in the world. The second Ministerial Council on Renewable Energy Hydrogen and Related Issues was then held in December of that year to establish the Basic Hydrogen Strategy. The Strategy was positioned as a policy through which the whole government would promote relevant measures and proposed that hydrogen be another new carbon-free energy option. By setting a target to be achieved by around 2030 the Strategy provides the general direction and vision that the public and private sectors should share with an eye on 2050.<br/>Furthermore the fifth Strategic Energy Plan was adopted in July 2018. In order for hydrogen to be available as another new energy option in addition to renewable energy the Plan showed the correct direction of hydrogen energy in the energy policy specifically reducing the hydrogen procurement/supply cost to a level favorably comparable with that of existing energies while taking the calculated environmental value into account.
Numerical Simulation of Diverging Detonation in Hydrogen Air Mixtures
Oct 2015
Publication
Propagation and stability of diverging cylindrical detonation in hydrogen air mixture is numerically simulated and the mechanism of the transverse waves is analysed. For the numerical modelling a new solver based on compressible transient reactive Navier–Stokes equations is developed which can the simulate detonation propagation and extinction in hydrogen-air mixture. A single step reaction mechanism is tuned to ensure the detonation and deflagration properties (in case of detonation failure) can be simulated accurately. The solver is used for modelling various detonation scenarios in particular cylindrical diverging-detonations because most of accidental industrial detonations start from a spark and then a diverging-detonation propagates outwards. The diverging detonation its cellular structure and adoption with the increased surface area at the detonation front as well as interactions with obstacles leading to detonation failure and re-initiation are studied.
Evaluation of Hydrogen, Propane and Methane-air Detonations Instability and Detonability
Sep 2013
Publication
In this paper the detonation propensity of different compositions of mixtures of hydrogen propane and methane with air has been evaluated over a wide range of compositions. We supplement the conventional calculations of the induction delay with calculations of the characteristic acceleration parameter recently suggested by Radulescu Sharpeand Bradley(RSB) to characterize the instability of detonations. While it is well established that the ignition delay provides a good measure for detonability the RSB acceleration or its non-dimensionalform provides a further discriminant between mixtures with similar ignition delays. The present assessment of detonability reveals that while a stoichiometric mixture of hydrogen-air has an ignition delay one and two orders of magnitude shorter than respectively propane and methane hydrogen also has a parameter smaller by respectively one and two orders of magnitude. Its smaller propensity for instability is reflected by an RSB acceleration parameter similar to the two hydrocarbons. The predictions however indicate that lean hydrogen mixtures are likely to be much more unstable than stoichiometric ones. The relation between the parameter and potential to amplify an unstable transverse wave structure has been further determined through numerical simulation of decaying reactive Taylor-Sedov blast waves. Using a simplified two-step model calibrated for these fuels we show that methane mixtures develop cellular structures more readily than propane and hydrogen when observed on similar induction time scales. Future work should be devoted towards a quantitative inclusion of the RSB parameter in assessing the detonability of a given mixture.
Numerical Analysis of Detonation Propensity of Hydrogen-air Mixtures with Addition of Methane, Ethane or Propane
Oct 2015
Publication
The detonation propensity of hydrogen-air mixtures with addition of methane ethane or propane in wide range of compositions is analyzed. The analysis concerned the detonation cell width ignition delay time RSB and parameters. Results are presented as a function of hydrogen molar fraction. Computations were performed with the use of three Cantera 2.1.1. scripts in the Matlab R2010b environment. The validated mechanisms of chemical reactions based on data available in the literature were used. Six mechanisms were assessed: GRI-Mech 3.0 LLNL SanDiego Wang POLIMI and AramcoMech. In conclusion the relation between detonation propensity parameters is discussed.
Blast Wave from Bursting Enclosure with Internal Hydrogen-air Deflagration
Oct 2015
Publication
Most studies on blast waves generated by gas explosions have focused on gas explosions occurring in open spaces. However accidental gas explosions often occur in confined spaces and the blast wave generates from a bursting vessel as a result of an increase in pressure caused by the gas explosion. In this study blast waves from bursting plastic vessels in which gas explosions occurred are investigated. The flammable mixtures used in the experiments were hydrogen-air mixtures at several equivalence ratios and a stoichiometric methane-air mixture. The overpressures of the blast waves were generated by venting high-pressure gas in the enclosure and volumetric expansion with a combustion reaction. The measured intensities of the blast waves were greater than the calculated values resulting from high-pressure bursting without a combustion reaction. The intensities of the blast waves resulting from the explosions of hydrogen-air mixtures were much greater than those of the methane-air mixture.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
A Study on the Continuous Spill with Limited Period of Release
Sep 2013
Publication
In this study the spread of cryogenic liquid due to a limited period of release is investigated for the first time to clarify the unclear conventional concept regarding two release types continuous and instantaneous release. In describing instantaneous release a discharge time has been assumed to be infinitesimally small; however such an assumption is unreal because there exists a finite period of release no matter how rapid it is. If the discharge time is less than the entire time domain the instantaneous release model should be added to the continuous model from the end of the time. This combined release that consists of the initial continuous model and subsequent instantaneous model is more realistic than the instantaneous release. The physical phenomenon is governed by three parameters: the evaporation rate per unit area release time and spill quantity. Third-order perturbation solutions are obtained and compared with a numerical solution to verify the perturbation solution. For the same spill quantity the combined model that consists of continuous and subsequent instantaneous model is necessary for small release times whereas the continuous model is only required for large release times. Additionally the combined release model is necessary for a small spill quantity at a fixed release time. These two release models are clearly distinguished using the perturbation solution.
