A Review on Green Hydrogen Production by Aqueous Phase Reforming of Lignocellulose and Derivatives
Abstract
With the intensification of the global energy crisis, hydrogen has attracted significant attention as a high-energy-density and zero-emission clean energy source. Traditional hydrogen production methods are dependent on fossil fuels and simultaneously contribute to environmental pollution. The aqueous phase reforming (APR) of renewable biomass and its derivatives has emerged as a research hotspot in recent years due to its ability to produce green hydrogen in an environmentally friendly manner. This review provides an overview of the advancements in APR of lignocellulosic biomass as a sustainable and environmentally friendly method for hydrogen production. It focuses on the reaction pathways of various biomass feedstocks (such as glucose, cellulose, and lignin), as well as the types and performance of catalysts used in the APR process. Finally, the current challenges and future prospects in this field are briefly discussed.