Skip to content
1900

A Cost-Optimizing Analysis of Energy Storage Technologies and Transmission Lines for Decarbonizing the UK Power System by 2035

Abstract

The UK net zero strategy aims to fully decarbonize the power system by 2035, anticipating a 40–60% increase in demand due to the growing electrification of the transport and heating sectors over the next thirteen years. This paper provides a detailed technical and economic analysis of the role of energy storage technologies and transmission lines in balancing the power system amidst large shares of intermittent renewable energy generation. The analysis is conducted using the cost-optimizing energy system modelling framework REMix, developed by the German Aerospace Center (DLR). The obtained results of multiple optimization scenarios indicate that achieving the lowest system cost, with a 73% share of electricity generated by renewable energy sources, is feasible only if planning rules in England and Wales are flexible enough to allow the construction of 53 GW of onshore wind capacity. This flexibility would enable the UK to become a net electricity exporter, assuming an electricity trading market with neighbouring countries. Depending on the scenario, 2.4–11.8 TWh of energy storage supplies an average of 11% of the electricity feed-in, with underground hydrogen storage representing more than 80% of that total capacity. In terms of storage converter capacity, the optimal mix ranges from 32 to 34 GW of lithium-ion batteries, 13 to 22 GW of adiabatic compressed air energy storage, 4 to 24 GW of underground hydrogen storage, and 6 GW of pumped hydro. Decarbonizing the UK power system by 2035 is estimated to cost $37–56 billion USD, with energy storage accounting for 38% of the total system cost. Transmission lines supply 10–17% of the total electricity feed-in, demonstrating that, when coupled with energy storage, it is possible to reduce the installed capacity of conventional power plants by increasing the utilization of remote renewable generation assets and avoiding curtailment during peak generation times.

Countries: United Kingdom
Loading

Article metrics loading...

/content/journal7101
2025-03-18
2025-03-30
/content/journal7101
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error