Hot Surface Ignition of Hydrogen-air Mixtures
Oct 2015
Publication
Hot surface ignition is relevant in the context of industrial safety. In the present work two-dimensional simulations with detailed chemistry and study of the reaction pathways of the buoyancy-driven flow and ignition of a stoichiometric hydrogen-air mixture by a rapidly heated surface (glowplug) are reported. Experimentally ignition is observed to occur regularly at the top of the glowplug; numerical results for hydrogen-air reproduce this trend and shed light on this behaviour. The simulations show the importance of flow separation in creating zones where convective losses are minimized and heat diffusion is maximized resulting in the critical conditions for ignition to take place.
An Experimental Study on Mechanism of Self-ignition of High-pressure Hydrogen
Oct 2015
Publication
In the present study the self-ignition of high-pressure hydrogen released in atmospheric air through a diaphragm is visualized under various test conditions. The experimental results indicate that the hydrogen that jets through the rupturing diaphragm is mixed with the heated air near the tube wall. The self-ignition event originated from this mixing. The self-ignition was strongly dependent on the strength of an incident shock wave generated at the diaphragm rupture. As a result a cylindrical flame that formed after the self-ignition shows a tendency to become longer as it propagates in the downstream direction. The head velocities of the hydrogen-air mixture and the cylindrical flame are consistent with that of a contact surface calculated from the measured shock speed. A modified self-ignition mechanism is proposed based on the experimental observations.
Experimental Determination of Critical Conditions for Hydrogen-air Detonation Propagation in Partially Confined Geometry
Oct 2015
Publication
An experimental investigation was performed to determine critical semi-open channel height (h*) and two-sided open channel width (w*) in which hydrogen-air detonation may propagate. Three types of gaseous mixture composition were used: 25% 29.6% and 40% of hydrogen in air. Experimental setup was based on rectangular (0.11 × 0.11 × 2 m) test channel equipped with acceleration section (0.11 × 0.11 × 1 m). Different channel heights h in range of 15–40 mm and widths w in range of 30–50 mm were used in the test channel. The critical height h* and width w* were defined for each investigated configuration. To determine representative detonation cell sizes λ and to calculate their relationship to h* and w* the sooted plate technique was used. The results showed that detonation in stoichiometric H2-air mixture may propagate in semi-open channel only when the channel height is very close to or higher than approximately 3λ. For less reactive mixtures critical relation h*/λ reaches 3.1 or 3.6 for mixtures with 25% and 40% of hydrogen in air respectively. For two-sided open channel similar relations w*/λ were close to 4.9 and 5.5 for 29.6%H2 and 40%H2 in air respectively.
On The Kinetics of Alh3 Decomposition and the Subsequent Al Oxidation
Sep 2011
Publication
Metal hydrides are used for hydrogen storage. AlH3 shows a capacity to store about 10 wt% hydrogen. Its hydrogen is split-off in the temperature interval of 400–500 K. On dehydrogenation a nano-structured Al material emerges with specific surfaces up to 15–20 m2/g. The surface areas depend on the heating rate because of a temperature dependent crystallite growth. The resulting Al oxidizes up to 20–25% weight on air access forming an alumina passivation layer of 3–4 nm thickness on all exposed surfaces. The heat released from this Al oxidation induces a high risk to this type of hydrogen storage if the containment might be destroyed accidentally. The kinetics of the dehydrogenation and the subsequent oxidation is investigated by methods of thermal analysis. A reaction scheme is confirmed which consists of a starting Avrami-Erofeev mechanism followed by formal 1st order oxidation on unlimited air access. The kinetic parameters activation energies and pre-exponentials are evaluated and can be used to calculate the reaction progress. Together with the heat of the Al oxidation the overall heat release and the related rate can be estimated.
Modelling and Simulation of High-pressure Hydrogen Jets Using H2FC European Cyber-laboratory
Oct 2015
Publication
The Hydrogen and Fuel Cell (H2FC) European research infrastructure cyber-laboratory is a software suite containing ‘modelling’ and ‘engineering’ tools encompassing a wide range of H2FC processes and systems. One of the core aims of the H2FC Cyber-laboratory has been the creation of a state-of-the-art hydrogen CFD modelling toolbox. This paper describes the implementation and validation of this new CFD modelling toolbox in conjunction with a selection of the available ‘Safety’ engineering tools to analyse a high pressure hydrogen release and dispersion scenario. The experimental work used for this validation was undertaken by Shell and the Health and Safety Laboratory (UK). The overall goal of this work is to provide and make readily available a Cyber-laboratory that will be worth maintaining after the end of the H2FC project for the benefit of both the FCH scientific community and industry. This paper therefore highlights how the H2FC Cyber-laboratory which is offered as an open access platform can be used to replicate and analyse real-world scenarios using both numerical engineering tools and through the implementation of CFD modelling techniques.
Hydrogen Fuel-Cell Forklift Vehicle Releases In Enclosed Spaces
Sep 2011
Publication
Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis.
Hydrogen Refuelling Stations for Public Transport Quality and Safety in the User-interface
Sep 2007
Publication
Hydrogen stations and supply systems for public transport have been demonstrated in a number of European cities during the last four years. The first refuelling facility was put into operation in Reykjavik in April 2003. Experience from the four years of operation shows that safety related incidents are more frequent in the user interface than in the other parts of the hydrogen refuelling station (HRS). This might be expected taking into account the fact that the refuelling is manually operated and that according to industrial statistics human failures normally stand for more than 80% of all safety related incidents. On the other hand the HRS experience needs special attention since the refuelling at the existing stations is carried out by well trained personnel and that procedures and systems are followed closely. So far the quality and safety approach to hydrogen refuelling stations has been based on industrial experience. This paper addresses the challenge related to the development of safe robust and easy to operate refuelling systems. Such systems require well adapted components and system solutions as well as user procedures. The challenge to adapt the industrial based quality and safety philosophy and methodologies to new hydrogen applications and customers in the public sector is addressed. Risk based safety management and risk acceptance criteria relevant to users and third party are discussed in this context. Human factors and the use of incident reporting as a tool for continuous improvement are also addressed. The paper is based on internal development programmes for hydrogen refuelling stations in Hydro and on participation in international EU and IPHE projects such as CUTE HyFLEET:CUTE HySafe and HyApproval.
