Hydrogen Addition to a Commercial Self-aspirating Burner and Assessment of a Practical Burner Modification Strategy to Improve Performance
Abstract
The ability for existing burners to operate safely and efficiently on hydrogen-blended fuels is a primary concern for the many industries looking to adopt hydrogen as an alternative fuel. This study investigates the efficacy of increasing fuel injector diameter as a simple modification strategy to extend the hydrogen-blending limits before flashback. The collateral effects of this modification are quantified with respect to a set of key performance criteria. The results show that the unmodified burner can sustain up to 50 vol% hydrogen addition before flashback. Increasing the fuel injector diameter reduces primary aeration, allowing for stable operation on up to 100% hydrogen. The flame length, visibility and radiant heat transfer properties are all increased as a result of the reduced air entrainment with a trade-off reported for NOx emissions, where, in addition to the effects of hydrogen, reducing air entrainment further increases NOx emissions.