Skip to content
1900

The Case of Renewable Methane by and with Green Hydrogen as the Storage and Transport Medium for Intermittent Wind and Solar PV Energy

Abstract

Long-duration energy storage is the key challenge facing renewable energy transition in the future of well over 50% and up to 75% of primary energy supply with intermittent solar and wind electricity, while up to 25% would come from biomass, which requires traditional type storage. To this end, chemical energy storage at grid scale in the form of fuel appears to be the ideal option for wind and solar power. Renewable hydrogen is a much-considered fuel along with ammonia. However, these fuels are not only difficult to transport over long distances, but they would also require totally new and prohibitively expensive infrastructure. On the other hand, the existing natural gas pipeline infrastructure in developed economies can not only transmit a mixture of methane with up to 20% hydrogen without modification, but it also has more than adequate long-duration storage capacity. This is confirmed by analyzing the energy economies of the USA and Germany, both possessing well-developed natural gas transmission and storage systems. It is envisioned that renewable methane will be produced via well-established biological and/or chemical processes reacting green hydrogen with carbon dioxide, the latter to be separated ideally from biogas generated via the biological conversion of biomass to biomethane. At the point of utilization of the methane to generate power and a variety of chemicals, the released carbon dioxide would be also sequestered. An essentially net zero carbon energy system would be then become operational. The current conversion efficiency of power to hydrogen/methane to power on the order of 40% would limit the penetration of wind and solar power. Conversion efficiencies of over 75% can be attained with the on-going commercialization of solid oxide electrolysis and fuel cells for up to 75% penetration of intermittent renewable power. The proposed hydrogen/methane system would then be widely adopted because it is practical, affordable, and sustainable.

Countries: United States
Loading

Article metrics loading...

/content/journal6346
2024-05-02
2024-12-18
/content/journal6346
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error