Safe Operation of Combined Cycle Gas Turbine and Gas Engine Systems Using Hydrogen Rich Fuels
Oct 2015
Publication
This paper describes work performed by a consortium led by the UK Health and Safety Laboratory(HSL)to identify the safe operating conditions for combined cycle power generating systems running on high hydrogen fuels. The work focuses on hydrogen and high hydrogen syngas and biogas waste-stream fuel mixtures which may prove hazardous in the event of a turbine or engine flame out resulting in a flammable fuel mixture entering the hot exhaust system and igniting. The paper describes the project presenting some initial results from this work including the development of large scale experimental facilities on the550 acre HSL site near Buxton Derbyshire UK. It describes the large scale experimental facility which utilises the exhaust gas from a Rolls-Royce Viper jet-engine (converted to run on butane) feeding into a 12 m long 0.60 m diameter instrumented tube at a pre-combustion velocity of 22 m/s. A variable geometry simulated heat exchanger with a 40 %2blockage ratio is present in the tube. Flammable mixtures injected into the tube close to the Viper outlet together with make-up oxygen are then ignited. Extensive optical ionisation temperature and pressure sensors are employed along the length of the tube to measure the pressures and flame speeds resulting from the combustion event. Some preliminary results from the test programme are discussed including deflagration to detonation transitions at high equivalence ratios.
The Norwegian Government’s Hydrogen Strategy - Towards a Low Emission Society
Jun 2020
Publication
On Wednesday 3rd of June 2020 Norwegian Minister for Petroleum and Energy Tina Bru and Minister for Climate and Environment Sveinung Rotevatn presented the Norwegian government's hydrogen strategy.<br/>The strategy sets the course for the government's efforts to stimulate development of hydrogen-related technologies. Hydrogen as an energy carrier can contribute to reduction of greenhouse gases and create value for the Norwegian business sector. The government wishes to prioritise efforts in areas where Norway Norwegian enterprises and technology clusters may influence the development of hydrogen related technologies and where there are opportunites for increased value creation and green growth. For hydrogen to be a low-carbon or emission-free energy carrier it must be produced with no or low emissions such as through water electrolysis with renewable electricity or from natural gas with carbon capture and storage.<br/>Today technology maturity and high costs represent barriers for increased use of hydrogen especially in the transport sector and as feedstock in parts of industry. If hydrogen and hydrogen-based solutions such as ammonia are to be used in new areas both the technology and the solutions must become more mature. In this respect further technology development will be vital.
Low-carbon Energy Transition With the Sun and Forest: Solar-driven Hydrogen Production from Biomass
Nov 2021
Publication
There is a need to derive hydrogen from renewable sources and the innovative stewardship of two natural resources namely the Sun and forest could provide a new pathway. This paper provides the first comparative analysis of solar-driven hydrogen production from environmental angles. A novel hydrogen production process proposed in this paper named Solar-Driven Advanced Biomass Indirect-Gasification (SABI-Hydrogen) shows promise toward achieving continuous operation and scalability the two key challenges to meet future energy needs. The calculated Global Warming Potential for 1 kg of solar-driven hydrogen production is 1.04 kg CO2-eq/kg H2 less than half of the current biomass gasification process which emits 2.67 kg CO2-eq/kg H2. Further SABI-Hydrogen demonstrates the least-carbon intensive pathway among all current hydrogen production methods. Thus solar-driven hydrogen production from biomass could lead to a sustainable supply essential for a low-carbon energy transition.
Hydrogen for Renewable Energy Export: Broadening the Concept of Hydrogen Safety
Sep 2019
Publication
Recently we have seen hydrogen (re)emerge as an important component of widespread decarbonisation of energy sectors. From an Australian perspective this brings with it an opportunity to store transport and export renewable energy—either as liquefied hydrogen or in a carrier such as ammonia. The growth of the hydrogen industry to now include the power and transport sectors as well as the notion of hydrogen export has broadened the range of safety considerations required and seen them extend into the realm of the consumer for the first time.<br/>Hydrogen as well as ammonia and other carriers such as methanol are existing industrial chemicals which have established protocols for their handling and use in the chemicals sector. As their use in energy and transport increases especially in the context of widespread domestic use their handling and use by inexperienced people in less-controlled environments expands shifting the risk profiles and management systems required. There is also the potential for novel hydrogen carriers such as methylcyclohexane/toluene to reach commercial viability at industrial scale.<br/>This paper will discuss some of these emerging applications of hydrogen and its carriers and discuss some of the technological innovations under development that may accompany a new energy industry— with some consideration given to their potential risks and the required safety considerations. In addition we will also provide an overview of global activity in this area and how new standards and regulations would need to be developed for the adaption of these technologies in an Australian context.
Self-ignition and Flame Propagation of Pressurized Hydrogen Released Through Tubes
Sep 2019
Publication
The spontaneous ignition of hydrogen released from the high pressure tank into the downstream pipes with different lengths varied from 0.3m to 2.2m has been investigated experimentally. In this study the development of shock wave was recorded by pressure sensors and photoelectric sensors were used to confirm the presence of a flame in the pipe. In addition the development of jet flame was recorded by high-speed camera and IR camera. The results show that the minimal release pressure in different tube when self-ignition of hydrogen occurred could decrease first and then increase with the increase of the aspect of pipe. And the minimum release pressure of hydrogen self-ignition was 3.87MPa. When the flame of self-ignition hydrogen spouted out of the tube Mach disk was observed. The method of CFD was adopted. The development of shock wave at the tube exit was reproduced and structures as barrel shock the reflected shock and the Mach disk are presented. Because of these special structures the flame at the nozzle is briefly extinguished and re-ignited. At the same time the complete development process of the jet flame was recorded including the formation and separation of the spherical flame. The flame structure exhibits three typical levels before the hemispherical flame separation.
Statistical Analysis of Electrostatic Spark Ignition of Lean H2-O2-Ar Mixtures
Sep 2009
Publication
Determining the risk of accidental ignition of flammable mixtures is a topic of tremendous importance in industry and aviation safety. The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels. In recent years however the viewpoint of ignition as a statistical phenomenon has formed the basis for studying ignition as this approach appears to be more consistent with the inherent variability in engineering test data. We have developed a very low energy capacitive spark ignition system to produce short sparks with fixed lengths of 1 to 2 mm. The ignition system is used to perform spark ignition tests in lean hydrogen oxygen-argon test mixtures over a range of spark energies. The test results are analyzed using statistical tools to obtain probability distributions for ignition versus spark energy demonstrating the statistical nature of ignition. The results also show that small changes in the hydrogen concentration lead to large changes in the ignition energy and dramatically different flame characteristics. A second low-energy spark ignition system is also developed to generate longer sparks with varying lengths up to 10 mm. A second set of ignition tests is performed in one of the test mixtures using a large range of park energies and lengths. The results are analyzed to obtain a probability distribution for ignition versus the spark energy per unit spark length. Preliminary results show that a single threshold MIE value does not exist and that the energy per unit length may be a more appropriate parameter for quantifying the risk of ignition.
Implementation of hydrogen plasma activation of Mg powder in two steps hydrogenation
Oct 2017
Publication
Development of technologically and economically feasible solutions for hydrogen storage stimulates progress in hydrogen economy. High gravimetric and volumetric capacities of magnesium hydride makes it promising material capable to accelerate implementation of hydrogen-based technologies in our daily life. However widely discussed limitations of sorption kinetics and thermodynamic properties must be managed in MgH2. This work investigates two steps hydrogenation when process of hydrogen absorption is followed after hydrogen plasma activation. Such technique initiates creation of new channels for enhanced hydrogen sorption. Moreover synthesis of negligible amount of hydride acts as positive factor for further hydrogenation.
From Research Results to Published Codes And Standards - Establishing Code Requirements For NFPA 55 Bulk Hydrogen Systems Separation Distances
Sep 2009
Publication
Performing research in the interest of providing relevant safety requirements is a valuable and essential endeavor but translating research results into enforceable requirements adopted into codes and standards a process sometimes referred to as codification can be a separate and challenging task. This paper discusses the process utilized to successfully translate research results related to bulk gaseous hydrogen storage separation (or stand-off) distances into code requirements in NFPA 55:Storage Use and Handling of Compressed Gases and Cryogenic Fluids in Portable and StationaryContainers Cylinders and Tanks and NFPA 2: Hydrogen Technologies. The process utilized can besummarized as follows: First the technical committees for the documents to be revised were engaged to confirm that the codification process was endorsed by the committee. Then a sub-committee referred to as a task group was formed. A chair must be elected or appointed. The chair should be a generalist with code enforcement or application experience. The task group was populated with several voting members of each technical committee. By having voting members as part of the task group the group becomes empowered and uniquely different from any other code proposal generating body. The task group was also populated with technical experts as needed but primarily the experts needed are the researchers involved. Once properly populated and empowered the task group must actively engage its members. The researchers must educate the code makers on the methods and limitations of their work and the code makers must take the research results and fill the gaps as needed to build consensus and create enforceable code language and generate a code change proposal that will be accepted. While this process seems simple there are pitfalls along the way that can impede or nullify the desired end result – changes to codes and standards. A few of these pitfalls include: wrong task group membership task group not empowered task group not supported in-person meetings not possible consensus not achieved. This paper focuses on the process used and how pitfalls can be avoided for future efforts.
Numerical Investigation of a Vertical Surface on the Flammable Extent of Hydrogen and Methane Vertical Jets
Sep 2011
Publication
The effect of vertical surface on the extent of high pressure unignited jets of both hydrogen and methane is studied using computer fluid dynamics simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm round leak orifice from 100 barg 250 barg 400 barg 550 barg and 700 barg compressed gas systems are presented for vertical jets. To quantify the effect of the surface on the jet the jet exit is positioned at various distances from the surface ranging from 0.029 m to 12 m. Free jets simulations are performed for comparison purposes.
Hydrogen Inhibition Effect of Chitosan and Sodium Phosphate on ZK60 Waste Dust in a Wet Dust Removal System: A Feasible Way to Control Hydrogen Explosion
Dec 2021
Publication
Wet dust removal systems used to control dust in the polishing or grinding process of Mg alloy products are frequently associated with potential hydrogen explosion caused by magnesium-water reaction. For purpose of avoiding hydrogen explosion risks we try to use a combination of chitosan (CS) and sodium phosphate (SP) to inhibit the hydrogen evolution reaction between magnesium alloy waste dust and water. The hydrogen evolution curves and chemical kinetics modeling for ten different mixing ratios demonstrate that 0.4% wt CS + 0.1% wt SP yields the best inhibition efficiency with hydrogen generation rate of almost zero. SEM and EDS analyses indicate that this composite inhibitor can create a uniform smooth tight protective film over the surface of the alloy dust particles. FTIR and XRD analysis of the chemical composition of the surface film show that this protective film contains CS and SP chemically adsorbed on the surface of ZK60 but no detectable Mg(OH)2 suggesting that magnesium-water reaction was totally blocked. Our new method offers a thorough solution to hydrogen explosion by inhibiting the hydrogen generation of magnesium alloy waste dust in a wet dust removal system.
Numerical Investigation of a Mechanical Device Subjected to a Deflagration-to-detonation Transition
Sep 2011
Publication
In this work we evaluate the consequences of the combustion of a stoichiometric mixture of hydrogen-air on a mechanical device which can be considered as a long tube. In order to choose the most dangerous combustion regime for the mechanical device we devote a particular attention to the investigation of the 1D deflagration-to-detonation transition. Then once established the most dangerous combustion regime we compute the reacting flow and the stress and strain in the mechanical device. Analyses are performed using both semi-analytical solutions and Europlexus a computer program for the simulation of fluid-structure systems under transient dynamic loading.
Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry
Dec 2021
Publication
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However the challenge to supply enough CO2 -free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
Hyper Experiments on Catastrophic Hydrogen Releases Inside a Fuel Cell Enclosure
Sep 2009
Publication
As a part of the experimental work of the EC-funded project HYPER Pro-Science GmbH performed experiments to evaluate the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet. During this study hydrogen distribution and combustion experiments were performed using a generic enclosure model with the dimensions of the fuel cell "Penta H2" provided by ARCOTRONICS (now EXERGY Fuel Cells) to the project partner UNIPI for their experiments on small foreseeable leaks. Hydrogen amounts of 1.5 to 15 g H2 were released within one second into the enclosure through a nozzle with an internal diameter of 8 mm. In the distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Based on the results of these experiments combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe the characteristics and the hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen that is released into a partly vented and partly obstructed enclosure with different venting characteristics.
In Situ X-ray Absorption Spectroscopy Study on Water Formation Reaction of Palladium Metal Nanoparticle Catalysts
Oct 2015
Publication
Proper management of hydrogen gas is very important for safety security of nuclear power plants. Hydrogen removal by water formation reaction on a catalyst is one of the candidates for creating hydrogen free system. We observed in situ and time-resolved structure change of palladium metal nanoparticle catalyst during the water formation reaction by using X-ray absorption spectroscopy technique. A poisoning effect by carbon monoxide on catalytic activity was also studied. We have found that the creation of oxidized surface layer on palladium metal nanoparticles plays an important role for the water formation reaction process.
Influence of Doping Element in Distributed Hydrogen Optical Fiber Densors with Brillouin Scattering
Sep 2013
Publication
Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution to measure hydrogen in harsh environment as nuclear industry. Glass composition is the key point to enhance the sensing parameter of the fiber in the target application. Several optical fiber with different doping element were used for measuring hydrogen saturation. Permeability of optical plays a major role to the kinetic of hydrogen diffusion. Fluorine doped fiber increase the sorption and the desorption of hydrogen.
Simulation of High-pressure Liquid Hydrogen Releases
Sep 2011
Publication
Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behaviour of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen–air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG).
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming
Jan 2022
Publication
Identifying sustainable energy vectors is perhaps one of the most critical issues that needs addressing to achieve a climate-neutral society by 2050. In this context the hydrogen economy has been proposed as a solution to mitigate our current fossil-based energy system while the concept of the circular economy aims to boost the efficient use of resources. Photoreforming offers a promising opportunity for recycling and transforming widely available biomass-derived wastes (e.g. crude glycerol from biodiesel) into clean hydrogen fuel. This processing technology may be a versatile method that can be performed not only under UV light but also under visible light. However this approach is currently at the lab-scale and some inherent challenges must be overcome not least the relatively modest hydrogen production rates for the lamps’ substantial energy consumption. This study aims to assess the main environmental impacts identifying the hotspots and possible trade-off in which this technology could operate feasibly. We introduce an assessment of the windows of opportunity using seven categories of environmental impact with either artificial light or sunlight as the source of photocatalytic conversion. We compared the environmental indicators from this study with those of the benchmark water electrolysis and steam–methane reforming (SMR) technologies which are currently operating at a commercial scale. The results obtained in this study situate biowaste photoreforming within the portfolio of sustainable H2 production technologies of interest for future development in terms of target H2 production rates and lifetimes of sustainable operation.
Potential for Hydrogen Production from Biomass Residues in the Valencian Community
Sep 2007
Publication
The production of hydrogen from renewable sources is essential to develop the future hydrogen economy. Biomass is an abundant clean and renewable energy source and it can be important in the production of hydrogen. The Valencian Community due to its great agricultural and forestry activities generates an important quantity of biomass residues that can be used for energy generation approximately 778 kt of wet biomass residues per year. This great quantity of biomass can be transformed into a hydrogen-rich gas by different thermochemical conversion processes. In this article the potential of production of hydrogen-rich gas is analyzed considering several factors affecting the conversion yield of these processes. As a result of this analysis it could be possible to produce 1271 MNm3 of H2 per year considering the total biomass residues of the community and selecting the gasification processes.
Safety of Hydrogen and Natural Gas Mixtures by Pipelines- ANR French Project Hydromel
Sep 2011
Publication
In order to gain a better understanding of hazards linked with Hydrogen/Natural gas mixtures transport by pipeline the National Institute of Industrial Environment and Risks (INERIS) alongside with the Atomic Energy Commission (CEA) the industrial companies Air Liquide and GDF SUEZ and the French Research Institutes ICARE and PPRIME (CNRS) have been involved in a project called HYDROMEL. This project was partially funded by the French National Research Agency (ANR) in the framework of its PAN-H program aimed at promoting the R&D activities related to the hydrogen deployment. Firstly the project partners investigated how a NG/H2 mixture may influence the modelling of a hazard scenario i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential of danger. Therefore it was necessary to build an experimental database of physics properties for mixtures. Secondly effect distances in accidental scenarios that could happen on pipelines have been calculated with existing models adapted to the mixtures. This part was preceded by a benchmark exercise between all partners models and experimental results found in the literature. Finally the consortium wrote a good practice guideline for modelling the effects related to the release of natural gas /hydrogen mixture?. The selected models and their comparison with data collected in the literature as well as the experimental results of this project and the main conclusions of the guidelines are presented in this paper.
Comparison of Modelling Approaches for CFD Simulations of High Pressure Hydrogen Releases
Sep 2011
Publication
Several approaches have been used in the past to model the source of a high pressure under-expanded jet such as the computationally expensive resolution of the jet shock structure and the simpler pseudo-source or notional nozzle approaches. In each approach assumptions are made introducing inaccuracies in the CFD calculations. This work assesses the effect of different source modelling approaches on the accuracy of CFD calculations by comparing simulation results to experimental data of the axial distribution of the flow velocity and H2 concentration.
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Detection of Hydrogen Released In a Full-Scale Residential Garage
Sep 2011
Publication
Experiments were conducted to assess detectability of a low-level leak of hydrogen gas and the uniformity of hydrogen concentration at selected sensor placement locations in a realistic setting. A 5%2hydrogen/95%2nitrogen gas mixture was injected at a rate of 350 L/min for about 3/4 hour into a 93m3 residential garage space through a 0.09 m2 square open-top dispersion box located on the floor. Calibrated catalytic sensors were placed on ceiling and wall locations and the sensors detected hydrogen early in the release and continued to measure concentrations to peak and diminishing levels. Experiments were conducted with and without a car parked over the dispersion box. The results show that a car positioned over the dispersion box tends to promote dilution of the hydrogen cause a longer time for locations to reach a fixed threshold and produce lower peak concentrations than with no car present.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Comparison of Convective Schemes in Hydrogen Impinging Jet CFD Simulation
Oct 2015
Publication
Hydrogen impinging jets can be formed in the case of an accidental release indoors or outdoors. The CFD simulation of hydrogen impinging jets suffers from numerical errors resulting in a non-physical velocity and hydrogen concentration field with a butterfly like structure. In order to minimize the numerical errors and to avoid the butterfly effect high order schemes need to be used. The aim of this work is to give best practices guidelines for hydrogen impinging jet simulations. A number of different numerical schemes is evaluated. The number of cells which discretize the source is also examined.
Dependency of Equivalence Ratio on Hydrogen Cylindrical Detonation Induced by Direct Initiation
Sep 2011
Publication
A hydrogen fuel is expected to expand its demand in the future. However hydrogen has to be treated with enough caution because of wide combustible conditions and easiness to ignite. Detonation accidents are caused in hydrogen gas such as the explosion accident in Fukushima first nuclear plant (2011). Therefore it is necessary to comprehend initiation conditions of detonation to prevent its detonation explosion. In the present study cylindrical detonation induced by direct initiation is simulated to understand the dependency of equivalence ratios in hydrogen-oxygen mixture. The several detailed kinetic models are compared to select the most appropriate model for detonation in a wide range of equivalence ratios. The Petersen-Hanson model is used in the present study due to the best agreement among the other models. In the numerical results of cylindrical detonation induced by direct initiation a cellular structure which is similar to the experimental smoked foil record is observed. The local pressure is up to 12 MPa under the condition at the standard state. The ignition process of cylindrical detonation has two stages. At the first stage the normalized cell width /L1/2 at each equivalence ratio increases linearly. At the second stage cell bifurcations appear due to a generation of new transverse waves. It is observed that a transverse wave transforms to a transverse detonation at the end of the first stage and after that some disturbance is developed to be a new transverse wave at the beginning of the second stage.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
Hydrogen Subsonic Upward Release and Dispersion Experiments in Closed Cylindrical Vessel
Sep 2007
Publication
Report presents the preliminary experimental results on hydrogen subsonic leakage in a closed vessel under the well-controlled boundary/initial conditions. Formation of hydrogen-air gas mixture cloud was studied for a transient (10 min) upward hydrogen leakage which was followed by subsequent evolution (15 min) of explosive cloud. Low-intensity ( 0.46⋅10−3 m3/sec) hydrogen release was performed via circular (diameter 0.014 m) orifice located in the bottom part of a horizontal cylindrical vessel ( ≈4 m3). A spatially distributed net of the 24 hydrogen sensors and 24 temperature sensors was used to permanently track the time dependence of the hydrogen concentration and temperature fields in vessel. Analysis of the simultaneous experimental records for the different spatial points permits to delineate the basic flow patterns and stages of hydrogen subsonic release in closed vessel in contrast to hydrogen jet release in open environment. The quantitative data were obtained for the averaged speeds of explosive cloud envelop (50% fraction of the Lower Flammability Limit (LFL)) propagation in the vertical and horizontal directions. The obtained data will be used as an experimental basis for development of the guidelines for an indoors allocation of the hydrogen sensors. Data can be also used as a new benchmark case for the reactive Computational Fluid Dynamics codes validation.
Thermal Loading Cases of Hydrogen High Pressure Storage Cylinders
Sep 2007
Publication
Composite cylinders with metal liner are used for the storage of compressed hydrogen in automotive application. These hybrid pressure cylinders are designed for a nominal working pressure of up to 70 MPa. They also have to withstand a temperature range between -40°C and +85°C according GRPE draft [1] and for short periods up to a maximum temperature of 140°C during filling (fast filling) [2]. In order to exploit the material properties efficiently with a high degree of lightweight optimization and a high level of safety on the same time a better understanding of the structural behavior of hybrid designs is necessary. Work on this topic has been carried out in the frame of a work package on safety aspects and regulation (Subproject SAR) of the European IP StorHy (www.storhy.net). The temperature influence on the composite layers is distinctive due to there typical polymer material behavior. The stiffness of the composite layer is a function of temperature which influences global strains and stress levels (residual stresses) in operation. In order to do an accurate fatigue assessment of composite hybrid cylinders a realistic modeling of a representative temperature load is needed. For this climate data has been evaluated which were collected in Europe over a period of 30 years [3]. Assuming that the temperature follows a Gaussian (normal) distribution within the assessed period of 30 years it is possible to generate a frequency distribution for different temperature classes for the cold extreme and the hot extreme. Combining these distributions leads to the overall temperature range distribution (frequency over temperature classes). The climatic temperature influence the filling temperature and the pressure load have to be considered in combination with the operation profile of the storage cylinder to derive a complete load vector for an accurate assessment of the lifetime and safety level.
Validation Testing In Support Of Hydrogen Codes and Standards Developments
Sep 2011
Publication
New codes and standards are being developed to facilitate the safe deployment of emerging hydrogen technologies. Hydrogen markets will benefit from standards that address the specific properties of hydrogen hydrogen effects on strength of materials and hydrogen compressed gas storage at pressures up to 70 MPa. The need for validation of new hydrogen requirements has been identified by codes and standards technical committees. The US Department of Energy (DOE) office of Energy Efficiency and Renewable Energy (EERE) has tasked the National Renewable Energy Laboratory (NREL) with the role of supporting hydrogen codes and standards research and development needs. NREL has provided validation test support to several new standards development efforts including pressure testing of 70 MPa on board vehicle storage systems flaw testing of stationary hydrogen tanks fill protocols for hydrogen fuel dispensing and hydrogen compatibility testing for hydrogen pressure relief devices (HPRD’s). Validation test results are presented for these four specific standards development needs.
Australia's National Hydrogen Strategy
Nov 2019
Publication
Australia’s National Hydrogen Strategy sets a vision for a clean innovative safe and competitive hydrogen industry that benefits all Australians. It aims to position our industry as a major player by 2030.<br/>The strategy outlines an adaptive approach that equips Australia to scale up quickly as the hydrogen market grows. It includes a set of nationally coordinated actions involving governments industry and the community.
Real World Hydrogen Technology Validation
Sep 2011
Publication
The Department of Energy the Department of Defense's Defense Logistics Agency and the Department of Transportation's Federal Transit Administration have funded learning demonstrations and early market deployments to provide insight into applications of hydrogen technologies on the road in the warehouse and as stationary power. NREL's analyses validate the technology in real-world applications reveal the status of the technology and facilitate the development of hydrogen and fuel cell technologies manufacturing and operations. This paper presents the maintenance safety and operation data of fuel cells in multiple applications with the reported incidents near misses and frequencies. NREL has analyzed records of more than 225000 kilograms of hydrogen that have been dispensed through more than 108000 hydrogen fills with an excellent safety record.
CFD Simulations of the Effect of Ventilation on Hydrogen Release Behavior and Combustion in an Underground Mining Environment
Sep 2013
Publication
CFD simulations investigating the effect of ventilation airflow on hydrogen release behaviour in an underground mining tunnel were performed using FLACS hydrogen. Both dispersion and combustion scenarios of a hydrogen release coming from a severed distribution pipeline were investigated. Effects on the hydrogen dispersion such as ventilation strength and the mechanism of air flow supply (a pull or push fan) and mine opening surface roughness surface cavities and obstructions were explored. Results showing the effect of changing the position of the leak adding a cavity on the ceiling of the tunnel and changing the roughness of the walls are given. Overpressure sensitivity to the ignition delay was also considered. From the results for the varied ventilation regimes and spatial scenarios it is difficult to identify the optimal ventilation strategy giving the safest conditions for hydrogen distribution and refuelling in an underground mine.
Fuel Cell in Maritime Applications Challenges, Chances and Experiences
Sep 2011
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of air pollution is becoming significant and public concern has led to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce further regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or even main propulsion. The paper summarizes the legal background in international shipping related to the use of fuel cells and gas as fuel in ships. The focus of the paper will be on the first experiences on the use of fuel cell systems on board of ships. In this respect an incident on a fuel cell ship in Hamburg will be discussed. Moreover the paper will point out the potential for the use of fuel cell systems on board. Finally an outlook is given on ongoing and planed projects for the use of fuel cells on board of ships.
Estimation of Uncertainty in Risk Assessment of Hydrogen Applications
Sep 2011
Publication
Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the permitting authorities request qualitative and quantitative risk assessments to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data can be established or are available in good quality causing assumptions and extrapolations to be made. Therefore the risk assessment results contain varying degrees of uncertainty as some components are well established while others are not. The paper describes a methodology to evaluate the degree of uncertainty in data for hydrogen applications based on the bias concept of the total probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Influence of Pressure and Temperature on the Fatigue Strength of Type-3 Compressed-hydrogen Tanks
Sep 2011
Publication
The pressure of compressed hydrogen changes with temperature when mass and volume are constant. Therefore when a compressed-hydrogen tank is filled with a certain amount of hydrogen it is necessary to adjust the filling pressure according to the gas temperature. In this study we conducted hydraulic pressure-cycle tests to investigate the fatigue life of Type-3 compressed-hydrogen tanks when environmental temperature and filling pressure are changed. The results indicated that the fatigue life at low temperatures (−40 °C 28 MPa) and room temperature (15 °C 35 MPa) was almost equal. However the fatigue life at high temperatures (85 °C 44 MPa) was shorter than that under other conditions suggesting that stress changes caused by thermal stress affect the fatigue life of the Type-3 tank.
Effectiveness Evaluation of Facilities Protecting from Hydrogen-air Explosion Overpressure
Sep 2011
Publication
The physical processes of the explosion of the hydrogen cloud which is formed as a result of the instantaneous destruction of high-pressure cylinder in the fuelling station are investigated. To simulate the formation of hydrogen-air mixture and its combustion a three-dimensional model of an instantaneous explosion of the gas mixture based on the Euler equations supplemented by the conservation laws of mixture components solved by Godunov method is used. To reduce the influence of the overpressure effects in the shock wave on the surrounding environment it is proposed to use a number of protective measures. An estimation of the efficiency of safety devices is carried out by monitoring the overpressure changes in several critical points. To reduce the pressure load on the construction of protective devices a range of constructive measures is also offered.
Risk Analysis on Mobile Hydrogen Refueling Stations in the World Expo Shanghai
Sep 2013
Publication
During the World Expo Shanghai there were one hundred fuel-cell sight-seeing cars in operation at the Expo Site. The sight-seeing cars were not allowed to drive out of the Expo Site and the stationary hydrogen refuelling station was not permitted to build at the Expo Site for the sake of safety. A flexible solution to refuel the cars was the application of mobile hydrogen refuelling stations. To better understand the hazards and risks associated with the mobile hydrogen refueling stations a risk analysis was preformed to improve the safety of the operations. The risks to the station personnel and to the public were discussed separately. Results show that the stationary risks of the mobile stations to the personnel and refueling customers are lower than the risk acceptance criteria over an order of magnitude so occupational risks and risks to customers are completely acceptable. The third party risks can be acceptable as long as the appropriate mitigation measures are implemented especially well designed parking area and operation time. Leak from boosters is the main risk contributor to the stationary risks because of its highest failure rates according to the generic data and its worst harm effects based on the consequence evaluations. As for the road risks of the mobile stations they can be acceptable as long as the appropriate mitigation measures are implemented especially well-designed moving path and transportation time.
Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers
Apr 2022
Publication
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms for example offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However as H2 storage and transport may prove challenging this study proposes to react this H2 with the carbon dioxide (CO2) stored in depleted reservoirs. Thus producing a more transportable energy carriers like methane or methanol in the reservoir. This paper presents a novel thermodynamic analysis of the Goldeneye reservoir in the North Sea in Aspen Plus. For Goldeneye which can store 30 Mt of CO2 at full capacity if connected to a 4.45 GW wind farm it has the potential to produce 2.10 Mt of methane annually and abate 4.51 Mt of CO2 from wind energy in the grid.
High-Order Perturbation Solutions to a Lh2 Spreading Model With Continuous Spill
Sep 2011
Publication
High-order perturbation solutions have been obtained for the simple physical model describing the LH2 spreading with a continuous spill and are shown to improve over the first-order perturbation solutions. The non-dimensional governing equations for the model are derived to obtain more general solutions. Non-dimensional parameters are sought as the governing parameters for the non-dimensional equations and the non-dimensional evaporation rate is used as the perturbation parameter. The results show that the second-order solutions exhibit an improvement over the first-order solutions with respect to the pool volume; however there is still a difference between numerical solutions and second-order solutions in the late stage of spread. Finally it is revealed that the third-order solutions almost agree with numerical solutions.
Modeling of Cryogenic Hydrogen jets
Oct 2015
Publication
In the present work the CFD modeling of cryogenic hydrogen releases in quiescent environment is presented. Two tests from the series of experiments performed in the ICESAFE facility at KIT (Karlsruhe Institute for Technology) have been simulated within the SUSANA project. During these tests hydrogen at temperature of 37K and 36K and at pressure of 19 and 29 bars respectively is released horizontally. The release at the nozzle is sonic and the modeling of the under-expanded jet was performed using two different approaches: the Ewan and Moodie approach and a modification of the Ewan and Moodie approach (modified Ewan and Moodie) that is introduced here and employs the momentum balance to calculate the velocity in the under-expanded jet. Using these approaches a pseudo-diameter is calculated and this diameter is set as source boundary in the simulation. Predictions are consistent with measurements for both experiments with both approaches. However the Ewan and Moodie approach seems to perform better.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
Component Availability Effects for Pressure Relief Valves Used at Hydrogen Fueling Stations
Sep 2017
Publication
There are times in engineering when it seems that safety and equipment cost reduction are conflicting priorities. This could be the case for pressure relief valves and vent stack sizing. This paper explores the role that component availability (particularly variety in flow and orifice diameters) plays in the engineer’s decision of a relief valve. This paper outlines the guidelines and assumptions in sizing and selecting pressure relief devices (PRDs) found in a typical high pressure hydrogen fueling station. It also provides steps in sizing the station common vent stack where the discharge gas is to be routed to prior being released into the atmosphere. This paper also explores the component availability landscape for hydrogen station designers and identifies opportunities for improvement in the supply chain of components as hydrogen fueling stations increase in number and size. American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section VIII (ASME BPVC Section VIII) Compressed Gas Association S-1.3 (CGA S-1.3) and American Petroleum Institute 520 (API 520) standards provide specific design criteria for hydrogen pressure relief valves. Results of these calculations do not match the available components. The available safety relief valves are 50 to 87 times larger than the required calculated flow capacities. Selecting a significantly oversized safety relief valve affects the vent stack design as the stack design requires sizing relative to the actual flowrate of the safety relief valve. The effect on the vent stack size in turn negatively affects site safety radiation threshold set back distances.
Self-ignition of Hydrogen-nitrogen Mixtures During High-pressure Release Into Air
Oct 2015
Publication
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition respectively. Additionally simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
Attained Temperature During Gas Fuelling and Defueling Cycles of Compressed Hydrogen Tanks for FCV
Sep 2011
Publication
In this study we conducted hydrogen gas filling and discharging cycling tests to examine the thermal behaviour in hydrogen storage tanks under actual use conditions. As a result it was confirmed that the gas temperature in the tank varied depending on the initial test conditions such as the ambient temperature of the tank and the filling gas temperature and that the gas temperature tended to stabilize after several gas filling and discharging cycles.
CO2-Free Hydrogen Supply Chain Project and Risk Assessment for the Safety Design
Sep 2013
Publication
We at Kawasaki Heavy Industries have proposed a "CO2-Free H2 supply chain" using abundant brown coal of Australian origin as the energy source. This chain will store CO2 generated during the process for producing hydrogen from brown coal in a project (Carbon Net) that the Australia Government is promoting. Thus Japan can import CO2-free hydrogen. The supply chain consists of the hydrogen production system the hydrogen transport/storage system and the hydrogen use system. Related to their designs we have to consider their hazards polluted scenarios and safety measures via a safety assessment process that is compliant with international risk assessment standards. To verify safety designs related experiments and analyses will be conducted. This paper describes the approach to safety design for especially the related liquid hydrogen facilities.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
No more items...